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Abstract

Let R, = Z,m + uZ,m be a finite ring, where u? = r for r € Z,m, m is a positive integer, and m > 2. In this
paper, we study a class of skew-cyclic codes using a skew polynomial ring over R,. with an automorphism 6,.
and a derivation 8y,_. We generalize the skew-cyclic codes over Z, + uZ,; u? = 1 to the skew-cyclic codes over
R,, and call such codes as &g, -cyclic codes. We investigate the structures of a skew polynomial ring

R.[x, 6,85 ]. A 85 -cyclic code is showed to be a left R, [x, 8,, 85_|-submodule of %

generator matrix of a 8y _-cyclic code of length n over R,.. Also, we present the generator matrix of the dual of
a free 8, -cyclic code of even length n over R,.

. We give the

Keywords: Cyclic codes, skew polynomial rings, skew-cyclic code.

Tiiretim ile L[:] Halkasi Uzerindeki Aykir1 Devirli Kodlarin Bir Sinifi

L,
(u2-r)
Oz
m pozitif bir tamsay1, m = 2 ve r € Z,m i¢in u? = r olmak iizere R, = Z,m + uZ,m sonlu halkasi verilsin. Bu
calismada, 6, bir otomorfizm ve &g _bir tiiretim olmak iizere R, iizerindeki bir aykiri polinom halkasi
kullanilarak aykir1 devirli kodlarin bir smifi calistlmistir. u? = 1 olmak iizere Z, + uZ, iizerindeki aykir1 devirli
kodlar, R, iizerindeki aykir1 devirli kodlara genellestirilmistir ve bu kodlar &g -devirli kodlar olarak

Rr[x,grﬁgr]
(x™—1)

halkasinin bir sol R, [x, 6,, (Ygr]-alt modiilii oldugu gosterilmistir. R, iizerinde n uzunlugundaki &y _-devirli

adlandirilmstir. R, [x, 0, 59r] aykirt polinom halkasinin yapilari incelenmistir. 8 _-devirli kodun

kodun iireteg matrisi verilmistir. Ayrica, R, lizerinde n ¢ift uzunlugundaki bir serbest 84, -devirli kodun dualinin

iirete¢ matrisi verilmistir.

Anahtar Kelimeler: Devirli kodlar, aykiri polinom halkalar1, aykir1 devirli kod.
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1. Introduction

Fractional analysis is a branch of mathematics that studies derivatives and integrals of real or
complex order. Differential equations involving non-integer derivatives are used to model
various physical phenomena. Therefore, in addition to its applications in mathematics, it is also
used in the application of many branches of science such as physics, engineering, biology and
finance (see [1]- [5]). Some of the most comprehensive studies for fractional derivatives and
integrals (see [6]- [7]).

Cyclic codes are a significant family of linear codes because of their rich algebraic structure
and high efficiency. Many crucial codes, including such binary Hamming codes, Golay codes
and BCH codes, are equivalent to cyclic codes. These codes were first studied by Prange (1957),
and have been studied extensively since then. (Blake 1972, 1975) and (Spiegel 1977, 1978),
have initiated the work of cyclic codes over ring. After a landmark work of Hammons et al.
(1994), codes over rings have become popular among researchers. They have demonstrated that
some good non-linear codes over Z, can be seen as the Gray images of linear codes over Z,.
However, in most of these studies, the use of cyclic codes is constrained to commutative rings.

Boucher et al. (2007), generalized the notion of cyclic codes by defining non-commutative skew
polynomial rings of automorphism type. This codes are known as skew cyclic codes. Also,
(Boucher et al. 2008), (Boucher, Ulmer 2009) and (Boucher, Ulmer 2011), generalized works
in skew cyclic codes. Boulagouaz and Deajim (2021), constructed novel matrix-product codes
arising from (o, §)-codes. Boulagouaz and Deajim (2022), gave a characterization of monic
principal o-codes whose dual codes are also monic principal a-codes. Boucher and Ulmer
(2014), used skew polynomial rings with automorphism and derivation to study linear codes.
Sharma and Bhaintwal (2014), have studied a family of skew-cyclic codes over Z, + uZ, with
an automorphism 6 and a derivation 8y, where u? = 1. By Caliskan (2022), these codes are
generalized for the Z,s + uZ,s, where u? = 1. Motivated by Sharma and Bhaintwal (2014), we
consider a family of skew-cyclic codes over R, = Z,m + uZ,= with an automorphism 6, of
R, and a derivation of §g_ R, where u?> = r for r € Z,m.

The paper is structured as follows. In Section 2, we present some fundamental definitions and
results that are required for this paper. Moreover, we discuss the structural properties of skew
polynomial ring Rr[x, 0,, 69r] for r € Z,m. In Section 3.1, we introduce the &, -cyclic codes
over R,., and investigate their properties. These codes are a generalization of the §¢-cyclic codes
over Z, + uZ, in Sharma and Bhaintwal (2014). In Section 3.2, we determine the structure of
the dual of a free §g_-cyclic codes of even length n over R,.. In Section 4, the paper concludes.

2. Preliminaries

Let m > 2 be an integer. Throughout the paper, R, denotes the ring Z,m + uZ,m =
sz[u]
(u2-r)

and cardinality 2™, We define amap 6,: R, — R, for r € Z,m such that

{a+ub|ab € Zym}withu? =rforr € Z,m.Clearly, R, = . R, has characteristic 2™

0,.(a+ub) =a+ (u+2m1)p.
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It can be easily shown that 6, is an automorphism of R,.. Also, since
6, (a) = a (1)
for all « € R,., the order of 6, is 2.

Definition 2.1. Let R be a finite ring and © be an automorphism of R. Thena map Ag:R —» R
is said to be a derivation on R if

Ag(a + b) = Ag(a) + Ag(b),
Ag(ab) = Ag(a)b + O(a)Ag(b).
We define a map &y : R, — R, for r € Z,m such that
8g,(a+ub) =(1+ u)(Hr(a +ub) — (a + ub)).
That is,
8p.(a+ub) =1 +uw)(a+ (u+2""")b—a—ub)
=2m"1p +2m huy

_ { 0, b € 2Z,m (b is a non unit of Z,m)
~2mt 4 2m 1y, b € 2Z,m + 1 (b is a unit of Z,m).

Corollary 2.2. Let 2 < n € Z. We have 8y "(a) = 0 forall a € R,..
Theorem 2.3. The map &_ is a derivation on R,.
Proof. Let a, B € R,. Since 8, is an automorphism of R,., we get
S, (a +B) = (1 +u)(6,(a + B) — (e + B))
=1+ w6 (a) — a)+(1 +w)(6,-(B) — B)
= 8p,.(a) + 6, (B),
and
8p,(aB) = (1 +u)(6,(aB) — ap)
=1 +w) 6, () 6:-(B)-(1 + wap
= (1+w) 6,(a) 6, (B)-(1 + wap-(1 +u) 6, ()p+(1 +u) 6,(a)p

=1 +w) 6,(a0)(6-(B) — B+(1 + wB(6,(a) — )
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= 6p,(B) 0 (a) + 8, ().
Thus by Definition 2.1, &4, is a derivation on R,.. m|
The skew polynomial ring was defined by Ore (1933) as follows:

Definition 2.4. Let R be a ring with automorphism © and derivation Ag. Then the skew
polynomial ring R[x, ©, Ag] is the set of all polynomials over R with the addition as the usual
addition of polynomials and the multiplication is defined using the commutation rule

xa = 0(a)x + Ag(a)

for any a € R and extended by distributivity and associativity.

By Definition 2.4, since R, is a ring with automorphism 6,. and derivation &, _, we have
xa = 0.(a)x + &g (@) (2
forany a € R,.

Lemma 2.5. For any element a € R,, 8.(6,(a)) + 6, (5er(0!)) =0.

Proof. Leta = a + ub € R,. SO
8o,(6-(a)) = 8 (a + (u+2™1)b)
= 2m-1p 4 om-1py,

and
0, (69r(a)) = 0,(2™1h + 2™ 1hy)
=2M1p 4+ (u+2m1)2m1p
=2m1p + 2m~1py,
which proves. O
Lemma 2.6. For all « € R,, x?a = ax?.

Proof. By (1), (2), Corollary 2.2 and Lemma 2.5, we get
xla = x (Hr(a)x + 59r(a))

= (x Hr(a))x + x6p, (@)

= (49r2 (@)x + 64, ( Hr(a))) x + (Hr (59r(0£)) x + 5%#(“))

330



Zm) \ith Derivation
(ut-1)

A Class of Skew-Cyclic Codes over

= ax? + (59T( 6,(a)) + 6, (SQT(a)))x
= ax?. |
By (2) and Lemma 2.6, we get the following corollary.

Corollary 2.7. For any element « € R,

g = {(Br(a)x +85,(@)x",  ifnisodd
ax™, if n is even.

Example 2.8. Let f(x) =x3 + ayx, g(x) = x? + Byx + By € R.[x,6,, 86| for r € Zym.
Then

f)+ glx) = x> +x% + (a; + B)x + o
= gx) + f(x).

By Corollary 2.7,

f) g(x) = (x° + a; ) (x* + p1x + Bo)

= x3(x% + B1x + Bo) + a1 x(x? + B1x + Bo)

= x5+ (6,(B)x + 6, (1)) x%x + (8, (Bo)x + 86,(Bo) ) x3+a, x>
ey (6,(B)x + 86,(1)) x + a1 (8- (Bo)x + 8, (o))

= 2%+ (6,(B) + 6,(Bo))x* + (86,(B1) + 86,(Bo) + @1)x* + a1 6, (B1)x?
+ (@166, (B1) + @1 6,(B)) x + @186, (Bo),

and

gOf(x) = (x* + Brx + Bo) (x* + ayx)

= x2(x3 + ayx) + Byx(x3 + ayx) + Bo(x3 + a1 x)
= x>+ a;x%x + B1x* + By (Hr(%)x + 5@(“1)) x + Box® + Boasx

= x> +Byx* + (g + Bo)x3+P 0, (ay)x? + (3159T(“1) + ﬁoa1)x-

Since f(x) g(x) # g(x)f(x), R.[x, 6,, 85 ] is a non-commutative ring.
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Let Rrgr ={a+ub|a€Zym,b€2L,m}forr € Z,m. R,,er is subring of R,.. Also « is fixed by
0, thatis 6, (a) = a, and 5y _(a) = 0 for all « € R,. Hence we have xa = ax forall « € R,.

Definition 2.9. An element f(x) € R,[x, 8,, 8, | is said to be a central element of R,.[x, 6,, 5, |
if f(x)c(x) =c(x)f(x) forall c(x) € Rr[x, 0,, SQT].

Lemma 2.10. Let a € R, for r € Z,m. Then 6.(a) — a # & (B) for any g € R, unless a,
both are fixed by 6,.

Proof. Let 6,(a) —a = 8y, (B) for some arbitrary fixed values of a and . The only possible
values of §,_(B) are 0 and 2™~ + 2™ 1. Suppose 8y, (B) = 0. Clearly, 6,(a) = a. Then
and B both are fixed by 6,. Suppose &g (B) = 2™~1 4+ 2™ 1u. Let B = B, + Byu such that
Bo, B1 € Zym. Since By € 2Z,m, 6,(B) = B. Let @ = @y + a,u such that ay, a; € Z,m. Then
0,.(a) —a = 2™ 1q,, which contradicts 6,(a) —a contains u. Therefore, the proof is
completed. |

We define
S,={a+ub|ab € 2Z,m}
forr € Z,m.

Lemma 2.11. Forall « € S, and 8 € R,, aB,.(f) = af and ady _(B) = 0.

Proof. Let a = 2a, + 2a,u and § = S, + f,u such that a,, aq, By, B1 € Z,m. Then we have
ab,.(f) = QLay + 2a,u)0,(fo + f1u)

= (2ay + 2a,u)(By + upy + 2™ 1By

= 2ay + 2a,u)(By + ufy) +QMaofy + 2May fru)

= ap,
and if B; € 2Z,m , itis clear that ady_(B) = 0, if B; € 2Z,m + 1, then
ady (B) = ay + 2a,u)(2™ " + 2™ 1)
= 2(ag + a;u)2™ (1 + )
=2"(ay + ayu)(1 +u)
= 0. O

Theorem 2.12. A polynomial f(x) € Rr[x, 0,, 69r] is a central element if and only if f(x) €

Rrer[x] such that the coefficients of all odd powers of x belong to the set S, =
fa+ub|a,b € 2Z,m}.

Proof. (=): Let f(x) = ap + a;x + a;x? + -+ ayx* € R,[x,6,,85 ] be a polynomial of
odd degree. Suppose f(x) is a central element. Then
0 =xf(x)— f(x)x

= xay + xa;X + xt,x% + - + xa, x* — (agx + ay;x? + ax3 + - + agx*tY)
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= (6,(o)x + 8, (@0) ) + (6, ()x + 8, (@) ) x + (6,-(@x)x + 6, (a2) ) x* +

k
+ (0, (i + 8, (@) 1 = ) apxi*?

=0
k-1 k
= 80, (@0) + ) (0@ + 8, (@i4) ) 27146, ()" = ) i,
i=0 =0

If we equate coefficients of all terms to zero then we get

8, (ag) =0 ©)
Hr(ai) —Q; + 6gr((li+1) = O, i = 0,1, ,k -1 (4)
6y (ay) — ax = 0. ®)

We have 0,.(a;) = a; fori =0,1,...,k by equations (3), (4), (5), and Lemma 2.10. Let a; =
agl) + af)u fori =0,1,..,k. As @ (al) = a;, We get a(l) € 2Z,m. Then f(x) € R [x].

As f(x) is a central element, we have f(x)f = Bf(x) for all 8 € R,.. We choose 8 = S, +
Biu € R, such that 6,(8) # S. Then §; € 2Z,m + 1. By Corollary 2.7, we have

0=pf(x)—f(x)B

k1 k-1
2
= z Baix' — Z X2 B — Yy x2tIB
i=0
k-1 k k-1 ko1
2 5 _
= ﬁazleL + Z Bay; +1le+1 Z aziﬁXZi — z Ugite (97*([)))95 + 66r(ﬁ)) x20
i=0 =0 ppr
k-1 k—1
2
- (ﬂam 2if — a21+169r(ﬁ) XZL + Z(ﬁa21+1 — Q3i1+10; (ﬁ))x21+1
i=0
L k-1
2
_ z a2i+159r(’3)x2i + Z a2i+1(ﬁ _ 9r(,3))x2i+1.
i=0 i=0

This implies that a,;1185.(8) = 0 and a,;4, (B — 6,(8)) =0 forall i = 0,1,2, ...,
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We denote ;.1 = a2 + 2y @40y for i = 0,1,2, % As By € 2Zym + 1, 8o, (B) =
2m-1 4 2m~1y, Since

0= (a(()zm) 4 2y @ity )(Zm_1 + 2™ 1Y)

_ 2m—1a(()2i+1) + My @iFD) 4 (Zm—1a(()2i+1) n Zmy(2i+1))u

a, u,

(2i+1)

S0 a, € 27Z,m. Moreover since

0= ‘12i+1(.30 + fiu— 6,(Bo + .31u))
_ (,,@i+1) (2i+1) m-1
= (a0 + 2y @iy (—2m-1p)
— _zm—lﬁla62i+1)

and B; € 2Z,m + 1, then a**Y € 2Z,m. Hence we have a,;,1 € S, forall i = 0,1,2, %

It can be proved similarly for polynomials of even degree.

(<): Suppose f(x) satisfies the given conditions. Then to show f(x)c(x) = c(x)f(x) for all
c(x) € Ry[x,6,,85_], it is sufficient to show that (c;x")(a;x’) = (ajx/)(c;ix") for 0 < i <

deg(c) and 0 < j < deg(f). Since f(x) € Rfr [x], we have 6,.(a;) = a; and &g_(a;) = 0 for
i =0,1, ..., k. We obtain the following by Corollary 2.7. If i is even, we have

(cox') () = ci(aa o) = o i, ®)
If i is odd, we have
(cix')(ex)) = ci(x'ay)x!

= c; (6, (a)x + 6, () ) 21/

= ¢;a; xit, @)
Also, if j is even, we have
(ajx?)(cix') = aj(cix?)xt = ¢y x™. (8)
If j is odd, @; € S, and then we have

(aja?)(cix) = a(x/ i)t
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(u?-1)
= a; (Hr(ci)x + 69r(ci)) x/ 1t
= (ajer(ci)x + aj6gr(ci)) xtti1
= ¢ x' 9)
by Lemma 2.11. Therefore, we obtain the required result by (6), (7), (8) and (9). O

The ring Rr[x, 6,, 69T] is not a left or right Euclidean ring, so the division algorithm does not
hold in it. But we can still apply division algorithm on some particular elements of
R,[x,6,,84_]. We give this case in the following theorem.

Theorem 2.13. (Right division algorithm) Let f(x), g(x) € R,[x, 6,, 85_] such that g(x) has
leading coefficient a unit of R,.. Then

fO) = qx)g(x) +rk)
for some q(x),r(x) € R, [x, 6,, SQT], where r(x) = 0 or deg(r) < deg(g).
Proof. Let
f(x) =ag+ a;x + ax? + -+ a.x®
g(x) = Bo + Prx + Box* + -+ Bex”,

where B, is a unit of R,.. If s <t, then f(x) =0-g(x) + f(x) gives the required result.
Suppose s > t. We define

h(x) = f(x) — A-(x)g(x),
where

a0, (B x5, ifs — tisodd
aBilxs7t, if s — tis even’

A6 = | (10

By Corollary 2.7, if s — t is odd, the most degree term of h(x) is

Ofs-xS - aser(ﬂt_l)er(ﬂt)xxs_t_lxt = a{sxS - aser(ﬁt_l)er(ﬁt)xs
s

=0-x°,

and if s — t is even, the most degree term of h(x) is

asxs - as.Bt_lxs_tﬁtxt = asxs - as.Bt_l.thS_txt
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Then, h(x) is a polynomial of degree deg(f) — 1. We prove the result by induction on deg(f).
Assume that the result is true for every polynomial having degree less than deg(f). Clearly, the
result is true for deg(f) = 0. Let deg(f) > 0. As deg(h) < deg(f), there exist q'(x),r(x)
such that h(x) = q'(x)g(x) + r(x), where r(x) = 0 or deg(r) < deg(g). So by (10), we
obtain

fG) = q'(x)g(x) +7r(x) + A (x)g(x)
= (') +A,(0)g(x) + r(x)a
= q(x)g(x) + ),
where q(x) = q'(x) + A,(x). Therefore, the proof is completed. O

Similarly, the left division algorithm can be proved. Throughout the paper, division means the
right division.

Example 2.14. Let m = 5,7 = 12 € Z,s and f(x), g(x) € R,[x, 6,, 85 ] such that
f(x) = (B +20wx3 + (14 + 2u)x? + 4u
g(x) = (7 + 18u)x? + 11u.

Here s=3,t=2a;=3+20u,u?=12, f,=7+18u,p;'=7+14u. By (10),
App(x) = a361 (.Bz_l)x3_2

= (3+20u)0,,(7 + 14u)x
= (3+20w)(7 + 14u)x
= (21 + 22u)x.

Then

A, () g(x) = (21 + 22w)x((7 + 18u)x? + 11u)
= (21 + 22u) (912(7 +18u)x + 6y, (7 + 18u)) x?
+(21 + 22u) (012(11u)x + 6912(11u))

= (21 + 22u)(7 + 18u)x3 + (21 + 22u)(16 + 11u)x
+(21 + 22u)(16 + 16w)
= (3 +20u)x3+ (8 + 7wx + (16 + 16u).

We define
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h(x) = f(x) — A2 (x)g(x) (11)
= (14 + 2u)x? + (24 + 25u)x + (16 + 20u).

Now repeating the above argument on h(x), we have

r(x) = h(x) — q'(x)g(x) (12)
= (24 + 25u)x + (8 + 14u)

such that ¢’(x) = 18 + 18u by (10). Hence by (11) and (12) we obtain f(x) = q(x) g(x) +
r(x), where q(x) = (21 4+ 22u)x + (18 + 18u).

3. Main Theorem and Proof
3.1. 8¢, —Cyclic Codes over R,

In this section, we define a class of skew-cyclic codes over R,. for r € Z,m and call them & -
cyclic codes over R,..

A code of length n over R, is a non-empty subset of R}*, and a code of length n is a linear code
Ry[x,6:.80,]
(£ ()
polynomial of degree n over R,., we can associate aword a = (g, @1, @3, ..., ¥,—1) € R* with
Ry[x.67.56,]
(F ()

is a left R, [x, 6,, 85_]-module with scalar multiplication defined by r(x)(a(x) +

over R, if it is an R,.-submodule of R;. By identifying R}* with , Where f(x) is a

the polynomial a(x) = ay+ a;x + azx? + -+ a,_x" 1 € In addition,

Rr[x,6+86,
(F ()
(fON) = r()alx) + (f (x)).

Definition 3.1.1. A code C is called a &y -linear code of length n over R, if C is a left

Ry[x,6r.8¢,]
(f(x))
Moreover, if f(x) is a central polynomial in R, [x, 0,, SQT], then C is called a central 8y _-linear

code.

R,[x,6,, 86, |-submodule of , where f(x) is a polynomial of degree n over R,.

Definition 3.1.2. (8g, - cyclic code) A code C is called a &g_-cyclic code of length n over R, if
C is a &y -linear code of length n over R,, and for all ¢ = (¢, ¢y, ...,cy—1) € C, We have

Ty, (€) = (6,(cnmr) + 85, (co), 6,(co) + 8,(c1), s B (Crms) + 85, (cnr)) € C. Here, Ty,

is called the &, -cyclic shift operator.

RT[X,HT,SQT]
(x™-1)

We denote R( 86r) by R(n 69r)
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(n.80,)

Lemma 3.1.3. If a(x) = @y + ayx + ax® + -+ ap_1x" 1 €R, represents the word

a = (ag, 1, Az, ., A1) € R}, then xa(x) represents the word (Hr(an_1)+

697«((10); Hr(ao) + 69r((l1), ey 97‘(“11—2) + 69,-(“11—1)) € R;l

Proof. Since x™ = 1, we have

xa(x) = x <7§ aixi> = Til(xai)xi

-1

S

(8, (a)x + 86, (a)) x*

.~
Il
o

n-1
D6, (@)x " + ) 5y, (@)
i=0 i=0
n-1
D 6@ )x + 0, (an DX+ ) 8, (@)x! + 8y, ()

-1

(6r(@i-)x + 85, (@) &',

S

1l
o

i
where indices are in modulo n. Then the proof is completed. O

Theorem 3.1.4. A code C is a &y _-cyclic code of length n over R, if and only if C is an
R,[x,6,, 6, ]-submodule of R,

Proof. Suppose C is a §y_-cyclic code of length n over R,.. Then for any c(x) € C, xc(x) € C
and for all i € Z*, x‘c(x) € C by Lemma 3.1.3. It follows that a(x)c(x) € C for all a(x) €

R.[x,6,,84_]. Therefore C is an R,[x, 6,, 8,_]- submodule of REM"T). Converseisclear. O
Corollary 3.1.5. If Cisa 6, _-cyclic code of even length n over R,., then C is an ideal of R(n 69T)
and so, C is a central &, _-linear code.

Proof. By Theorem 2.12, since n is even, x™ — 1 is a central element. Then (x™ — 1) is a two-

(n.66,.)

sided ideal of R,.[x, 6,, 8. ], and so Rﬁn’a‘”) isaring. In addition, as C is a submodule of R,

(n.89,.)

by Theorem 3.1.4, C is an ideal of R, . By Definition 3.1.1, since x™ — 1 is a central
polynomial, C is a central §o_-linear code. |
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Theorem 3.1.6. Let C be a 64 _-cyclic code of length n over R,.. Then the following statements
hold.

i) Ifnisodd, C is a cyclic code of length n over R,..
i) If nis even, C is a quasi-cyclic code of length n and index 2 over R,..
Proof. Let c(x) = ¢y + c1x + -+ cppx™ 2 + ¢, x™ T E C.
i) Let n be odd. Then there exist an integer s such that 2s = n + 1. Since x™ = 1, we have
x%5c(x) = x™1c(x)

— Coxn+1 + C1Xn+2 4ot Cn—zxn+n_1 + Cn—lxn+n

= Cp1 + CoX + 1 X2 + -+ + cp_px™ 1,
which is a cyclic shift of c(x) by Lemma 2.6. As x%Sc(x) € C, C is a cyclic code.
ii) Let n is even. In general, C is not cyclic. Since x™ = 1, we have
x2c(x) = cox? + c1x3 + -+ cppx™ + g x™tt

= Cpog + Cpo1X + Cox?% + X3 + -+ Cpoax™ % + cp_gx™ 1,

which is a cyclic shift of c(x) by two positions by Lemma 2.6. As x?c(x) € C, C is quasi-cyclic
code of index 2. O

Let C be a &y -cyclic code of length n over R, such that C contains a minimum degree
polynomial g(x) with its leading coefficient is a unit. Hence C = (g(x)). Also it is easy to see
that g(x)|(x™ — 1) and {g(x),xg(x),...,x" % 1g(x)} is a basis of C, where k = deg(g).
Clearly, if C is free, we have the following corollary.

Corollary 3.1.7. Let C be a free 64 -cyclic code of length n over R,. Then there exists a
minimum degree polynomial g(x) such that C = (g(x)) and g(x)|(x™ — 1).

Let C = (g(x)) be a 8y _-cyclic code of length n over R, generated by a right divisor g(x) with
its leading coefficient is a unit of x™ — 1. Then the (n — k) X n generator matrix of C is

xg(x)

9(x) }
x2g(x) |

G =
xn—k—lg (x)

where g(x) = go + g1x + g,x? + -+ + g x*. Then we have the following corollary.
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Corollary 3.1.8. Let C = (g(x)) be a &, _-cyclic code of length n over R, such that g(x) =
Jo + 91X + g,x% + -+ + g, x*. Then the (n — k) x n generator matrix G of C is

[ 9o g1 g2 Ik 0 0]

[66,(90)  6-(g0) +86,(91)  6,(g1) + 8p.(g2) - 6r(Gk-1) +36,.(91)  6,(gx) 0|

0 0 9o Ik-3 Jk-2 . 0 j

0 0 0 go - Gk Ie-1 g

for an odd n — k, and

[ Yo g1 9> Gk 0 0 1
86,.(g0)  6-(g0) + 86,(91)  6,(g1) + 84,(g2) 6r(gr-1) + 86, () 6, (gr) 0 |
| 0 0 9o i3 Gk—2 . 0 |
L o 0 86(90)  6,(go) + J,(91) Or(gi1) + 86,0910 6, (g,

foranevenn — k.

Example 3.1.9. Letr € 2Z,m + 1. Let C be a §g_-cyclic code of length 6 over R,. generated by
the right divisor g(x) = Q™ 1+ uw)x®+2™x? —u of x®—1. Then the set
{g(0),xg(x),x2g(x)} = {2™ 1+ u)x® + 2™ 1x? —y,ux* + 2™ Tux3 + 2™ —uw)x +

2m-1 4 2m=1y (2Mm71 4 u)xS + 2m1x* — ux?} forms a basis for C. Thus C has cardinality
2™ The generator matrix of C is

2m-lyom-ly 2ml_y 0 2m 1y u 0 |
0 0 —u 0 2m-1 gm-14

3.2. Dual of 6o —Cyclic Codes over R,

In this section, we find the generator matrix of the dual of &, _-cyclic code C of even length n
over R,.. Hence we need to find the parity check matrix of C.

Definition 3.2.1. Let C be a free &, _-cyclic code of length n over R,.. Then its dual is defined
as

Ctr={x€eRMx-y=0,Vy€C},

where x - y denotes the usual inner product of x and y.

Lemma 3.2.2. Let n be an even. x™ — 1 is a central element of R, [x, 6,, 8,_]. Also we have
x" —1=h(x)g(x) = g(x)h(x)

for some h(x), g(x) € R,[x,6,,8.].

Proof. By Theorem 2.12, it is clear that x™ — 1 = h(x)g(x) is a central element. Since
h(x)g(x) is a central element, we get
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h()(h(x)g(x)) = (h(x)g(x))h(x) = h(x)(g()h(x))

As Rr[x, 0., 59T] has non-trivial zero divisors, h(x) is not a zero divisor. Hence the proof is
completed. O

We obtain the following lemma from Lemma 3.2.2.

Lemma 3.2.3. Let C = (g(x)) be a §,_-cyclic code of even length n over R, where g(x) is a

monic right divisor of x™ — 1. Let x™ — 1 = h(x)g(x). Then c(x) € Rﬁn'aer) isin C if and
(n.80,)

r .

only if c(x)h(x) =0inR

Proof. If c(x) € C, then there exists a(x) € Rﬁn’ger) such that c¢(x) = a(x)g(x). By Lemma
3.2.2,
c(x)h(x) = a(x)g(x)h(x) = a(x)h(x)g(x) = a(x)(x" —1) =0
in R Conversely, | _ 0in R(™Per) i
. : y,if c(x)h(x) =0inR; , then by Lemma 3.2.2 there exists b(x) €

R,[x,6,, 86, ] such that

c(x)h(x) = b(x)(x™ — 1) = b(x) h(x)g(x) = b(x)g(x)h(x).
Since h(x) is not a zero divisor, we get c(x) = b(x) g(x). So the proof is completed. m|
Lemma3.2.4. If « € R, isaunitin R,, then 6,.(a) + 8y (B) isaunit forall g € R,..

Proof. Let y = 6,(a) + &p,.(B), where @, B € R, such that « is a unit. Let 8,.(a) = a + ub.
Then a + ub is a unit, and hence either a or b is unit but not both. We know &g _(8) is either 0
or 2m~1 4 2m~1y for all B € R,. If §_(B) = 0, then we are done. Otherwise, we have

y=a+ub+2m14+2m 1y
=(@+2™")+ (b +2" Hu
Moreover, any v € Z,m is a unit if and only if v + 2™~ is a unit. Hence y is a unit. |

Let C = (g(x)) be a &g _-cyclic code of even length n over R,. Then there exists h(x) =
ho+hix + hox? + -+ hy_yx* 1 + hyx € R, [x, 6,, 85| such that x™ — 1 = h(x)g(x). Let
c(x) = coteyx + cx% + -+ cp_px™ % + ¢,_1x™ 1. By Lemma 3.2.3, we have c(x)h(x) =

0in RSMGT). Hence the coefficients of x*, x**1, ..., x™ 1 in c(x)h(x) are all zero. If k is odd,
we have
Cihy + Ciyq (er(hk—l) + 68r(hk)) + Cigphpy + o+ g (er(ho) + 59,011)) =0 (13)

for an even i, and
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¢i 0r(hi) + ciprhi—1 + Cigz (er(hk—z) + 69r(hk—1)) + -+ Ciprho + Cirs109,(ho) =0 (14)
for an odd i. If k is even, we have

il + Civr (BrChi—s) + 86, (i) ) + Cirzhiez + -+ Cipicho + Ciaies100, (ho) = 0 (15)
for an even i, and

& 0r (i) + Cirahiem + iz (Br(hie—) + 8, (hie-1) ) + -+ + Cipic (61 (o) + 86, (1)) = 0 (16)

for an odd i. By equations (13) and (14) (or (15) and (16)), HcT = 0, where H is dimension
(n — k) x n matrix. Then we get GHT = 0, where G is a generator matrix of C. By Lemma
3.2.4, 0,.(hy) is unit, as hy is a unit. Since the diagonal elements of H are h;, or 6,.(hy), H
contains a square submatrix of dimension (n — k) x (n — k) with non-zero determinant. Then
all rows of H are linearly independent. Hence |Span(H)| = |R,|™ % = |C*|. Therefore
Span(H) = €%, and so the following corollary is obtained.

Corollary 3.2.5. Let C = (g(x)) be a §g_-cyclic code of even length n over R,. such that x™ —
1 = h(x)g(x) for some h(x) = ho+hyx + hyx? + -+ hy_yx*"* + hx* € R, [x,0,, 8 ]. Then
the (n — k) X n parity check matrix H of C is

[hk Hr(hk—l) + 69r(hk) hk—2 er(ho) + 69.,-(]11) 0 0 _|

| 0 6 (hye) Ry o ho 8o, (ho) - 0 |

l 0 0 hy Ry Or(Ry_3) + g (hy—) - = 0 j
0 0 hk gr(hk—l) + 69r(hk) hl gr(ho)+59(h1)

for an odd k, and

hi O (hi—1) + 8p,(hi)  hi— ho 84, (ho) 0

0 0, (hy) hye—4 hy 0, (ho) + 86, (hy) - 0
K 0 h o hy 6(h) + 8 (h) 0 |
Lo 0 w0 hy, - by 6,(ho) + 84, (hy)]

for an even k.

Now, we give the parity check matrix of §g_-cyclic code C in Example 3.1.9.

Example 3.2.6. Letr € 2Z,m + 1. Let C be a §g_-cyclic code of length 6 over R, generated by
the right divisor g(x) =M™ 1 +wx3+2™mx?2—-u of x°-1=(0@"tuxd+
2 lux? + ) (2™ + w)a 4+ 2m k2 —w). Let h(x) = r~tux3 +
2m~1r~1yx? + r~1u. By Corollary 3.2.5, the parity check matrix H of C is

r 1y 2m-1 0 2m=1p=1 4 1y 0 0
0 2m=1p=1 4 =1y 2mlpm1y 0 2m=1p-1  gm-=1_ om-1y |
0 0 r~lu 2m-1 0 2m=1p=1 4 =1y
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and so Span(H) = C*.

4. Conclusion

Sharma and Bhaintwal (2018) have studied a class of §g-cyclic codes over Z, + uZ,; u* = 1
with derivation. We define a generalization of these codes as &g _-cyclic codes over Z,m +
uZ,m; u®> =r for r € Z,m with derivation. We establish existence of the right division
algorithm in R,[x, 6,, 85_]. A 84 _-cyclic code is proved to be a left R, [x, 8,, 8, |-submodule of
Rr[x,0r.60, ]
(x™-1)
The properties of §4_-cyclic codes as well as dual of &, _-cyclic codes are investigated. The form
of a parity-check matrix of a free 8y _-cyclic code of even length n over R, is given. Then we

find the generator matrix of its dual.

. The form of a generator matrix of §, _-cyclic code of length n over R,. is obtained.
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