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 Abstract 

Article Info 
Agricultural researchers in many countries investigate radiological risks in soil and 
crops because it concerns human health. In addition, they also study heavy metal 
pollution in plants in cultivated soil for ecological safety. This study aims to analyze the 
activity concentrations of radionuclides and heavy metals in soil and corn crops in the 
Küçük Menderes Basin (Izmir, Turkey) – which is enriched with phosphatic fertilizers. 
We collected soil and corn samples from the area, and then separately measured 
concentrations of radionuclides (226Ra, 232Th and 40K) and trace elements (Cd, Cr, Cu, 
Hg, Ni, Pb and Zn) they contain. Activity concentrations of the radionuclides were 
acquired by radiometric methods (gamma spectroscopy). Heavy metal amounts were 
calculated using ICP-MS (inductively coupled plasma-mass-spectrometry). The mean 
heavy metal concentrations in the soil (Cd, Cr, Cu, Zn, Ni, Pb, Hg) were 0.096, 40.26, 
26.51, 72.43, 32.24, 7.05 mg kg-1, 158.28 µg kg-1 and in the corn (Cd, Cr, Cu, Zn, Ni, Pb, 
Hg) were 0.01, 1.09, 2.05, 22.00, 0.54, 0.24 mg kg-1, 12.15 µg kg-1. The heavy metal 
concentrations in soil samples were as follows: Hg<Cd< Pb<Cu<Ni<Cr< Zn and in corn 
samples were as follows: Hg<Cd<Pb<Ni<Cr<Cu<Zn. Also, the mean activity 
concentrations in the soils (226Ra, 232Th, 40K) were 36.2±2, 32±1, 615.44±7 Bq kg-1. The 
226Ra and 232Th concentrations in the corn samples are smaller than the Minimum 
Detectable Activity (MDA). However, the mean activity concentration of 40K in the corn 
samples is 310.7±8 Bq kg-1. These values considered are acceptable for human health 
according to UNSCEAR (2000). The heavy metal concentrations in the soil and corn 
samples are within acceptable limits for Turkish Government. The level of radionuclide 
activity and heavy metal concentrations, as well as both transfer and bio-concentration 
factors are comparable with those of a handful of other countries. Long-term research 
on radio-ecological risks is very important for agricultural control. In addition, the data 
set of radiation levels and pollutant elements do not have a fixed amount in related 
materials such as soil and plants. On the other hand, the quantity of pollutants soil (via 
plants) has risen due to activity from non-controlled industrial facilities. Researchers 
and governments alike therefore must monitor ecological pollution of terrestrial 
radionuclides and heavy elements on a routine basis.  
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Introduction 
In recent years, many radio-ecological studies have focused on the deposition of radionuclides in different 
ecosystems (Kuo et al., 1997; dos Santos Amaral et al., 2005; Abbady et al., 2005; Bolca et al., 2007; Yadav et 
al., 2017). It takes longer for soil in nature and semi-natural eco-systems to absorb radionuclides than it does 
cultivated soil. Many environmental factors affect the horizontal distribution of radionuclides in the soil: 
namely change in topography, falling, and wind. Furthermore, local plant flora alongside animal movement 
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(surface or underground) also can biologically affect how radionuclides get distributed. Radionuclides reach 
the plant roots and enter the food chain via vertical distribution. Moreover, they can mix into ground- and 
drinking water (Epik, 2005).  According to UNSCEAR (2000a,b), gamma radiation from 238U and 232Th series 
and from 40K can exist inter-bodily; gamma irradiation – like beta and alpha irradiation – can occur in all 
organs like. This in turn leads people to develop inescapable health problems such as cancer (Kapdan et al., 
2018). The world-mean values for 226Ra, 232Th, and 40K activity concentrations (including their deviation 
intervals) in soil are 35 Bq kg-1 (17-60), 30 Bq kg-1 (11-64), and 400 Bq kg-1 (140-850), respectively (UNSCEAR, 
1988). The now extensive use of phosphatic fertilizer by farmers has caused natural radionuclide 
concentrations to increase in soil, and thus agricultural products (Khalf and Mohammad, 2021; Sallam et al., 
2021).  

Terrestrial 238U and its daughter products are at radioactive equilibrium in phosphate rocks. Its radioactive 
equilibrium breaks down during industrial processing and creates 238U, 226Ra, 210Pb and 210Po radionuclides in 
industrial by-products. Therefore, phosphatic fertilizer is an important of source of TENORM (Technologically 
Enhanced Naturally Occurring Radioactive Materials). One might deem this a radio-ecological risk (Camgöz 
and Yaprak, 2009). The annual effective dose equivalent (per person) for phosphate production is 0.04 µSv in 
industrial applications, 2 µSv in fertilizer, and 10 µSv in phosphate waste (UNSCEAR, 1993). Processing 
phosphate rocks and using them in various areas of industry creates TENORM. They also are an important 
source of energy (via coal and other fossil fuels) and radioactive minerals. The radiation dose from industrial 
activities is 100 µSv. This is very small in comparison with natural radiation (UNSCEAR, 2000a,b). 
Heavy metals concentrations in cultivated soil depend on geologic construction. Heavy metal concentrations 
have been identified in the Earth’s crust (Carnelo et al., 1997) – namely Cd, Cr, Cu, Ni, Pb and Zn at 0.5, 200, 
100, 80, 16 and 50 mg kg-1, respectively. However, fertilization, atmospheric deposition, agricultural 
chemicals, industrial, household (namely organic) waste, and other inorganic sources of pollution (ore bed 
and mine waste) cause soil to accumulate heavy metals (Taşkaya, 2004). Phosphatic fertilizers made from 
phosphate rocks incorporate several heavy metals (Co, Cu, Fe, Mn, Mo, Ni, Zn), Fluorine, and toxic metals (As, 
Al, Cd, Pb and Hg), alongside radioactive elements (Camgöz and Yaprak, 2009). Extensively using phosphatic 
fertilizers can increase how much Fluorine, heavy metals, and radioactive elements soil – and thus plants – 
absorb. Both organic and phosphatic fertilizers (can) cause soil to accumulate heavy metals such as Zn, Cu, 
and Cd. 

Plants enhance radioactivity in soil by absorbing radionuclides via their roots or by means of surface 
deposition due to atmospheric precipitation. They absorb heavy metals and radionuclides through the soil 
from water, salt, and minerals. However, plants will recycle those radionuclides back into soil. The rate at 
which plants absorb radioelements and other chemicals by plants depends on how productive the soil is, how 
acidic/alkaline and reductive - oxidative agents in soil are, and its organic composition (Grytsyuk et al., 2006). 
This rate for radioactivity absorption is defined as the transfer factor (TF) or the rate at which radionuclide 
penetrates the crop via contaminated soil (Alharbi and El-Taher, 2013). TF is calculated the ratio of 
radionuclide concentrations in crops (Bq kg-1 dry mass) to concentration of radionuclides in soil (Bq kg-1 dry 
mass) (Vandenhove et al., 2009). TF is a prediction indicator for risk to human health risk because of how 
many radionuclides gets transferred into the food chain (Tome et al., 2003; Ali et al., 2020). The bio-
concentration factor (BCF) is trace element concentration in crop tissues (mg g-1) over the background 
concentration of metals in the soil (mg g-1) (Tiwari et al., 2011). It quantifies the bioavailability of heavy metals 
in agricultural products. (Kim et al., 2012). Soil-to-plant transfer exposes humans to heavy metals. The health 
risks associated with heavy metal contaminations from soil to agricultural food has been widely studied (Cui 
et al., 2004). 

This study investigates the possible pollution of radionuclides and heavy elements by assessing the terrestrial 
gamma doses rate in agricultural soil and corn samples taken from Küçük Menderes Basin. This study is local 
in nature. That noted, while local databases are important for environmental efforts, every local study area is 
nevertheless can serve research in neighboring countries – give or take variation in atmospheric activity and 
ground transfer rates. One can in turn use such data for comparison purposes and to track environmental 
relationships. 

Why are environmental radiometric studies important? While they may not offer us improved techniques or 
new fundamental approaches, their data nonetheless contains important data – especially where agricultural 
product trade between countries is concerned, namely when it comes to government procedures and people 
requesting product information for health purposes. Environmental studies can supply this. One should 
consider case studies as a scientific database case. 
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Material and Methods 
The Küçük Menderes Basin is an important agricultural area in western Turkey for corn farming. Farmers 
there moreover make extensive use of phosphatic fertilizers. Its geographical position of the basin that feeds 
into is 38º41´05’’ by 37º53´08’’ N (latitude) and 28º41´36” and 26º11´48’’ E (longitude). This basin forms 
Küçük Menderes’s quaternary sediment filling graben (broken in the Menderes Massif). That filling is 
composed of crystalline rocks; the basin likewise covers a broad surface area (Dora et al., 1992). We collected 
raw soil samples (55) as well as those from principal crops (13) (where crop roots grow) from various points 
along the basin (Figure 1 and 2). 

 
Figure 1. Soil sample points in Küçük Menderes Basin (maps.google.com) 

 

 
Figure 2. Corn sample points in Küçük Menderes Basin (maps.google.com ) 

First, we marked every point of each soil sample (3 kg), sifted them, left them to dry under the sun for three 
days, and then baked them in an 105°C degree oven for between two and forty eight until they reached a 
constant weight. Next, the dried and homogenized soil samples were placed into Marinelli beakers (1 L). Corn 
is classic product grown around the basin. As such, we collected and air-dried samples (at 105°C for a few 
days) of corn grains until they reached a constant weight. We then ground the corn grain down and filled it 
into 100 cc plastic containers. Each sample was sealed and stored for four weeks in order to study their secular 
radioactive equilibriums between 226Ra and 222Rn. 

We identified 226Ra, 232Th and 40K in the samples using gamma spectroscopy. Analytical quality control of both 
gamma spectrometer systems done by using standards prepared from IAEA and Amersham-sourced reference 
materials whose matrices and geometries were similar to the samples. We used two types of detectors due to 
how much of each sample there was. We used one-liter Marinelli Beakers on the HPGe detector system (184 
cc HPGe coaxial, efficiency: 25%, for 1.33 MeV 60Co FWHM: 1.83 keV and peak/Compton; 57:1, Ortec Model-
671 amplifier and Canberra PC base MCA (8K) Wilkonson ADC, 100 mm shielding). The HPGe detector has 
good resolution however, it does not have enough efficiency in some conditions, especially for low activities. 
The lower detection limits were 2 Bq/kg for 226Ra, 1 Bq/kg for 232Th and 4 Bq/kg for 40K. As the plant samples 
were limited in terms of both quantity and volume, we thus needed high efficiency more than resolution. 
Therefore, we turned to a NaI (Tl) scintillation gamma spectrometer (Tennelec 3” X 3” NaI (Tl) detector 
(shielded with 50 mm lead) as well as a computer-based multi-channel analyzer) to examine the corn samples. 
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Due to the limited separation efficiency of NaI (Tl) scintillation detectors, the gamma energies (2.6 MeV, 1.76 
MeV, 1.46 MeV) that we had selected for these primordial radionuclides could not directly be used to measure 
the concentrations by scintillation gamma spectroscopy. The lower detection limits were 1 Bq/kg for 238U, 1 
Bq/kg for 232Th and 5 Bq/kg for 40K (Canbaz Öztürk, 2015). One therefore must calculate how each 
radionuclide contributes to one another according to the appropriate factors. To resolve this, we used the 
following three equations (Akakçe, 2008): 

232Th (Bq kg-1) = α (1) 

238U (Bq kg-1) =  (2) 

40K (Bq kg-1) =  (3) 

K1, K2, and K3 constitute sensitivity factors – i.e. count rates per unit activity concentration (IAEA, 2003). The 
method for both how we determined the stripping rates (α, β and γ) that gave us these additive rates 
(depending on the geometry and various settings of the spectrometer), and how we found out the sensitivity 
factors that enable the transition from net counts to activity concentration in terms of K (%), U (mg kg -1), Th 
(mg kg-1) was as follows.  

K1= 6.2 counts/ 10000s per Bq/kg 232Th 
K2= 7.3 counts/ 10000s per Bq/kg 238U 
K3= 2.4 counts/ 10000s per Bq/kg   40K 

The stripping rates of the gamma spectroscopy system were  = 0.75,  = 0.81, and  = 1.32, respectively. 

According to UNSCEAR (1993), the equation to determine the terrestrial gamma dose rate in soil is: 

D (nGY h -1) = 0.461 CRa + 0.623 CTh + 0.0414 CK (4) 

CRa, CTh and CK are concentrations of 226Ra, 232Th and 40K, respectively.   

We ground the dried corn and soil samples (5 g) at Dokuz Eylül University’s Geology Engineering Lab (Retsch 
(RS 100)), and then measured all of the heavy metal levels in them at the ACME Analytic Lab. (ISO-9002) for 
analysing inductively coupled plasma-mass- spectrometer (ICP-MS). All analytical results of soil and corn in 
microwave extraction were obtained in mg/kg and µg/kg as well as for the laboratory's internal reference 
materials DS7 and NMKL186 inserted in parallel. Interference possibilities were evaluated by isotopic 
analysis. Heavy metal and radionuclide distribution were mapped on Surfer 8.0 (free demo version). 

Results and Discussion 
Radioelement and heavy metal data in soil and agricultural crops are largely based on how much background 
radiation there is in the soil, climatic factors, and present agricultural applications. We calculated 
concentrations of 226Ra, 232Th and 40K radionuclides in 20 cm-deep cultivated soil samples as well. The mean 
of radionuclide activity concentrations in them were 36.2±2 Bq kg-1 (226Ra), 32±1 Bq kg-1 (232Th), and 615.44±7 
Bq kg-1 (40K). The mean terrestrial gamma dose rate was 62.1 nGy h-1. We did not look at the activity 
concentrations of 226Ra and 232Th in any of the corn samples because they were below MDA (minimum 
detectable activity) and thus would not have been detected on a NaI (Tl) scintillation detector. However, there 
were nondedectable (ND) activities of U and Th in the corn. In contrast, the 40K concentrations in the corn 
samples ranged between 136±8 and 712±7 Bq kg-1 (mean 310.7±8 Bq kg-1). 

We measured the concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn in both the soil and corn samples on an ICP-
MS. What we discovered was that the Küçük Menderes Basin contains Cd 0.096 (0.01-0.21) mg kg-1, Cr 40.26 
(17.60-69.80) mg kg-1, Cu 26.51 (9.45-58.01) mg kg-1, Ni 32.24 (17.20-53.40) mg kg-1, Pb 7.05 (3.53-12.57) mg 
kg-1, Hg 158.28 (4.00-920.00) µg kg-1, and Zn 72.43 (35.70-106.90) mg kg-1. Also, mean heavy metal 
concentrations in its soil from highest to lowest were ZnCrNiCuPbCdHg. The heavy concentrations of 
Cd, Cr, Cu, Zn, Ni, Pb, and Hg in the corn samples were ~ 0.01 (<0.01-0.02), 1.09 (0.90-1.30), 2.05 (1.14-6.44), 
22.0 (13.4-40.60), 0.54 (0.20-1.70), 0.24 (0.14-0.63) mg kg-1 and 12.15 (1.00-30.00) µg kg-1 (ZnCuCrNi 
PbCdHg), respectively. 

The mean activity concentrations of 226Ra and 232Th did not exceed UNSCEAR (2000a,b) standards (Table 1). 
However, 40K activity concentration exceeded global average in the basin’s surface soil due to farmers 
intensive cultivation activities and because they extensively use fertilizers containing phosphate. 
Nevertheless, in 75% of the basin samples, activity concentrations of 40K fell below the maximum of 
concentrations for natural soil in UNSCEAR (2000a,b).  
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Table1. Comparable radionuclide activity concentrations (Bq kg-1) in soil 

 

The measured highest activity concentration of 226Ra is 58±2 Bq kg-1 on the soil surface. As is seen in Figure 3, 
226Ra concentrations rise towards the east of basin. Also, the distribution map shows a spike in 232Th 
radionuclides northeast (Kiraz district) and southwest (Selçuk district) of the basin at a maximum value worth 
74±3 Bq kg-1 (Figure 4). In soil, 40K distribution is homogeneous throughout the basin (Figure 5). The highest 
activity concentration of 40K we found was 1119±11 Bq kg-1 in the Kiraz district. 

 
226Ra (Bq kg-1) 232Th (Bq kg-1) 

  
Figure 3. Distribution of 226Ra concentration  in soil 

(UTM) 
Figure 4. Distribution of 232Th concentration in soil 

(UTM) 

 

Figure 6 shows us that mean terrestrial gamma dose not exceeded UNSCEAR (2000a,b) standards [60 (20-
200) nGy h-1]. As one can see in Table 2, radionuclide concentrations in our corn samples are very low 
compared to grain crops. Potassium (K) is a “quality element” in crop production. A lack of K can disrupt 
enzyme system functions, photosynthesis, respiration, growth, and translocation. Potassium fertilization 
likewise affects corn grain quality (Usherwood, 1985). Generally speaking, radioelement concentrations 
(excluding 40K) in grain crops are low at best. 40K isotope is very for plant nutrition. The transfer factor of 40K 
is very small (~10-4) from soil to grain crops (Yaprak et al., 1998). 226Ra, 232Th and 40K concentrations in grain 
crops varies from country to country (Table 2). 40K activity concentration usually exceeds other radionuclides 
(226Ra and 232Th). We discovered that corn samples hailing from Izmir’s Tire and Ödemiş districts contained 
the highest quantity of 40K, whist those from the Torbalı district had the least (Figure 7).  
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Country 226Ra 232Th 40K References 
Australia - 36 (1-342) 325 (2-1132) (Kleinschmidt, 2017) 
Nigeria 205.08 103.19 350.75 (Gbadamosi et al,. 2018) 
Iraq 247 24.86 293.70 (Ridha et al., 2015) 
India 41 32.3 544.7 (Yadav et al., 2017) 
Serbia 40.6 48 743.2 (Gulan et al., 2013) 

Greece 20-710 21 (1-193) 355 (12-1570) (Anagnostakis et al., 1996) 

Greece 21-80 16-85 337-1380 (Florou and Kritidis, 1992) 

Greece 7-310 3-190 30-1440 (Probonas and Kritidis, 1993) 

Greece 25 (1-238) 21 (1-193) 355 (12-1570) (Anagnostakis et al., 1996) 

Ireland - 3-60 40-800 (McAulay and Morgan, 1988) 

Italy 57-71 73-87 580-760 (Bella et al., 1997) 

Norway 43.3 (12-137) 21.1 (4-52) 283 (31-564) (Dowdall et al., 2003) 

Serbia 21-29 25-43 348-441 (Djuric et al., 1996) 

Spain 13-165 7-204 48-1586 (Baeza et al., 1992) 

Spain 38.3 (36.2-40.59) 41(38.9-43.7) 653 (617-689) (Baeza et al., 1992) 

Spain 8-310 5-258 31-2040 (Quindos et al., 1994) 

Turkey (Küçük 
Menderes Basin) 

36.2±2 
(13±2-58±2) 

32±1 
(12±1-74±1) 

615.44±7 
(72±7-1119±7) 

This study 

World 17-60 11-64 140-850 (UNSCEAR, 2000a,b) 
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40K (Bq kg-1) D (nGy h-1) 

  

Figure 5. Distribution of 40K concentration in soil (UTM) Figure 6. Terrestrial gamma dose rate (nGY h-1) in soil (UTM) 
 

40K (Bq kg-1) 

 

Figure 7. Distribution of 40K concentration in corn samples (UTM) 

Table 2. Radionuclide activity concentrations in grain crops in some countries 

Plant 

 

Radionuclide Activity Concentrations (Bq kg-1) Area 
References 

226Ra 232Th 40K  

Grain Crops 

Bean 
0.748 - - Pernambuco, Brazil (dos Santos Amaral et al., 2005) 

0.6 12.8 110.5 Upper Egypt (Abbady et al., 2005) 

Soy 
8.3 ND 546.8 Jos Plateau, Nigeria (Jibiri et al., 2007) 

≤4.3 - 745 Parana State, Brazil (Scheibel and Appoloni, 2007) 

 

Corn 

0.13 - - Pernambuco, Brazil (dos Santos Amaral et al., 2005) 

34.1 ND 243.2 Jos Plateau, Nigeria (Jibiri et al., 2007) 

25.82 ND 491.62 Gediz Basin, Turkey (Bolca et al., 2007) 

 ND ND 310.7±8 (136±8-712±7) Küçük Menderes Basin, Turkey This study 

Sesame 2.5 11.5 125.5 Upper Egypt (Abbady et al., 2005) 

Wheat 
3.4 9.7 104.8 Upper Egypt (Abbady et al., 2005) 

0.04–0.37 0.015–0.11 111.3–245.7 India (Yadav et al., 2017) 

Rice 0.08 - - Taiwan (Kuo et al., 1997) 

Lentil 2.1 16.1 176.1 Upper Egypt (Abbady et al., 2005) 

When we compare radionuclide concentrations from other countries and regions of Turkey, we see that (Table 
2), 40K concentrations in the corn crops can reach as high as 243.20 Bq kg-1 (in Nigeria) and 491.62 Bq kg-1 (in 
the Gediz Basin, Turkey). In Izmir, the 40K activity concentration value has been calculated as 310.7 Bq kg-1 

(Table 2). 226Ra concentrations in corn range from 0.13 Bq kg-1 in Brazil, to 25.82 Bq kg-1 in the Gediz Basin 
(Turkey) and 34.1 Bq kg-1 in Nigeria (Table 2). 232Th concentrations in corn in Serbia is <0.2 Bq kg-1 – this is 
very low for a basin area. UNSCEAR (2000a,b) reference values in grain products are 80 Bq kg-1 (226Ra), 20 Bq 
kg-1 (238U), and 1 Bq kg-1 (232Th). Our values (ND for 238U and 232Th) are below UNSCEAR (2000a,b)’s standards. 
40K activity concentration in this study (in Izmir) is lower than of other countries. However, the activity 
concentration found in the Gediz Basin is higher than literature data. Likewise, researchers have that 40K in 
lentil, wheat, sesame, and bean crops are low, whilst in soy it is high. In India, 232Th concentrations in wheat 
were found to be particularly low (Table 2).  
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In this study, we found that the TF of 232Th and 226Ra from soil to corn were almost zero. In contrast, the TF of 
radionuclides in most grain crops is ~10-4, with the exception of 40K (Yaprak et al., 1998).  Our findings reveal 
that the mean TF of 40K was 0.504 According to IAEA Report TRS 472 (2011), the transfer factor of K in grain 
cereals is 0.74. The TF of Ra, U and Th in grain maize are 2.4 10-3, 1.5 10-2 and 6.4 10-5, respectively. Alharbi 
and A. El-Taher (2013) discovered that of TF of 40K from soil to alfalfa, wheat grains, and palm dates was 0.094, 
0.16, and 0.22. They also also discovered that mean TF of 226Ra from soil the same three items was 0.14, 0.12, 
and 0.12, respectively. Researchers in north-western Saudi Arabia obtained the soil-to-plant transfer factors 
of 226Ra, 234U and 238U for crop plants in the range 0.07 ± 0.01 to 0.71 ± 0.15, 0.12 ± 0.02 to 0.44 ± 0.10, and 
0.11 ± 0.02 to 0.40 ± 0.08 (Al-Hamarneh et al., 2016). Vandenhove et al., (2009) investigated TF of U, Th, 226Ra, 
210Po, 210Pb for maize respectively. Their findings: 0.121, 8.45 10-4, 0.01, 1.68 10-3 and 2.42 10-4. Spanish 
researchers found the transfer factors (TF) for 238U, 234U, 232Th, 230Th, 228Th, and 226Ra in grass samples taken 
from a region in south-western Spain were: 0.067, 0.072, 0.058, 0.056, 1.6, and 0.17 (Tome et al., 2003). Our 
TF values are similar to the literature. 

In Table 3, one can see that heavy metal concentrations in our soil samples are very low relative to the Earth’s 
crust. The same holds true when we compare them with EU Commission standards. We compared our values 
with those of other parts of the world (Table 3), namely: Kolkata (a disposal area), Vientiane (which receives 
> 300 tons of waste daily), Paramillo Massif (affected by mining areas upstream and inundated during seasonal 
floods), Peloponnese (that maintained uncontrolled application rates of fertilizers and pesticides–fungicides), 
South-west Nigeria (around a mega cement factory), Dhaka (around the Dhaka Export Processing Zone 
(DEPZ)), Gilgit (surrounded by volcanic rocks). All of the above sites exhibited higher levels of heavy metals 
than Küçük Menderes Basin (Table 3).   
Table 3. Heavy metal concentration (mg kg-1) in soil in some countries 

Cd Cr Cu Hg Ni Pb Zn Area References 
0.238 31.02 20.89 0.126 9.95 53.44 79.87 Jiedong District, China (Jiang et al., 2020) 
- 309 379 7 - 378 844 Kolkata, India (Mukhopadhyay et al., 2020) 
3.73 48.08 54.06 - 19.94 67.99 52.48 Vientiane, Laos (Vongdala et al., 2019) 
- - 784.9 - - 82.4 166.5 Kajaran, Armenia (Tepanosyan et al., 2018) 
0.008 - 118.1 0.028 14.1 0.012 107 Paramillo Massif, Colombia (Marrugo-Negrete et al., 2017) 

0.09 21.72 13.01 0.004 18.36 15.3 - EU countries (Tóth et al., 2016) 
1.48 - 17.18 - 88.7 28.9 34.94 Çanakkale, Turkey (Sungur et al., 2014) 
0.54 83.12 74.68 - 146.8 19.74 74.88 Peloponnese, Greece (Kelepertzis, 2014) 
547.9 156.6 613.4 - - 666.1 188.5 Southwest Nigeria (Ogunkunle and Fatoba, 2013) 
0.0072 49.66 60.0 486.6 48.1 27.6 209 Dhaka, Bangladesh (Rahman et al. 2012) 
0.3-2.3 - 55-147 - 24-57 29-138 137-1194 Gilgit,Pakistan (Khan et al., 2010) 
1.5 - 100 - 70 100 200 EU  Commission standard (EU, 2000) 
0.5 200 100 - 80 16 50 Earth crust (Camelo et al., 1997) 
0.096 40.26 26.51 158.28* 32.24 7.05 72.43 Küçük Menderes Basin, Turkey This study 

*µg kg-1 

As one can see in Figures 8, 9, and 10, we found Cd (0.21 mg kg-1), Cr (69.80 mg kg-1) and Cu (58.01 mg kg-1) 
concentrations reaching maximum value in the districts of Kiraz and Tire. We also found Ni (53.40 mg kg -1) 
and Pb (12.57 mg kg-1) at the center of Tire (Figure 12-13). Figures 11 through 14 shows us the highest 
amounts Hg (920 µg kg-1) and Zn (106.9 mg kg-1) are concentrated in the districts of Belevi and Selçuk. Heavy 
metal concentrations commonly are observed in settlements and industrial areas, but minimum 
concentrations of heavy metals are determined from riverhead to Kiraz district. 

Cd (mg kg-1) Cr (mg kg-1) 

  
Figure  8. Concentration of Cd (mg kg-1) in soil (UTM) Figure 9. Concentration of Cr (mg kg-1) in soil (UTM)                                                                                                                                   

530000 540000 550000 560000 570000 580000 590000 600000 610000

4210000

4220000

4230000

4240000

0.01

0.04

0.07

0.1

0.13

0.16

0.19

0.22

530000 540000 550000 560000 570000 580000 590000 600000 610000

4210000

4220000

4230000

4240000

16

22

28

34

40

46

52

58

64

70

http://ejss.fesss.org/10.18393/ejss.1120539


 N.Akakçe et al. Eurasian Journal of Soil Science 2022, 11(4), 303 - 315 

 

310 

 

Cu (mg kg-1) Hg (µg kg-1) 

               
Figure 10. Concentration of Cu (mg kg-1) in soil (UTM) Figure 11. Concentration of Hg (µg kg-1) in soil (UTM) 

Ni (mg kg-1) Pb (mg kg-1) 

  
Figure 12. Concentration of Ni (mg kg-1) in soil (UTM) Figure 13. Concentration of Pb (mg kg-1) in soil (UTM) 

Zn (mg kg-1) 

 
Figure 14. Concentration of Zn (mg kg-1) in soil (UTM) 

According to Table 4, we see that Cd, Cr, Cu, Pb and Zn concentrations in corn samples from Serbia are lower 
than ours, where as their Hg and Ni concentrations are higher than ours (Table 4). Cd, Cu, Pb and Zn 
concentrations in corn samples from China as well as Cu, Ni and Pb concentrations in corn samples from 
Argentina are also vary compared to what they are in our findings (Table 4).  According to Turkish Ministry of 
Environment and Forestry, the limit of heavy metals (Pb, Cd, Cr, Cu, Ni, Zn, Hg) are respectively 50.00, 1.00, 
100.00, 50.00, 30.00, 150.00, 1.00 mg kg-1 (Çevre ve Orman Bakanlığı, 2005). Our heavy metal values in the 
soil samples are below the limits of Turkish Ministry of Environment and Forestry. 

Our findings demonstrate that the highest amount of Cd, Ni, and Zn in our corn samples hailed from the 
districts of Ödemiş and Kiraz – 0.02 mg kg-1, 0.63 mg kg-1, and 40.6 mg kg-1, respectively (Figure 15, 19, 21). 
We observed that those corn samples from the districts of Selçuk and Torbalı likewise had the highest 
concentrations of Cr (1.3 mg kg-1) and Cu (6.44 mg kg-1) among the rest of the samples (Figure 16, 17). Hg 
concentrations reached 30 µg kg-1 in corn from Bayındır district (Figure 18). Pb concentrations reached 0.63 
mg kg-1 in corn from Ödemiş district (Figure 20). According to Turkish Food Codex Regulation on 
Contaminations (Gıda, Tarım ve Hayvancılık Bakanlığı, 2012), the permitted limit of Pb level in corn (wet 
weight) is 0.10 mg kg-1 and, of Cd level in grain crops (except rice) is 0.10 mg kg-1.  Both Pb and Cd 
concentrations of corn samples are within the limits of Turkish Food Codex Regulation on Contaminations. 
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Cd (mg kg-1) Cr (mg kg-1) 

  
Figure 15. Concentration of Cd (mg kg-1) in corn (UTM) Figure 16. Concentration of Cr (mg kg-1) in corn (UTM)                                                            

Cu (mg kg-1) Hg (µg kg-1) 

   
Figure 17. Concentration of Cu (mg kg-1) in corn (UTM) Figure 18. Concentration of Hg (µg kg-1) in corn (UTM) 

Ni (mg kg-1) Pb (mg kg-1) 

  
Figure 19. Concentration of Ni (mg kg-1) in corn (UTM) Figure 20. Concentration of Pb (mg kg-1) in corn (UTM) 

Zn (mg kg-1) 

 
Figure 21. Concentration of Zn (mg kg-1) in corn (UTM ) 
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Table 4. Heavy metal concentration in corn crops in some countries 

Heavy Metal Concentrations (mg kg-1) 

Cd Cr Cu Hg Ni Pb Zn Area References 

<0.05 1.23 10.30 - 0.87 0.80 19.09 Pampas, Argentina (Lavado et al., 2001) 

0.03 - 6.71 - - 0.29 51.57 Hunan,China (Liu et al., 2005) 

<0.10 0.60 1.80 0.02* 0.80 1.60 20.00 Serbia (Jakovljevic et al., 1997) 

0.01 1.09 2.05 12.15* 0.54 0.24 22.00 Küçük Menderes Basin, Turkey This study 
*µg kg-1 

BCF in Pb, Cd, Cr, Cu, Ni, Zn and Hg was found in corn samples at the following means, worth: 0.035, 0.105, 
0.026, 0.077, 0.016, 0.296 and 0.086, respectively. The IAEA Report TRS 472 (2011) indicates that the transfer 
factor in grain cereals for Ni and Cr are 2.7 10-2 and 2.0 10-4. It also indicates that transfer factor of grain maize 
for Cd, Pb and Zn are 0.05, 1.2 10-3 and 0.58. Researchers found TF values in Cd, Zn, Pb and Cu for vegetables 
from Nanning, Southern China to be (0.001-1.83), (0.021-0.507), (0-0.031), (0.017-0.35) (Cui et al., 2004). 
South Korean has researchers investigated soil to corn BCF discovered figures worth 0.51 (As), 0.11 (Cd), and 
2.54 (Pb) (Kim et al., 2012). Tome et al. (2003) found BCF values for Al, Cr, Cu, Fe, K, Mn, and Zn in plants 
worth 0.055, 0.03, 0.68, 0.088, 0.42, 1.4, and 1.1. BCF in various plants. Our BCF data is similar to Cui et al. 
(2004)’s and lower than Tome et al. (2003)’s findings. 

Conclusion 

In this study concentrations of radioactivity and heavy metal were calculated for soil and corn samples 
collected from the Küçük Menderes Basin, Izmir, Turkey. Results have shown that our corn samples contain 
low radionuclide concentrations compared with literature and national limits. It seems that radionuclide 
especially 40K, and heavy metal content of the soil and corn samples stems from phosphatic fertilizers used by 
farmers around the basin, as most of it is agricultural land (there is little industrial or household waste). 
Despite this, corn cultivation poses very little radionuclide or heavy metal risk to the basin. Such levels may 
offer reliable agro-businesses a point of reference. This study can tell us agricultural products of the basin are 
reliable for people.  

Radioactivity research on soil-plant interactions also carries remarkable importance. Researchers need to 
conduct radiological monitoring alongside chemical, biological, and ecological soil analysis. The same goes for 
plant nutrition and health, as well as for fertilizer application. Researchers should also study and monitor 
more than one agricultural area for radioactivity levels by observing terrestrial radionuclides and analyzing 
TENORM data. Globally speaking, natural radionuclide content in the soil does not receive any external 
contributions. Then, regionally speaking, industrial activity does enrich local values. Uncontrolled industrial 
facilities and activates in Turkey are causing a rise in soil – and thus plant – pollution. Ecological pollution 
caused by terrestrial radionuclides and heavy elements must be monitored on a regular basis. In short, the 
findings in this case study could serve researchers and agriculturalists alike as a potential database. 
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