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Abstract: Entropy is used to measure uncertainty in complex systems. Hypergraphs provide structure for 

mathematically modeling real-world data. In this study, analyzes were made using entropy on the data in the 

hypergraph structure. The entropies of the nodes and hyperedges were calculated using the node degree and hyper 

edge degree. Their activities were found according to these values. The applicability of this method in weighted 

or unweighted relational structures was demonstrated through examples. In institutions with multiple departments 

and employees, the results obtained with the proposed method can be used to support decision-making processes. 
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Entropi ile Hiper Çizgelerde Merkezilik 

 
Özet: Entropi kompleks sistemlerde belirsizliği ölçmek için kullanılabilir. Hiper çizgeler gerçek dünyaya 

uygun verileri matematiksel olarak modellemek için yapı sunar. Bu çalışmada hiper çizge yapısındaki veriler 

üzerinde entropi kullanılarak analizler yapıldı. Düğüm derecesi ve hiper kenar derecesi kullanılarak düğümlerin 

ve hiper kenarların entropileri hesaplandı. Bu değerlere göre etkinlikleri bulundu. Ağırlıklı veya ağırlıksız ilişkisel 

yapılarda bu yöntemin uygulanabilirliği örnekler üzerinden gösterildi. Birden çok birimi ve çalışanı olan 

kurumlarda karar verme süreçlerinde destek amaçlı önerilen yöntemle elde edilen sonuçlar kullanılabilir. 

 

Anahtar Sözcükler: Entropi, Hiper Çizgeler, Karar Destek Sistemleri, Merkezilik 
 

1. Introduction 

 

Graphs are one of the main approaches used especially for pattern recognition and machine 

learning tasks (Martino & Rizzi, 2020). Although hypergraphs are ubiquitous, their concepts are less 

well known than graphs, and they are often used unspecified (Klamt et al., 2009). It is also commonly 

used to reduce data in hypergraph structure to normal graphs (Tuğal et al., 2013). More use of 

hypergraphs and their mathematical analysis will provide more accurate analyzes without loss of 

information. 

 

In this study, influential nodes and hyperedges were determined with the proposed method using 

entropy, which is an uncertainty measure on hypergraphs. The proposed method was applied to a 

synthetic data. These and similar methods can be used to detect patterns, find the key points of a system, 

analyze relational structures, and support multidimensional decision-making processes. 

 

In the second part of our study, studies in the literature are mentioned. Hypergraphs and entropy 

were explained in the third and fourth chapters. In the fifth section, the proposed method was applied to 

the synthetic data. In the last section, the results of the study were mentioned. 

 

2. Related Work 

 

Bonacich et al. used hypergraphs in their network analysis of the attacks of the indigenous 

inhabitants of the Caribbean Island on Spanish settlements (Bonacich et al., 2004). 
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For heterogeneous hypergraphs, a graph neural network-based representation learning framework 

is proposed, which is an extension of traditional graphs that can well characterize multiple non-binary 

relationships (Sun et al., 2021). 

 

Graph-theoretic techniques for the holographic entropy cone were generalized to study 

hypergraphs and similarly defined entropy cones. This allows developing a framework for calculating 

entropies efficiently and proving the inequalities provided by hypergraphs (Bao, Cheng et al., 2020). 

 

Hu et al. have described the mathematical properties of the hypergraph by presenting a definition 

similar to the entropy calculation used in this study. The extremality of entropy of graphs according to 

the degrees of uniform hyper graphs has been examined (Hu et al., 2019). 

 

In the study, a new entropy concept was developed for uniform hypergraphs based on tensor 

theory. Results were constructed on the lower and upper bounds of entropy, and it is shown to be a 

measure of regularity for uniform hypergraphs with two simulated examples, based on node degrees, 

path lengths, clustering coefficients, and negligible symmetry (Chen & Rajapakse, 2020). 

 

In another work, a new definition of entropy for hypergraphs was introduced. The fine structure 

of these graphs has been taken into account by considering partial hypergraphs that give an entropy 

vector. The properties of the proposed definitions for hypergraphs have been analyzed (Bloch & Bretto, 

2019). 

 

3. Hypergraphs 

 

A graph is an example of a structure where a series of nodes are connected by edges. It is an 

organized structure. Graphs can be expressed with an adjacency matrix. The full set of all binary 

connections defines the topology of the graph by providing a complete map of all relationships between 

nodes and edges (Sporns, 2018). Such topological and semantic data structures are widely used to model 

systems such as telecommunications, sociology, biological and social networks (Tuğal & Karcı, 2020). 

 

Although there are many problems that graphs can solve, the disadvantage is that they only take 

into account pairwise relations. By definition, an edge can only connect two nodes. This limits the 

modeling power of graphs. It causes incomplete expression of data. An incomplete definition emerges. 

Hypergraphs overcome these limitations by allowing more than two nodes to be connected 

simultaneously with the hyper edges solution. Thanks to hyper edges, we are able to express the 

multidirectional relationships between nodes. Better modeling capabilities of versatile relationships 

have been demonstrated in fields such as biology (eg. protein-protein interaction networks) and social 

networks (eg. collaboration networks) (Klamt et al., 2009). It plays an important role to analyze a set of 

data using techniques derived from topology and mathematics. In addition, the computational 

complexity, space size and cost are lower (Wolf et al., 2016). 

 

Hypergraphs are generalizations of graphs whose edges contain more than one node and thus 

represent k-way relationships. Therefore, hypergraphs represent many samples that can be taken from 

natural life as a dataset. Hyper graph structured data is ubiquitous. Set-valued, tabular, or bipartite data 

can naturally be represented by hypergraphs. It has features related to a number of mathematical 

structures that are important in data science. The uncertainties special to these complex structures can 

be resolved if strong mathematical methods are used. (Aksoy et al., 2020). 

 

As shown in Figure 1 above, a hypergraph can be defined as H=(V,E). V stands for the set of 

nodes and E stands for the set of hyper edges. n= |V| is the number of nodes of the hypergraph and m=|E| 

is the number of hyper edges. For each v∈V, the set of hyper edges containing v node is denoted by 

E(v)⊆E. The node degree can be shown with d(v)=|E(v)|. 
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Figure 1. Representation of hypergraphs (Shen et al., 2018). 

 

4. Entropy 

 

First entropy has been used for the measurement of uncertainties in thermodynamics (Boltzmann, 

1964) and then communication theory (Shannon, 1951; Shannon, 1948). Since it is based on 

probabilistic computation, it has been widely used in other disciplines (Bromiley et al., 2004). Many 

different definitions of entropy can be made (Deng, 2016; Karci, 2016; Karcı, 2018; Rényi, 1961; 

Tsallis, 2013). It is used in the analysis of structural data in decision making processes. Entropy is used 

to measure structural complexity in graphs and to interpret relational uncertainty ( Tuğal & Karcı, 2019). 

In this study, entropy was used for hypergraph analysis. 

 

If the probability of an event occurring is represented by p, the total entropy value is calculated 

as in equation 1 by using the probability values of n events. 

 

𝑰(𝒑𝟏, 𝒑𝟐, … . . , 𝒑𝒏) = − ∑ 𝒑𝒊𝒍𝒐𝒈𝒑𝒊
𝒏
𝒊=𝟏             (1) 

 

In this study, while calculating the total entropy value of each node or hyper edge, the values in 

the I_ij matrix were used, which represents the hypergraph. e denotes for hyper edges, v denotes for 

nodes. d(v) denotes the node degree and d(e) denotes the hyper edge degree. In weighted structures, the 

degree is determined by calculating the weights. More precise measurements are obtained. 
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Table 1 Incidence matrix and degrees 

  
𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒅(𝒗) 

𝒗𝟏 1 1 0 2 

𝒗𝟐 0 1 0 1 

𝒗𝟑 1 1 1 3 

𝒗𝟒 1 0 0 1 

𝒗𝟓 0 0 1 1 

𝒅(𝒆) 3 3 2  

 

Using the values in Table 1, the entropy values for both nodes and hyper edges can be calculated 

with the following equations 2 and 3. These values indicate the effective of nodes or hyperedges in the 

relational system. 

 

𝑰(𝒗𝟏) = − ∑
|𝑰𝟏𝒋|

𝒅(𝒗𝟏)
𝒍𝒐𝒈

|𝑰𝟏𝒋|

𝒅(𝒗𝟏)
𝒏
 𝒋=𝟏 = −(

𝟏

𝟐
𝒍𝒐𝒈

𝟏

𝟐
+

𝟏

𝟐
𝒍𝒐𝒈

𝟏

𝟐
) = 𝟏         (2) 

 

𝑰(𝒆𝟏) = − ∑
𝑰𝒊𝟏|

𝒅(𝒆𝟏)
𝒍𝒐𝒈

|𝑰𝒊𝟏|

𝒅(𝒆𝟏)
𝒎
𝒊=𝟏 = −(

𝟏

𝟑
𝒍𝒐𝒈

𝟏

𝟑
+

𝟏

𝟑
𝒍𝒐𝒈

𝟏

𝟑
+

𝟏

𝟑
𝒍𝒐𝒈

𝟏

𝟑
) = 𝟏. 𝟓𝟖𝟓       (3) 

 

By identifying effective nodes/edges, it can be understood which patterns to focus on and which 

ones to look at in detail. 

 

5. Experiments 

 

Our synthetic dataset aims to analyze the staffs over the departments they work in. It is a data 

consisting of 5 departments and 10 personnel working in these departments. It is stated that these 

personnel contribute to which departments and to what size. This data, shown in the hypergraph 

structure, was analyzed using entropy. 

 

Table 2 Department and staff weighted incidence matrix 

 
DEPARTMENT 

   
Network System Software Technical Administrative 

   
e0 e1 e2 e3 e4 

S
T

A
F

F
 

A v0 0,1 0,3 0 0,6 0 

B v1 0 1 0 0 0 

C v2 0 0 1 0 0 

D v3 1 0 0 0 0 

E v4 0 0 1 0 0 

F v5 0,2 0,2 0,4 0,1 0,1 

G v6 0 0,5 0,5 0 0 

H v7 0,5 0,5 0 0 0 

I v8 0,5 0,5 0 0 0 

K v9 0 0 0 0 1 

 

The aim is to determine the weight of the personnel or unit in the IT department. Of course, this 

weight measurement is based on the available data. To examine the relational structure of the staff or 

department. This system can be made more decisive by adding other parameters, such as which 

programming languages they know or which certificates they have, and criteria that measure their 

contribution to the projects. With this kind of information obtained, the aim is to make managerial 

analyzes, to organize the distribution of tasks, to understand the impact of the staff or the importance of 

the department, etc. 
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For this purpose, entropy was used in our study. Entropy is a measure of uncertainty. It can be 

used in decision making processes, machine learning applications and etc. (Aggarwal, 2021; Hark & 

Karcı, 2020). 

 

 

 
 

Figure 2. Hypergraph (Borgatti et al., 2002; Praggastis et al., 2019) 

 

When the values obtained in entropy calculations are examined, it is seen that person F is the most 

weighted personnel due to his contribution to the department. The second most weighted personnel was 

Staff A. Since people B, C, D, E, K contribute to only one department and they are not very much in 

this relational structure, their entropy values are 0. Persons G, H and I took the value 1 because they are 

associated with two departments. 

 

When we look at the departments, the entropy value of the system department is the highest 

because it receives support from more staff. The network department came in second as it received 

support from 5 staff. We understand that these units need more personnel support with different skills. 

 

As seen in Table 3, these entropy values produced results by taking into account the relationship 

density first and the relationship weight in the second step. The effect of hyper edges and nodes in 

hypergraphs could be measured by entropy. 
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Table 3 Department and staff entropy values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 
 

In this study, proposed method performed the analysis on two-dimensional data modeled as a 

hypergraph. It has been shown that we can detect influential nodes or hyper edges in hypergraphs by 

entropy. Hypergraphs provide a structure that is more appropriate to real-world data than graphs. We 

have seen more clearly with the application that the use of hypergraphs to model the data reduces the 

disadvantages such as loss of information. The method can also be applied to weighted hypernetworks. 

It was observed that the entropy values were affected by the density of the relations and the weight of 

the links, respectively. Therefore, making analyzes with hypergraphs provides more accurate results. In 

addition, time and space complexity are lower. Entropy gives us results in centrality measurements over 

uncertainty. It shows the relationship between uncertainty and central nodes in a structure. Centrality 

measurements with entropy always produce accurate results in any structure. Our next goal is to further 

develop this method and apply it to biological data. It is to contribute to the more widespread use of 

hypergraphs. 
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