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Abstract: Entropy is used to measure uncertainty in complex systems. Hypergraphs provide structure for
mathematically modeling real-world data. In this study, analyzes were made using entropy on the data in the
hypergraph structure. The entropies of the nodes and hyperedges were calculated using the node degree and hyper
edge degree. Their activities were found according to these values. The applicability of this method in weighted
or unweighted relational structures was demonstrated through examples. In institutions with multiple departments
and employees, the results obtained with the proposed method can be used to support decision-making processes.
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Entropi ile Hiper Cizgelerde Merkezilik

Ozet: Entropi kompleks sistemlerde belirsizligi 6lgmek icin kullamlabilir. Hiper gizgeler gercek diinyaya
uygun verileri matematiksel olarak modellemek i¢in yap1 sunar. Bu ¢aligmada hiper ¢izge yapisindaki veriler
tizerinde entropi kullanilarak analizler yapildi. Diigiim derecesi ve hiper kenar derecesi kullanilarak diigiimlerin
ve hiper kenarlarin entropileri hesaplandi. Bu degerlere gore etkinlikleri bulundu. Agirlikli veya agirliksiz iligkisel
yapilarda bu yontemin uygulanabilirligi ornekler iizerinden gosterildi. Birden ¢ok birimi ve c¢alisani olan
kurumlarda karar verme siireclerinde destek amagli dnerilen yontemle elde edilen sonuglar kullanilabilir.

Anahtar Sozciikler: Entropi, Hiper Cizgeler, Karar Destek Sistemleri, Merkezilik

1. Introduction

Graphs are one of the main approaches used especially for pattern recognition and machine
learning tasks (Martino & Rizzi, 2020). Although hypergraphs are ubiquitous, their concepts are less
well known than graphs, and they are often used unspecified (Klamt et al., 2009). It is also commonly
used to reduce data in hypergraph structure to normal graphs (Tugal et al., 2013). More use of
hypergraphs and their mathematical analysis will provide more accurate analyzes without loss of
information.

In this study, influential nodes and hyperedges were determined with the proposed method using
entropy, which is an uncertainty measure on hypergraphs. The proposed method was applied to a
synthetic data. These and similar methods can be used to detect patterns, find the key points of a system,
analyze relational structures, and support multidimensional decision-making processes.

In the second part of our study, studies in the literature are mentioned. Hypergraphs and entropy
were explained in the third and fourth chapters. In the fifth section, the proposed method was applied to
the synthetic data. In the last section, the results of the study were mentioned.

2. Related Work

Bonacich et al. used hypergraphs in their network analysis of the attacks of the indigenous
inhabitants of the Caribbean Island on Spanish settlements (Bonacich et al., 2004).
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For heterogeneous hypergraphs, a graph neural network-based representation learning framework
is proposed, which is an extension of traditional graphs that can well characterize multiple non-binary
relationships (Sun et al., 2021).

Graph-theoretic techniques for the holographic entropy cone were generalized to study
hypergraphs and similarly defined entropy cones. This allows developing a framework for calculating
entropies efficiently and proving the inequalities provided by hypergraphs (Bao, Cheng et al., 2020).

Hu et al. have described the mathematical properties of the hypergraph by presenting a definition
similar to the entropy calculation used in this study. The extremality of entropy of graphs according to
the degrees of uniform hyper graphs has been examined (Hu et al., 2019).

In the study, a new entropy concept was developed for uniform hypergraphs based on tensor
theory. Results were constructed on the lower and upper bounds of entropy, and it is shown to be a
measure of regularity for uniform hypergraphs with two simulated examples, based on node degrees,
path lengths, clustering coefficients, and negligible symmetry (Chen & Rajapakse, 2020).

In another work, a new definition of entropy for hypergraphs was introduced. The fine structure
of these graphs has been taken into account by considering partial hypergraphs that give an entropy
vector. The properties of the proposed definitions for hypergraphs have been analyzed (Bloch & Bretto,
2019).

3. Hypergraphs

A graph is an example of a structure where a series of nodes are connected by edges. It is an
organized structure. Graphs can be expressed with an adjacency matrix. The full set of all binary
connections defines the topology of the graph by providing a complete map of all relationships between
nodes and edges (Sporns, 2018). Such topological and semantic data structures are widely used to model
systems such as telecommunications, sociology, biological and social networks (Tugal & Karci, 2020).

Although there are many problems that graphs can solve, the disadvantage is that they only take
into account pairwise relations. By definition, an edge can only connect two nodes. This limits the
modeling power of graphs. It causes incomplete expression of data. An incomplete definition emerges.
Hypergraphs overcome these limitations by allowing more than two nodes to be connected
simultaneously with the hyper edges solution. Thanks to hyper edges, we are able to express the
multidirectional relationships between nodes. Better modeling capabilities of versatile relationships
have been demonstrated in fields such as biology (eg. protein-protein interaction networks) and social
networks (eg. collaboration networks) (Klamt et al., 2009). It plays an important role to analyze a set of
data using techniques derived from topology and mathematics. In addition, the computational
complexity, space size and cost are lower (Wolf et al., 2016).

Hypergraphs are generalizations of graphs whose edges contain more than one node and thus
represent k-way relationships. Therefore, hypergraphs represent many samples that can be taken from
natural life as a dataset. Hyper graph structured data is ubiquitous. Set-valued, tabular, or bipartite data
can naturally be represented by hypergraphs. It has features related to a number of mathematical
structures that are important in data science. The uncertainties special to these complex structures can
be resolved if strong mathematical methods are used. (Aksoy et al., 2020).

As shown in Figure 1 above, a hypergraph can be defined as H=(V,E). V stands for the set of
nodes and E stands for the set of hyper edges. n= V| is the number of nodes of the hypergraph and m=|g|
is the number of hyper edges. For each veV, the set of hyper edges containing v node is denoted by
E(v)SE. The node degree can be shown with d(v)=|E(V)|.
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Figure 1. Representation of hypergraphs (Shen et al., 2018).

4. Entropy

First entropy has been used for the measurement of uncertainties in thermodynamics (Boltzmann,
1964) and then communication theory (Shannon, 1951; Shannon, 1948). Since it is based on
probabilistic computation, it has been widely used in other disciplines (Bromiley et al., 2004). Many
different definitions of entropy can be made (Deng, 2016; Karci, 2016; Karci, 2018; Rényi, 1961;
Tsallis, 2013). It is used in the analysis of structural data in decision making processes. Entropy is used
to measure structural complexity in graphs and to interpret relational uncertainty ( Tugal & Karci, 2019).
In this study, entropy was used for hypergraph analysis.

If the probability of an event occurring is represented by p, the total entropy value is calculated
as in equation 1 by using the probability values of n events.

I(p1, P2, .-, Pn) = — 2i=1 Dilogp; (1)

In this study, while calculating the total entropy value of each node or hyper edge, the values in
the |_ij matrix were used, which represents the hypergraph. e denotes for hyper edges, v denotes for
nodes. d(v) denotes the node degree and d(e) denotes the hyper edge degree. In weighted structures, the
degree is determined by calculating the weights. More precise measurements are obtained.
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Table 1 Incidence matrix and degrees

e, e, e d(v)
2 1 1 0 2
v, 0 1 0 1
V3 1 1 1 3
VU, 1 0 0 1
Vs 0 0 1 1
d(e) 3 3 2

Using the values in Table 1, the entropy values for both nodes and hyper edges can be calculated
with the following equations 2 and 3. These values indicate the effective of nodes or hyperedges in the
relational system.

114 111 1 1 1 1
I(vy) = - '}=1d(;’1) long]’l) = —(log;+5logy) =1 @)
— _ym_ _lal Hal _ _ 1 1,1 1,1 1, _
I(e)) = — Xz 5log 55 = —(Glog; +3log +3logy) = 1.585 ©)

By identifying effective nodes/edges, it can be understood which patterns to focus on and which
ones to look at in detail.

5. Experiments

Our synthetic dataset aims to analyze the staffs over the departments they work in. It is a data
consisting of 5 departments and 10 personnel working in these departments. It is stated that these
personnel contribute to which departments and to what size. This data, shown in the hypergraph
structure, was analyzed using entropy.

Table 2 Department and staff weighted incidence matrix

DEPARTMENT
Network System Software Technical Administrative
e0 el e2 e3 e4
A V0 0,1 0,3 0 0,6 0
B vi 0 1 0 0 0
C v2 0 0 1 0 0
D v3 1 0 0 0 0
L E v4 0 0 1 0 0
E F 5 0,2 0,2 0,4 0,1 0,1
G V6 0 0,5 0,5 0 0
H v7 0,5 0,5 0 0 0
1 v8 0,5 0,5 0 0 0
K v9 0 0 0 0 1

The aim is to determine the weight of the personnel or unit in the IT department. Of course, this
weight measurement is based on the available data. To examine the relational structure of the staff or
department. This system can be made more decisive by adding other parameters, such as which
programming languages they know or which certificates they have, and criteria that measure their
contribution to the projects. With this kind of information obtained, the aim is to make managerial
analyzes, to organize the distribution of tasks, to understand the impact of the staff or the importance of
the department, etc.
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For this purpose, entropy was used in our study. Entropy is a measure of uncertainty. It can be
used in decision making processes, machine learning applications and etc. (Aggarwal, 2021; Hark &
Karc1, 2020).
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Figure 2. Hypergraph (Borgatti et al., 2002; Praggastis et al., 2019)

When the values obtained in entropy calculations are examined, it is seen that person F is the most
weighted personnel due to his contribution to the department. The second most weighted personnel was
Staff A. Since people B, C, D, E, K contribute to only one department and they are not very much in
this relational structure, their entropy values are 0. Persons G, H and | took the value 1 because they are
associated with two departments.

When we look at the departments, the entropy value of the system department is the highest
because it receives support from more staff. The network department came in second as it received
support from 5 staff. We understand that these units need more personnel support with different skills.

As seen in Table 3, these entropy values produced results by taking into account the relationship
density first and the relationship weight in the second step. The effect of hyper edges and nodes in
hypergraphs could be measured by entropy.
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Table 3 Department and staff entropy values

Staff Entropy
A vO 1,29546
B vl 0 Department Entropy
C V2 0 Network e0 1,98275
D v3 0 System el 2,41345
E v4 0 Software e2 1,8908
F v5 2,12193 Technical e3 0,591673
G v6 1 Administrative ed 0,439497
H v7 1
| v8 1
K v9 0

6. Conclusion

In this study, proposed method performed the analysis on two-dimensional data modeled as a
hypergraph. It has been shown that we can detect influential nodes or hyper edges in hypergraphs by
entropy. Hypergraphs provide a structure that is more appropriate to real-world data than graphs. We
have seen more clearly with the application that the use of hypergraphs to model the data reduces the
disadvantages such as loss of information. The method can also be applied to weighted hypernetworks.
It was observed that the entropy values were affected by the density of the relations and the weight of
the links, respectively. Therefore, making analyzes with hypergraphs provides more accurate results. In
addition, time and space complexity are lower. Entropy gives us results in centrality measurements over
uncertainty. It shows the relationship between uncertainty and central nodes in a structure. Centrality
measurements with entropy always produce accurate results in any structure. Our next goal is to further
develop this method and apply it to biological data. It is to contribute to the more widespread use of
hypergraphs.
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