A Class of Skew-Cyclic Codes over $\frac{\mathbb{Z}_{2} m[u]}{\left\langle u^{2}-r\right\rangle}$ with Derivation

Hayrullah ÖZİMAMOĞLU (1) ${ }^{1 *}$
${ }^{1}$ Departments of Mathematics, NEVU, Nevşehir, Turkey

Received:24/05/2022, Revised: 26/12/2022, Accepted: 02/05/2023, Published: 31/08/2023

Abstract

Let $R_{r}=\mathbb{Z}_{2} m+u \mathbb{Z}_{2} m$ be a finite ring, where $u^{2}=r$ for $r \in \mathbb{Z}_{2} m, m$ is a positive integer, and $m \geq 2$. In this paper, we study a class of skew-cyclic codes using a skew polynomial ring over R_{r} with an automorphism θ_{r} and a derivation $\delta_{\theta_{r}}$. We generalize the skew-cyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4} ; u^{2}=1$ to the skew-cyclic codes over R_{r}, and call such codes as $\delta_{\theta_{r}}$-cyclic codes. We investigate the structures of a skew polynomial ring $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$. A $\delta_{\theta_{r}}$-cyclic code is showed to be a left $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$-submodule of $\frac{R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]}{\left\langle x^{n}-1\right\rangle}$. We give the generator matrix of a $\delta_{\theta_{r}}$-cyclic code of length n over R_{r}. Also, we present the generator matrix of the dual of a free $\delta_{\theta_{r}}$-cyclic code of even length n over R_{r}.

Keywords: Cyclic codes, skew polynomial rings, skew-cyclic code.

Türetim ile $\frac{\mathbb{Z}_{2} m[u]}{\left\langle u^{2}-r\right\rangle}$ Halkası Üzerindeki Aykırı Devirli Kodların Bir Sınıfı

$\ddot{\mathbf{O}} \mathbf{z}$

m pozitif bir tamsayı, $m \geq 2$ ve $r \in \mathbb{Z}_{2} m$ için $u^{2}=r$ olmak üzere $R_{r}=\mathbb{Z}_{2} m+u \mathbb{Z}_{2} m$ sonlu halkası verilsin. Bu çalışmada, θ_{r} bir otomorfizm ve $\delta_{\theta_{r}}$ bir türetim olmak üzere R_{r} üzerindeki bir aykırı polinom halkası kullanılarak aykırı devirli kodların bir sınıfı çalışılmışıır. $u^{2}=1$ olmak üzere $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ üzerindeki aykırı devirli kodlar, R_{r} üzerindeki aykırı devirli kodlara genelleştirilmiştir ve bu kodlar $\delta_{\theta_{r}}$-devirli kodlar olarak adlandırılmştır. $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ aykırı polinom halkasının yapıları incelenmiştir. $\delta_{\theta_{r}}$-devirli kodun $\frac{{ }_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]}{\left\langle x^{n}-1\right\rangle}$ halkasının bir sol $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$-alt modülü olduğu gösterilmiştir. R_{r} üzerinde n uzunluğundaki $\delta_{\theta_{r}}$-devirli kodun üreteç matrisi verilmiştir. Ayrıca, R_{r} üzerinde n çift uzunluğundaki bir serbest $\delta_{\theta_{r}}$-devirli kodun dualinin üreteç matrisi verilmiştir.

Anahtar Kelimeler: Devirli kodlar, aykırı polinom halkaları, aykırı devirli kod.

1. Introduction

Fractional analysis is a branch of mathematics that studies derivatives and integrals of real or complex order. Differential equations involving non-integer derivatives are used to model various physical phenomena. Therefore, in addition to its applications in mathematics, it is also used in the application of many branches of science such as physics, engineering, biology and finance (see [1]- [5]). Some of the most comprehensive studies for fractional derivatives and integrals (see [6]- [7]).

Cyclic codes are a significant family of linear codes because of their rich algebraic structure and high efficiency. Many crucial codes, including such binary Hamming codes, Golay codes and BCH codes, are equivalent to cyclic codes. These codes were first studied by Prange (1957), and have been studied extensively since then. (Blake 1972, 1975) and (Spiegel 1977, 1978), have initiated the work of cyclic codes over ring. After a landmark work of Hammons et al. (1994), codes over rings have become popular among researchers. They have demonstrated that some good non-linear codes over \mathbb{Z}_{2} can be seen as the Gray images of linear codes over \mathbb{Z}_{4}. However, in most of these studies, the use of cyclic codes is constrained to commutative rings.

Boucher et al. (2007), generalized the notion of cyclic codes by defining non-commutative skew polynomial rings of automorphism type. This codes are known as skew cyclic codes. Also, (Boucher et al. 2008), (Boucher, Ulmer 2009) and (Boucher, Ulmer 2011), generalized works in skew cyclic codes. Boulagouaz and Deajim (2021), constructed novel matrix-product codes arising from (σ, δ)-codes. Boulagouaz and Deajim (2022), gave a characterization of monic principal σ-codes whose dual codes are also monic principal σ-codes. Boucher and Ulmer (2014), used skew polynomial rings with automorphism and derivation to study linear codes. Sharma and Bhaintwal (2014), have studied a family of skew-cyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ with an automorphism θ and a derivation δ_{θ}, where $u^{2}=1$. By Çalışkan (2022), these codes are generalized for the $\mathbb{Z}_{2^{s}}+u \mathbb{Z}_{2} s$, where $u^{2}=1$. Motivated by Sharma and Bhaintwal (2014), we consider a family of skew-cyclic codes over $R_{r}=\mathbb{Z}_{2} m+u \mathbb{Z}_{2^{m}}$ with an automorphism θ_{r} of R_{r} and a derivation of $\delta_{\theta_{r}} R_{r}$, where $u^{2}=r$ for $r \in \mathbb{Z}_{2^{m}}$.

The paper is structured as follows. In Section 2, we present some fundamental definitions and results that are required for this paper. Moreover, we discuss the structural properties of skew polynomial ring $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ for $r \in \mathbb{Z}_{2^{m}}$. In Section 3.1, we introduce the $\delta_{\theta_{r}}$-cyclic codes over R_{r}, and investigate their properties. These codes are a generalization of the δ_{θ}-cyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$ in Sharma and Bhaintwal (2014). In Section 3.2, we determine the structure of the dual of a free $\delta_{\theta_{r}}$-cyclic codes of even length n over R_{r}. In Section 4, the paper concludes.

2. Preliminaries

Let $m \geq 2$ be an integer. Throughout the paper, R_{r} denotes the ring $\mathbb{Z}_{2} m+u \mathbb{Z}_{2} m=$ $\left\{a+u b \mid a, b \in \mathbb{Z}_{2^{m}}\right\}$ with $u^{2}=r$ for $r \in \mathbb{Z}_{2^{m}}$. Clearly, $R_{r} \cong \frac{\mathbb{Z}_{2} m[u]}{\left\langle u^{2}-r\right\rangle} . R_{r}$ has characteristic 2^{m} and cardinality $2^{2 m}$. We define a map $\theta_{r}: R_{r} \rightarrow R_{r}$ for $r \in \mathbb{Z}_{2^{m}}$ such that

$$
\theta_{r}(a+u b)=a+\left(u+2^{m-1}\right) b
$$

It can be easily shown that θ_{r} is an automorphism of R_{r}. Also, since
$\theta_{r}{ }^{2}(\alpha)=\alpha$
for all $\alpha \in R_{r}$, the order of θ_{r} is 2 .
Definition 2.1. Let \boldsymbol{R} be a finite ring and Θ be an automorphism of \boldsymbol{R}. Then a map $\Delta_{\Theta}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is said to be a derivation on \boldsymbol{R} if

$$
\begin{gathered}
\Delta_{\Theta}(a+b)=\Delta_{\Theta}(a)+\Delta_{\Theta}(b) \\
\Delta_{\Theta}(a b)=\Delta_{\Theta}(a) b+\Theta(a) \Delta_{\Theta}(b)
\end{gathered}
$$

We define a map $\delta_{\theta_{r}}: R_{r} \rightarrow R_{r}$ for $r \in \mathbb{Z}_{2^{m}}$ such that

$$
\delta_{\theta_{r}}(a+u b)=(1+u)\left(\theta_{r}(a+u b)-(a+u b)\right) .
$$

That is,

$$
\begin{aligned}
\delta_{\theta_{r}}(a+u b) & =(1+u)\left(a+\left(u+2^{m-1}\right) b-a-u b\right) \\
& =2^{m-1} b+2^{m-1} b u \\
& =\left\{\begin{array}{c}
0, \\
2^{m-1}+2^{m-1} u, b \in 2 \mathbb{Z}_{2^{m}}\left(\mathrm{~b} \text { is a non unit of } \mathbb{Z}_{2^{m}} \text {) }+1 \text { (b is a unit of } \mathbb{Z}_{2^{m}}\right)
\end{array}\right.
\end{aligned}
$$

Corollary 2.2. Let $2 \leq n \in \mathbb{Z}$. We have $\delta_{\theta_{r}}{ }^{n}(\alpha)=0$ for all $\alpha \in R_{r}$.
Theorem 2.3. The map $\delta_{\theta_{r}}$ is a derivation on R_{r}.
Proof. Let $\alpha, \beta \in R_{r}$. Since θ_{r} is an automorphism of R_{r}, we get

$$
\begin{aligned}
\delta_{\theta_{r}}(\alpha+\beta) & =(1+u)\left(\theta_{r}(\alpha+\beta)-(\alpha+\beta)\right) \\
& =(1+u)\left(\theta_{r}(\alpha)-\alpha\right)+(1+u)\left(\theta_{r}(\beta)-\beta\right) \\
& =\delta_{\theta_{r}}(\alpha)+\delta_{\theta_{r}}(\beta),
\end{aligned}
$$

and

$$
\begin{aligned}
\delta_{\theta_{r}}(\alpha \beta) & =(1+u)\left(\theta_{r}(\alpha \beta)-\alpha \beta\right) \\
& =(1+u) \theta_{r}(\alpha) \theta_{r}(\beta)-(1+u) \alpha \beta \\
& =(1+u) \theta_{r}(\alpha) \theta_{r}(\beta)-(1+u) \alpha \beta-(1+u) \theta_{r}(\alpha) \beta+(1+u) \theta_{r}(\alpha) \beta \\
& =(1+u) \theta_{r}(\alpha)\left(\theta_{r}(\beta)-\beta\right)+(1+u) \beta\left(\theta_{r}(\alpha)-\alpha\right)
\end{aligned}
$$

$$
=\delta_{\theta_{r}}(\beta) \theta_{r}(\alpha)+\delta_{\theta_{r}}(\alpha) \beta .
$$

Thus by Definition 2.1, $\delta_{\theta_{r}}$ is a derivation on R_{r}.
The skew polynomial ring was defined by Ore (1933) as follows:
Definition 2.4. Let \boldsymbol{R} be a ring with automorphism Θ and derivation Δ_{Θ}. Then the skew polynomial ring $\boldsymbol{R}\left[x, \Theta, \Delta_{\Theta}\right]$ is the set of all polynomials over \boldsymbol{R} with the addition as the usual addition of polynomials and the multiplication is defined using the commutation rule

$$
x \alpha=\Theta(\alpha) x+\Delta_{\Theta}(\alpha)
$$

for any $\alpha \in \boldsymbol{R}$ and extended by distributivity and associativity.
By Definition 2.4, since R_{r} is a ring with automorphism θ_{r} and derivation $\delta_{\theta_{r}}$, we have

$$
\begin{equation*}
x \alpha=\theta_{r}(\alpha) x+\delta_{\theta_{r}}(\alpha) \tag{2}
\end{equation*}
$$

for any $\alpha \in R_{r}$.

Lemma 2.5. For any element $\alpha \in R_{r}, \delta_{\theta_{r}}\left(\theta_{r}(\alpha)\right)+\theta_{r}\left(\delta_{\theta_{r}}(\alpha)\right)=0$.

Proof. Let $\alpha=a+u b \in R_{r}$. So

$$
\begin{aligned}
\delta_{\theta_{r}}\left(\theta_{r}(\alpha)\right) & =\delta_{\theta_{r}}\left(a+\left(u+2^{m-1}\right) b\right) \\
& =2^{m-1} b+2^{m-1} b u,
\end{aligned}
$$

and

$$
\begin{aligned}
\theta_{r}\left(\delta_{\theta_{r}}(\alpha)\right) & =\theta_{r}\left(2^{m-1} b+2^{m-1} b u\right) \\
& =2^{m-1} b+\left(u+2^{m-1}\right) 2^{m-1} b \\
& =2^{m-1} b+2^{m-1} b u
\end{aligned}
$$

which proves.
Lemma 2.6. For all $\alpha \in R_{r}, x^{2} \alpha=\alpha x^{2}$.
Proof. By (1), (2), Corollary 2.2 and Lemma 2.5, we get

$$
\begin{aligned}
x^{2} \alpha & =x\left(\theta_{r}(\alpha) x+\delta_{\theta_{r}}(\alpha)\right) \\
& =\left(x \theta_{r}(\alpha)\right) x+x \delta_{\theta_{r}}(\alpha) \\
& =\left(\theta_{r}^{2}(\alpha) x+\delta_{\theta_{r}}\left(\theta_{r}(\alpha)\right)\right) x+\left(\theta_{r}\left(\delta_{\theta_{r}}(\alpha)\right) x+\delta_{\theta_{r}}^{2}(\alpha)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha x^{2}+\left(\delta_{\theta_{r}}\left(\theta_{r}(\alpha)\right)+\theta_{r}\left(\delta_{\theta_{r}}(\alpha)\right)\right) x \\
& =\alpha x^{2}
\end{aligned}
$$

By (2) and Lemma 2.6, we get the following corollary.
Corollary 2.7. For any element $\alpha \in R_{r}$,

$$
x^{n} \alpha= \begin{cases}\left(\theta_{r}(\alpha) x+\delta_{\theta_{r}}(\alpha)\right) x^{n-1}, & \text { if } n \text { is odd } \\ \alpha x^{n}, & \text { if } n \text { is even. }\end{cases}
$$

Example 2.8. Let $f(x)=x^{3}+\alpha_{1} x, g(x)=x^{2}+\beta_{1} x+\beta_{0} \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ for $r \in \mathbb{Z}_{2^{m}}$. Then

$$
\begin{aligned}
f(x)+g(x) & =x^{3}+x^{2}+\left(\alpha_{1}+\beta_{1}\right) x+\beta_{0} \\
& =g(x)+f(x) .
\end{aligned}
$$

By Corollary 2.7,

$$
\begin{aligned}
f(x) g(x)= & \left(x^{3}+\alpha_{1} x\right)\left(x^{2}+\beta_{1} x+\beta_{0}\right) \\
= & x^{3}\left(x^{2}+\beta_{1} x+\beta_{0}\right)+\alpha_{1} x\left(x^{2}+\beta_{1} x+\beta_{0}\right) \\
= & x^{5}+\left(\theta_{r}\left(\beta_{1}\right) x+\delta_{\theta_{r}}\left(\beta_{1}\right)\right) x^{2} x+\left(\theta_{r}\left(\beta_{0}\right) x+\delta_{\theta_{r}}\left(\beta_{0}\right)\right) x^{3}+\alpha_{1} x^{3} \\
& +\alpha_{1}\left(\theta_{r}\left(\beta_{1}\right) x+\delta_{\theta_{r}}\left(\beta_{1}\right)\right) x+\alpha_{1}\left(\theta_{r}\left(\beta_{0}\right) x+\delta_{\theta_{r}}\left(\beta_{0}\right)\right) \\
= & x^{5}+\left(\theta_{r}\left(\beta_{1}\right)+\theta_{r}\left(\beta_{0}\right)\right) x^{4}+\left(\delta_{\theta_{r}}\left(\beta_{1}\right)+\delta_{\theta_{r}}\left(\beta_{0}\right)+\alpha_{1}\right) x^{3}+\alpha_{1} \theta_{r}\left(\beta_{1}\right) x^{2} \\
& +\left(\alpha_{1} \delta_{\theta_{r}}\left(\beta_{1}\right)+\alpha_{1} \theta_{r}\left(\beta_{0}\right)\right) x+\alpha_{1} \delta_{\theta_{r}}\left(\beta_{0}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
g(x) f(x) & =\left(x^{2}+\beta_{1} x+\beta_{0}\right)\left(x^{3}+\alpha_{1} x\right) \\
& =x^{2}\left(x^{3}+\alpha_{1} x\right)+\beta_{1} x\left(x^{3}+\alpha_{1} x\right)+\beta_{0}\left(x^{3}+\alpha_{1} x\right) \\
& =x^{5}+\alpha_{1} x^{2} x+\beta_{1} x^{4}+\beta_{1}\left(\theta_{r}\left(\alpha_{1}\right) x+\delta_{\theta_{r}}\left(\alpha_{1}\right)\right) x+\beta_{0} x^{3}+\beta_{0} \alpha_{1} x \\
& =x^{5}+\beta_{1} x^{4}+\left(\alpha_{1}+\beta_{0}\right) x^{3}+\beta_{1} \theta_{r}\left(\alpha_{1}\right) x^{2}+\left(\beta_{1} \delta_{\theta_{r}}\left(\alpha_{1}\right)+\beta_{0} \alpha_{1}\right) x .
\end{aligned}
$$

Since $f(x) g(x) \neq g(x) f(x), R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ is a non-commutative ring.

Let $R_{r}^{\theta_{r}}=\left\{a+u b \mid a \in \mathbb{Z}_{2^{m}}, b \in 2 \mathbb{Z}_{2^{m}}\right\}$ for $r \in \mathbb{Z}_{2^{m}} . R_{r}^{\theta_{r}}$ is subring of R_{r}. Also α is fixed by θ_{r}, that is $\theta_{r}(\alpha)=\alpha$, and $\delta_{\theta_{r}}(\alpha)=0$ for all $\alpha \in R_{r}$. Hence we have $x \alpha=\alpha x$ for all $\alpha \in R_{r}$.

Definition 2.9. An element $f(x) \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ is said to be a central element of $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ if $f(x) c(x)=c(x) f(x)$ for all $c(x) \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$.

Lemma 2.10. Let $\alpha \in R_{r}$ for $r \in \mathbb{Z}_{2}{ }^{m}$. Then $\theta_{r}(\alpha)-\alpha \neq \delta_{\theta_{r}}(\beta)$ for any $\beta \in R_{r}$ unless α, β both are fixed by θ_{r}.

Proof. Let $\theta_{r}(\alpha)-\alpha=\delta_{\theta_{r}}(\beta)$ for some arbitrary fixed values of α and β. The only possible values of $\delta_{\theta_{r}}(\beta)$ are 0 and $2^{m-1}+2^{m-1} u$. Suppose $\delta_{\theta_{r}}(\beta)=0$. Clearly, $\theta_{r}(\alpha)=\alpha$. Then α and β both are fixed by θ_{r}. Suppose $\delta_{\theta_{r}}(\beta)=2^{m-1}+2^{m-1} u$. Let $\beta=\beta_{0}+\beta_{1} u$ such that $\beta_{0}, \beta_{1} \in \mathbb{Z}_{2^{m}}$. Since $\beta_{1} \in 2 \mathbb{Z}_{2^{m}}, \theta_{r}(\beta)=\beta$. Let $\alpha=\alpha_{0}+\alpha_{1} u$ such that $\alpha_{0}, \alpha_{1} \in \mathbb{Z}_{2^{m}}$. Then $\theta_{r}(\alpha)-\alpha=2^{m-1} \alpha_{1}$, which contradicts $\theta_{r}(\alpha)-\alpha$ contains u. Therefore, the proof is completed.

We define

$$
S_{r}=\left\{a+u b \mid a, b \in 2 \mathbb{Z}_{2^{m}}\right\}
$$

for $r \in \mathbb{Z}_{2^{m}}$.

Lemma 2.11. For all $\alpha \in S_{r}$ and $\beta \in R_{r}, \alpha \theta_{r}(\beta)=\alpha \beta$ and $\alpha \delta_{\theta_{r}}(\beta)=0$.

Proof. Let $\alpha=2 \alpha_{0}+2 \alpha_{1} u$ and $\beta=\beta_{0}+\beta_{1} u$ such that $\alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{1} \in \mathbb{Z}_{2} m$. Then we have

$$
\begin{aligned}
\alpha \theta_{r}(\beta) & =\left(2 \alpha_{0}+2 \alpha_{1} u\right) \theta_{r}\left(\beta_{0}+\beta_{1} u\right) \\
& =\left(2 \alpha_{0}+2 \alpha_{1} u\right)\left(\beta_{0}+u \beta_{1}+2^{m-1} \beta_{1}\right) \\
& =\left(2 \alpha_{0}+2 \alpha_{1} u\right)\left(\beta_{0}+u \beta_{1}\right)+\left(2^{m} \alpha_{0} \beta_{1}+2^{m} \alpha_{1} \beta_{1} u\right) \\
& =\alpha \beta,
\end{aligned}
$$

and if $\beta_{1} \in 2 \mathbb{Z}_{2} m$, it is clear that $\alpha \delta_{\theta_{r}}(\beta)=0$, if $\beta_{1} \in 2 \mathbb{Z}_{2} m+1$, then

$$
\begin{aligned}
\alpha \delta_{\theta_{r}}(\beta) & =\left(2 \alpha_{0}+2 \alpha_{1} u\right)\left(2^{m-1}+2^{m-1} u\right) \\
& =2\left(\alpha_{0}+\alpha_{1} u\right) 2^{m-1}(1+u) \\
& =2^{m}\left(\alpha_{0}+\alpha_{1} u\right)(1+u) \\
& =0 .
\end{aligned}
$$

Theorem 2.12. A polynomial $f(x) \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ is a central element if and only if $f(x) \in$ $R_{r}^{\theta_{r}}[x]$ such that the coefficients of all odd powers of x belong to the set $S_{r}=$ $\left\{a+u b \mid a, b \in 2 \mathbb{Z}_{2} m\right\}$.

Proof. (\Rightarrow) : Let $f(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{k} x^{k} \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ be a polynomial of odd degree. Suppose $f(x)$ is a central element. Then
$0=x f(x)-f(x) x$

$$
=x \alpha_{0}+x \alpha_{1} x+x \alpha_{2} x^{2}+\cdots+x \alpha_{k} x^{k}-\left(\alpha_{0} x+\alpha_{1} x^{2}+\alpha_{2} x^{3}+\cdots+\alpha_{k} x^{k+1}\right)
$$

$$
\begin{aligned}
= & \left(\theta_{r}\left(\alpha_{0}\right) x+\delta_{\theta_{r}}\left(\alpha_{0}\right)\right)+\left(\theta_{r}\left(\alpha_{1}\right) x+\delta_{\theta_{r}}\left(\alpha_{1}\right)\right) x+\left(\theta_{r}\left(\alpha_{2}\right) x+\delta_{\theta_{r}}\left(\alpha_{2}\right)\right) x^{2}+\cdots \\
& +\left(\theta_{r}\left(\alpha_{k}\right) x+\delta_{\theta_{r}}\left(\alpha_{k}\right)\right) x^{k}-\sum_{i=0}^{k} \alpha_{i} x^{i+1} \\
= & \delta_{\theta_{r}}\left(\alpha_{0}\right)+\sum_{i=0}^{k-1}\left(\theta_{r}\left(\alpha_{i}\right)+\delta_{\theta_{r}}\left(\alpha_{i+1}\right)\right) x^{i+1}+\theta_{r}\left(\alpha_{k}\right) x^{k+1}-\sum_{i=0}^{k} \alpha_{i} x^{i+1}
\end{aligned}
$$

If we equate coefficients of all terms to zero then we get
$\delta_{\theta_{r}}\left(\alpha_{0}\right)=0$
$\theta_{r}\left(\alpha_{i}\right)-\alpha_{i}+\delta_{\theta_{r}}\left(\alpha_{i+1}\right)=0 ; i=0,1, \ldots, k-1$
$\theta_{r}\left(\alpha_{k}\right)-\alpha_{k}=0$.
We have $\theta_{r}\left(\alpha_{i}\right)=\alpha_{i}$ for $i=0,1, \ldots, k$ by equations (3), (4), (5), and Lemma 2.10. Let $\alpha_{i}=$ $\alpha_{0}^{(i)}+\alpha_{1}^{(i)} u$ for $i=0,1, \ldots, k$. As $\theta_{r}\left(\alpha_{i}\right)=\alpha_{i}$, we get $\alpha_{1}^{(i)} \in 2 \mathbb{Z}_{2^{m}}$. Then $f(x) \in R_{r}^{\theta_{r}}[x]$.

As $f(x)$ is a central element, we have $f(x) \beta=\beta f(x)$ for all $\beta \in R_{r}$. We choose $\beta=\beta_{0}+$ $\beta_{1} u \in R_{r}$ such that $\theta_{r}(\beta) \neq \beta$. Then $\beta_{1} \in 2 \mathbb{Z}_{2} m+1$. By Corollary 2.7, we have
$0=\beta f(x)-f(x) \beta$

$$
\begin{aligned}
& =\sum_{i=0}^{k} \beta \alpha_{i} x^{i}-\sum_{i=0}^{\frac{k-1}{2}} \alpha_{2 i} x^{2 i} \beta-\sum_{i=0}^{\frac{k-1}{2}} \alpha_{2 i+1} x^{2 i+1} \beta \\
& =\sum_{i=0}^{\frac{k-1}{2}} \beta \alpha_{2 i} x^{2 i}+\sum_{i=0}^{\frac{k-1}{2}} \beta \alpha_{2 i+1} x^{2 i+1}-\sum_{i=0}^{\frac{k-1}{2}} \alpha_{2 i} \beta x^{2 i}-\sum_{i=0}^{\frac{k-1}{2}} \alpha_{2 i+1}\left(\theta_{r}(\beta) x+\delta_{\theta_{r}}(\beta)\right) x^{2 i} \\
& =\sum_{i=0}^{\frac{k-1}{2}}\left(\beta \alpha_{2 i}-\alpha_{2 i} \beta-\alpha_{2 i+1} \delta_{\theta_{r}}(\beta)\right) x^{2 i}+\sum_{i=0}^{\frac{k-1}{2}}\left(\beta \alpha_{2 i+1}-\alpha_{2 i+1} \theta_{r}(\beta)\right) x^{2 i+1} \\
& =-\sum_{i=0}^{\frac{k-1}{2}} \alpha_{2 i+1} \delta_{\theta_{r}}(\beta) x^{2 i}+\sum_{i=0}^{\frac{k-1}{2}} \alpha_{2 i+1}\left(\beta-\theta_{r}(\beta)\right) x^{2 i+1} .
\end{aligned}
$$

This implies that $\alpha_{2 i+1} \delta_{\theta_{r}}(\beta)=0$ and $\alpha_{2 i+1}\left(\beta-\theta_{r}(\beta)\right)=0$ for all $i=0,1,2, \ldots, \frac{k-1}{2}$.

We denote $\alpha_{2 i+1}=\alpha_{0}^{(2 i+1)}+2 \gamma^{(2 i+1)} u$ for $i=0,1,2, \ldots, \frac{k-1}{2}$. As $\beta_{1} \in 2 \mathbb{Z}_{2^{m}}+1, \delta_{\theta_{r}}(\beta)=$ $2^{m-1}+2^{m-1} u$. Since

$$
\begin{aligned}
0 & =\left(\alpha_{0}^{(2 i+1)}+2 \gamma^{(2 i+1)} u\right)\left(2^{m-1}+2^{m-1} u\right) \\
& =2^{m-1} \alpha_{0}^{(2 i+1)}+2^{m} r \gamma^{(2 i+1)}+\left(2^{m-1} \alpha_{0}^{(2 i+1)}+2^{m} \gamma^{(2 i+1)}\right) u \\
& =2^{m-1} \alpha_{0}^{(2 i+1)}+2^{m-1} \alpha_{0}^{(2 i+1)} u
\end{aligned}
$$

so $\alpha_{0}^{(2 i+1)} \in 2 \mathbb{Z}_{2}{ }^{m}$. Moreover since

$$
\begin{aligned}
0 & =\alpha_{2 i+1}\left(\beta_{0}+\beta_{1} u-\theta_{r}\left(\beta_{0}+\beta_{1} u\right)\right) \\
& =\left(\alpha_{0}^{(2 i+1)}+2 \gamma^{(2 i+1)} u\right)\left(-2^{m-1} \beta_{1}\right) \\
& =-2^{m-1} \beta_{1} \alpha_{0}^{(2 i+1)},
\end{aligned}
$$

and $\beta_{1} \in 2 \mathbb{Z}_{2^{m}}+1$, then $\alpha_{0}^{(2 i+1)} \in 2 \mathbb{Z}_{2^{m}}$. Hence we have $\alpha_{2 i+1} \in S_{r}$ for all $i=0,1,2, \ldots, \frac{k-1}{2}$. It can be proved similarly for polynomials of even degree.
(\Leftarrow) : Suppose $f(x)$ satisfies the given conditions. Then to show $f(x) c(x)=c(x) f(x)$ for all $c(x) \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$, it is sufficient to show that $\left(c_{i} x^{i}\right)\left(\alpha_{j} x^{j}\right)=\left(\alpha_{j} x^{j}\right)\left(c_{i} x^{i}\right)$ for $0 \leq i \leq$ $\operatorname{deg}(c)$ and $0 \leq j \leq \operatorname{deg}(f)$. Since $f(x) \in R_{r}^{\theta_{r}}[x]$, we have $\theta_{r}\left(\alpha_{i}\right)=\alpha_{i}$ and $\delta_{\theta_{r}}\left(\alpha_{i}\right)=0$ for $i=0,1, \ldots, k$. We obtain the following by Corollary 2.7. If i is even, we have

$$
\begin{equation*}
\left(c_{i} x^{i}\right)\left(\alpha_{j} x^{j}\right)=c_{i}\left(\alpha_{j} x^{i}\right) x^{j}=c_{i} \alpha_{j} x^{i+j} \tag{6}
\end{equation*}
$$

If i is odd, we have

$$
\begin{align*}
\left(c_{i} x^{i}\right)\left(\alpha_{j} x^{j}\right) & =c_{i}\left(x^{i} \alpha_{j}\right) x^{j} \\
& =c_{i}\left(\theta_{r}\left(\alpha_{j}\right) x+\delta_{\theta_{r}}\left(\alpha_{j}\right)\right) x^{i-1} x^{j} \\
& =c_{i} \alpha_{j} x^{i+j} . \tag{7}
\end{align*}
$$

Also, if j is even, we have

$$
\begin{equation*}
\left(\alpha_{j} x^{j}\right)\left(c_{i} x^{i}\right)=\alpha_{j}\left(c_{i} x^{j}\right) x^{i}=c_{i} \alpha_{j} x^{i+j} \tag{8}
\end{equation*}
$$

If j is odd, $\alpha_{j} \in S_{r}$ and then we have

$$
\left(\alpha_{j} x^{j}\right)\left(c_{i} x^{i}\right)=\alpha_{j}\left(x^{j} c_{i}\right) x^{i}
$$

$$
\begin{align*}
& =\alpha_{j}\left(\theta_{r}\left(c_{i}\right) x+\delta_{\theta_{r}}\left(c_{i}\right)\right) x^{j-1} x^{i} \\
& =\left(\alpha_{j} \theta_{r}\left(c_{i}\right) x+\alpha_{j} \delta_{\theta_{r}}\left(c_{i}\right)\right) x^{i+j-1} \\
& =c_{i} \alpha_{j} x^{i+j} \tag{9}
\end{align*}
$$

by Lemma 2.11. Therefore, we obtain the required result by (6), (7), (8) and (9).
The ring $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ is not a left or right Euclidean ring, so the division algorithm does not hold in it. But we can still apply division algorithm on some particular elements of $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$. We give this case in the following theorem.

Theorem 2.13. (Right division algorithm) Let $f(x), g(x) \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ such that $g(x)$ has leading coefficient a unit of R_{r}. Then

$$
f(x)=q(x) g(x)+r(x)
$$

for some $q(x), r(x) \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$, where $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
Proof. Let

$$
\begin{aligned}
& f(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{s} x^{s} \\
& g(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{t} x^{t}
\end{aligned}
$$

where β_{t} is a unit of R_{r}. If $s<t$, then $f(x)=0 \cdot g(x)+f(x)$ gives the required result. Suppose $s \geq t$. We define

$$
h(x)=f(x)-A_{r}(x) g(x)
$$

where
$A_{r}(x)=\left\{\begin{array}{ll}\alpha_{s} \theta_{r}\left(\beta_{t}^{-1}\right) x^{s-t}, & \text { if } s-t \text { is odd } \\ \alpha_{s} \beta_{t}^{-1} x^{s-t}, & \text { if } s-t \text { is even }\end{array}\right.$.
By Corollary 2.7, if $s-t$ is odd, the most degree term of $h(x)$ is

$$
\begin{aligned}
\alpha_{s} x^{s}-\alpha_{s} \theta_{r}\left(\beta_{t}^{-1}\right) \theta_{r}\left(\beta_{t}\right) x x^{s-t-1} x^{t} & =\alpha_{s} x^{s}-\alpha_{s} \theta_{r}\left(\beta_{t}^{-1}\right) \theta_{r}\left(\beta_{t}\right) x^{s} \\
& =0 \cdot x^{s},
\end{aligned}
$$

and if $s-t$ is even, the most degree term of $h(x)$ is

$$
\begin{aligned}
\alpha_{s} x^{s}-\alpha_{s} \beta_{t}^{-1} x^{s-t} \beta_{t} x^{t} & =\alpha_{s} x^{s}-\alpha_{s} \beta_{t}^{-1} \beta_{t} x^{s-t} x^{t} \\
& =0 \cdot x^{s} .
\end{aligned}
$$

Then, $h(x)$ is a polynomial of degree $\operatorname{deg}(f)-1$. We prove the result by induction on $\operatorname{deg}(f)$. Assume that the result is true for every polynomial having degree less than $\operatorname{deg}(f)$. Clearly, the result is true for $\operatorname{deg}(f)=0$. Let $\operatorname{deg}(f)>0$. As $\operatorname{deg}(h)<\operatorname{deg}(f)$, there exist $q^{\prime}(x), r(x)$ such that $h(x)=q^{\prime}(x) g(x)+r(x)$, where $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$. So by (10), we obtain

$$
\begin{aligned}
f(x) & =q^{\prime}(x) g(x)+r(x)+A_{r}(x) g(x) \\
& =\left(q^{\prime}(x)+A_{r}(x)\right) g(x)+r(x) \mathrm{a} \\
& =q(x) g(x)+r(x),
\end{aligned}
$$

where $q(x)=q^{\prime}(x)+A_{r}(x)$. Therefore, the proof is completed.
Similarly, the left division algorithm can be proved. Throughout the paper, division means the right division.

Example 2.14. Let $m=5, r=12 \in \mathbb{Z}_{2^{5}}$ and $f(x), g(x) \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ such that

$$
\begin{gathered}
f(x)=(3+20 u) x^{3}+(14+2 u) x^{2}+4 u \\
g(x)=(7+18 u) x^{2}+11 u .
\end{gathered}
$$

Here $\quad s=3, t=2, \alpha_{3}=3+20 u, u^{2}=12, \beta_{2}=7+18 u, \beta_{2}^{-1}=7+14 u . \quad$ By (10),

$$
\begin{aligned}
A_{12}(x) & =\alpha_{3} \theta_{12}\left(\beta_{2}^{-1}\right) x^{3-2} \\
& =(3+20 u) \theta_{12}(7+14 u) x \\
& =(3+20 u)(7+14 u) x \\
& =(21+22 u) x .
\end{aligned}
$$

Then

$$
\begin{aligned}
A_{12}(x) g(x)= & (21+22 u) x\left((7+18 u) x^{2}+11 u\right) \\
= & (21+22 u)\left(\theta_{12}(7+18 u) x+\delta_{\theta_{12}}(7+18 u)\right) x^{2} \\
& +(21+22 u)\left(\theta_{12}(11 u) x+\delta_{\theta_{12}}(11 u)\right) \\
= & (21+22 u)(7+18 u) x^{3}+(21+22 u)(16+11 u) x \\
& +(21+22 u)(16+16 u) \\
= & (3+20 u) x^{3}+(8+7 u) x+(16+16 u) .
\end{aligned}
$$

We define

$$
\begin{align*}
h(x) & =f(x)-A_{12}(x) g(x) \tag{11}\\
& =(14+2 u) x^{2}+(24+25 u) x+(16+20 u) .
\end{align*}
$$

Now repeating the above argument on $h(x)$, we have

$$
\begin{align*}
r(x) & =h(x)-q^{\prime}(x) g(x) \tag{12}\\
& =(24+25 u) x+(8+14 u)
\end{align*}
$$

such that $q^{\prime}(x)=18+18 u$ by (10). Hence by (11) and (12) we obtain $f(x)=q(x) g(x)+$ $r(x)$, where $q(x)=(21+22 u) x+(18+18 u)$.

3. Main Theorem and Proof

3.1. $\boldsymbol{\delta}_{\boldsymbol{\theta}_{r}}$-Cyclic Codes over $\boldsymbol{R}_{\boldsymbol{r}}$

In this section, we define a class of skew-cyclic codes over R_{r} for $r \in \mathbb{Z}_{2^{m}}$ and call them $\delta_{\theta_{r}}$ cyclic codes over R_{r}.

A code of length n over R_{r} is a non-empty subset of R_{r}^{n}, and a code of length n is a linear code over R_{r} if it is an R_{r}-submodule of R_{r}^{n}. By identifying R_{r}^{n} with $\frac{R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]}{\langle f(x)\rangle}$, where $f(x)$ is a polynomial of degree n over R_{r}, we can associate a word $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right) \in R_{r}^{n}$ with the polynomial $\alpha(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{n-1} x^{n-1} \in \frac{R_{r}\left[x, \theta_{r}, \delta_{\left.\theta_{r}\right]}\right]}{\langle f(x)\rangle}$. In addition, $\frac{R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]}{\langle f(x)\rangle}$ is a left $R_{r}\left[x, \theta_{r}, \delta_{\left.\theta_{r}\right]}\right]$-module with scalar multiplication defined by $r(x)(\alpha(x)+$ $\langle f(x)\rangle)=r(x) \alpha(x)+\langle f(x)\rangle$.

Definition 3.1.1. A code C is called a $\delta_{\theta_{r}}$-linear code of length n over R_{r} if C is a left $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$-submodule of $\frac{R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]}{\langle f(x)\rangle}$, where $f(x)$ is a polynomial of degree n over R_{r}. Moreover, if $f(x)$ is a central polynomial in $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$, then C is called a central $\delta_{\theta_{r}}$-linear code.

Definition 3.1.2. ($\delta_{\theta_{r}}$ - cyclic code) A code C is called a $\delta_{\theta_{r}}$-cyclic code of length n over R_{r} if C is a $\delta_{\theta_{r}}$-linear code of length n over R_{r}, and for all $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$, we have $T_{\delta_{\theta_{r}}}(c)=\left(\theta_{r}\left(c_{n-1}\right)+\delta_{\theta_{r}}\left(c_{0}\right), \theta_{r}\left(c_{0}\right)+\delta_{\theta_{r}}\left(c_{1}\right), \ldots, \theta_{r}\left(c_{n-2}\right)+\delta_{\theta_{r}}\left(c_{n-1}\right)\right) \in C$. Here, $T_{\delta_{\theta_{r}}}$ is called the $\delta_{\theta_{r}}$-cyclic shift operator.

We denote $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$ by $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}:=\frac{R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]}{\left\langle x^{n}-1\right\rangle}$.

Lemma 3.1.3. If $\alpha(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{n-1} x^{n-1} \in R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$ represents the word $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right) \in R_{r}^{n}$, then $x \alpha(x)$ represents the word $\quad\left(\theta_{r}\left(\alpha_{n-1}\right)+\right.$ $\left.\delta_{\theta_{r}}\left(\alpha_{0}\right), \theta_{r}\left(\alpha_{0}\right)+\delta_{\theta_{r}}\left(\alpha_{1}\right), \ldots, \theta_{r}\left(\alpha_{n-2}\right)+\delta_{\theta_{r}}\left(\alpha_{n-1}\right)\right) \in R_{r}^{n}$.

Proof. Since $x^{n}=1$, we have

$$
\begin{aligned}
x \alpha(x) & =x\left(\sum_{i=0}^{n-1} \alpha_{i} x^{i}\right)=\sum_{i=0}^{n-1}\left(x \alpha_{i}\right) x^{i} \\
& =\sum_{i=0}^{n-1}\left(\theta_{r}\left(\alpha_{i}\right) x+\delta_{\theta_{r}}\left(\alpha_{i}\right)\right) x^{i} \\
& =\sum_{i=0}^{n-1} \theta_{r}\left(\alpha_{i}\right) x^{i+1}+\sum_{i=0}^{n-1} \delta_{\theta_{r}}\left(\alpha_{i}\right) x^{i} \\
& =\sum_{i=1}^{n-1} \theta_{r}\left(\alpha_{i-1}\right) x^{i}+\theta_{r}\left(\alpha_{n-1}\right) x^{n}+\sum_{i=1}^{n-1} \delta_{\theta_{r}}\left(\alpha_{i}\right) x^{i}+\delta_{\theta_{r}}\left(\alpha_{0}\right) x^{0} \\
& =\sum_{i=0}^{n-1}\left(\theta_{r}\left(\alpha_{i-1}\right) x+\delta_{\theta_{r}}\left(\alpha_{i}\right)\right) x^{i},
\end{aligned}
$$

where indices are in modulo n. Then the proof is completed.
Theorem 3.1.4. A code C is a $\delta_{\theta_{r}}$-cyclic code of length n over R_{r} if and only if C is an $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$-submodule of $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$.

Proof. Suppose C is a $\delta_{\theta_{r}}$-cyclic code of length n over R_{r}. Then for any $c(x) \in C, x c(x) \in C$ and for all $i \in \mathbb{Z}^{+}, x^{i} c(x) \in C$ by Lemma 3.1.3. It follows that $a(x) c(x) \in C$ for all $a(x) \in$ $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$. Therefore C is an $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ - submodule of $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$. Converse is clear.

Corollary 3.1.5. If C is a $\delta_{\theta_{r}}$-cyclic code of even length n over R_{r}, then C is an ideal of $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$, and so, C is a central $\delta_{\theta_{r}}$-linear code.

Proof. By Theorem 2.12, since n is even, $x^{n}-1$ is a central element. Then $\left\langle x^{n}-1\right\rangle$ is a twosided ideal of $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$, and so $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$ is a ring. In addition, as C is a submodule of $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$ by Theorem 3.1.4, C is an ideal of $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$. By Definition 3.1.1, since $x^{n}-1$ is a central polynomial, C is a central $\delta_{\theta_{r}}$-linear code.

Theorem 3.1.6. Let C be a $\delta_{\theta_{r}}$-cyclic code of length n over R_{r}. Then the following statements hold.
i) If n is odd, C is a cyclic code of length n over R_{r}.
ii) If n is even, C is a quasi-cyclic code of length n and index 2 over R_{r}.

Proof. Let $c(x)=c_{0}+c_{1} x+\cdots+c_{n-2} x^{n-2}+c_{n-1} x^{n-1} \in C$.
i) Let n be odd. Then there exist an integer s such that $2 s=n+1$. Since $x^{n}=1$, we have

$$
\begin{aligned}
x^{2 s} c(x) & =x^{n+1} c(x) \\
& =c_{0} x^{n+1}+c_{1} x^{n+2}+\cdots+c_{n-2} x^{n+n-1}+c_{n-1} x^{n+n} \\
& =c_{n-1}+c_{0} x+c_{1} x^{2}+\cdots+c_{n-2} x^{n-1},
\end{aligned}
$$

which is a cyclic shift of $c(x)$ by Lemma 2.6. As $x^{2 s} c(x) \in C, C$ is a cyclic code.
ii) Let n is even. In general, C is not cyclic. Since $x^{n}=1$, we have

$$
\begin{aligned}
x^{2} c(x) & =c_{0} x^{2}+c_{1} x^{3}+\cdots+c_{n-2} x^{n}+c_{n-1} x^{n+1} \\
& =c_{n-2}+c_{n-1} x+c_{0} x^{2}+c_{1} x^{3}+\cdots+c_{n-4} x^{n-2}+c_{n-3} x^{n-1}
\end{aligned}
$$

which is a cyclic shift of $c(x)$ by two positions by Lemma 2.6. As $x^{2} c(x) \in C, C$ is quasi-cyclic code of index 2.

Let C be a $\delta_{\theta_{r}}$-cyclic code of length n over R_{r} such that C contains a minimum degree polynomial $g(x)$ with its leading coefficient is a unit. Hence $C=\langle g(x)\rangle$. Also it is easy to see that $g(x) \mid\left(x^{n}-1\right)$ and $\left\{g(x), x g(x), \ldots, x^{n-k-1} g(x)\right\}$ is a basis of C, where $k=\operatorname{deg}(g)$. Clearly, if C is free, we have the following corollary.

Corollary 3.1.7. Let C be a free $\delta_{\theta_{r}}$-cyclic code of length n over R_{r}. Then there exists a minimum degree polynomial $g(x)$ such that $C=\langle g(x)\rangle$ and $g(x) \mid\left(x^{n}-1\right)$.

Let $C=\langle g(x)\rangle$ be a $\delta_{\theta_{r}}$-cyclic code of length n over R_{r} generated by a right divisor $g(x)$ with its leading coefficient is a unit of $x^{n}-1$. Then the $(n-k) \times n$ generator matrix of C is

$$
G=\left[\begin{array}{c}
g(x) \\
x g(x) \\
x^{2} g(x) \\
\vdots \\
x^{n-k-1} g(x)
\end{array}\right],
$$

where $g(x)=g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{k} x^{k}$. Then we have the following corollary.

Corollary 3.1.8. Let $C=\langle g(x)\rangle$ be a $\delta_{\theta_{r}}$-cyclic code of length n over R_{r} such that $g(x)=$ $g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{k} x^{k}$. Then the $(n-k) \times n$ generator matrix G of C is

$$
\left[\begin{array}{cccccccc}
g_{0} & g_{1} & g_{2} & \ldots & g_{k} & 0 & \cdots & 0 \\
\delta_{\theta_{r}}\left(g_{0}\right) & \theta_{r}\left(g_{0}\right)+\delta_{\theta_{r}}\left(g_{1}\right) & \theta_{r}\left(g_{1}\right)+\delta_{\theta_{r}}\left(g_{2}\right) & \ldots & \theta_{r}\left(g_{k-1}\right)+\delta_{\theta_{r}}\left(g_{k}\right) & \theta_{r}\left(g_{k}\right) & \cdots & 0 \\
0 & 0 & g_{0} & \ddots & g_{k-3} & g_{k-2} & \ddots & 0 \\
\ldots & \ldots & \cdots & \ddots & \cdots & \ddots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & g_{0} \cdots & g_{k-2} & g_{k-1} & g_{k}
\end{array}\right]
$$

for an odd $n-k$, and

$$
\left[\begin{array}{cccccccc}
g_{0} & g_{1} & g_{2} & \ldots & g_{k} & 0 & \ldots & 0 \\
\delta_{\theta_{r}}\left(g_{0}\right) & \theta_{r}\left(g_{0}\right)+\delta_{\theta_{r}}\left(g_{1}\right) & \theta_{r}\left(g_{1}\right)+\delta_{\theta_{r}}\left(g_{2}\right) & \ldots & \theta_{r}\left(g_{k-1}\right)+\delta_{\theta_{r}}\left(g_{k}\right) & \theta_{r}\left(g_{k}\right) & \ldots & 0 \\
0 & 0 & g_{0} & \ddots & g_{k-3} & g_{k-2} & \ddots & 0 \\
\ldots & \ldots & \ldots & \cdots & \delta_{\theta}\left(g_{0}\right) & \theta_{r}\left(g_{0}\right)+\delta_{\theta_{r}}\left(g_{1}\right) & \cdots & \theta_{r}\left(g_{k-1}\right)+\delta_{\theta_{r}\left(g_{k}\right)} \\
0 & 0 & \cdots & \theta_{r}\left(g_{k}\right)
\end{array}\right]
$$

for an even $n-k$.
Example 3.1.9. Let $r \in 2 \mathbb{Z}_{2} m+1$. Let C be a $\delta_{\theta_{r}}$-cyclic code of length 6 over R_{r} generated by the right divisor $g(x)=\left(2^{m-1}+u\right) x^{3}+2^{m-1} x^{2}-u$ of $x^{6}-1$. Then the set $\left\{g(x), x g(x), x^{2} g(x)\right\}=\left\{\left(2^{m-1}+u\right) x^{3}+2^{m-1} x^{2}-u, u x^{4}+2^{m-1} u x^{3}+\left(2^{m-1}-u\right) x+\right.$ $\left.2^{m-1}+2^{m-1} u,\left(2^{m-1}+u\right) x^{5}+2^{m-1} x^{4}-u x^{2}\right\}$ forms a basis for C. Thus C has cardinality $2^{6 m}$. The generator matrix of C is

$$
\left[\begin{array}{cccccc}
-u & 0 & 2^{m-1} & 2^{m-1}+u & 0 & 0 \\
2^{m-1}+2^{m-1} u & 2^{m-1}-u & 0 & 2^{m-1} u & u & 0 \\
0 & 0 & -u & 0 & 2^{m-1} & 2^{m-1}+u
\end{array}\right]
$$

3.2. Dual of $\boldsymbol{\delta}_{\boldsymbol{\theta}_{r}}$-Cyclic Codes over $\boldsymbol{R}_{\boldsymbol{r}}$

In this section, we find the generator matrix of the dual of $\delta_{\theta_{r}}$-cyclic code C of even length n over R_{r}. Hence we need to find the parity check matrix of C.

Definition 3.2.1. Let C be a free $\delta_{\theta_{r}}$-cyclic code of length n over R_{r}. Then its dual is defined as

$$
C^{\perp}=\left\{x \in R_{r}^{n} \mid x \cdot y=0, \forall y \in C\right\}
$$

where $x \cdot y$ denotes the usual inner product of x and y.
Lemma 3.2.2. Let n be an even. $x^{n}-1$ is a central element of $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$. Also we have

$$
x^{n}-1=h(x) g(x)=g(x) h(x)
$$

for some $h(x), g(x) \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$.
Proof. By Theorem 2.12, it is clear that $x^{n}-1=h(x) g(x)$ is a central element. Since $h(x) g(x)$ is a central element, we get

$$
h(x)(h(x) g(x))=(h(x) g(x)) h(x)=h(x)(g(x) h(x))
$$

As $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ has non-trivial zero divisors, $h(x)$ is not a zero divisor. Hence the proof is completed.

We obtain the following lemma from Lemma 3.2.2.
Lemma 3.2.3. Let $C=\langle g(x)\rangle$ be a $\delta_{\theta_{r}}$-cyclic code of even length n over R_{r}, where $g(x)$ is a monic right divisor of $x^{n}-1$. Let $x^{n}-1=h(x) g(x)$. Then $c(x) \in R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$ is in C if and only if $c(x) h(x)=0$ in $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$.

Proof. If $c(x) \in C$, then there exists $a(x) \in R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$ such that $c(x)=a(x) g(x)$. By Lemma 3.2.2,

$$
c(x) h(x)=a(x) g(x) h(x)=a(x) h(x) g(x)=a(x)\left(x^{n}-1\right)=0
$$

in $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$. Conversely, if $c(x) h(x)=0$ in $R_{r}^{\left(n, \delta_{\theta_{r}}\right)}$, then by Lemma 3.2.2 there exists $b(x) \in$ $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ such that

$$
c(x) h(x)=b(x)\left(x^{n}-1\right)=b(x) h(x) g(x)=b(x) g(x) h(x) .
$$

Since $h(x)$ is not a zero divisor, we get $c(x)=b(x) g(x)$. So the proof is completed.
Lemma 3.2.4. If $\alpha \in R_{r}$ is a unit in R_{r}, then $\theta_{r}(\alpha)+\delta_{\theta_{r}}(\beta)$ is a unit for all $\beta \in R_{r}$.
Proof. Let $\gamma=\theta_{r}(\alpha)+\delta_{\theta_{r}}(\beta)$, where $\alpha, \beta \in R_{r}$ such that α is a unit. Let $\theta_{r}(\alpha)=a+u b$. Then $a+u b$ is a unit, and hence either a or b is unit but not both. We know $\delta_{\theta_{r}}(\beta)$ is either 0 or $2^{m-1}+2^{m-1} u$ for all $\beta \in R_{r}$. If $\delta_{\theta_{r}}(\beta)=0$, then we are done. Otherwise, we have

$$
\begin{aligned}
\gamma & =a+u b+2^{m-1}+2^{m-1} u \\
& =\left(a+2^{m-1}\right)+\left(b+2^{m-1}\right) u .
\end{aligned}
$$

Moreover, any $v \in \mathbb{Z}_{2^{m}}$ is a unit if and only if $v+2^{m-1}$ is a unit. Hence γ is a unit.
Let $C=\langle g(x)\rangle$ be a $\delta_{\theta_{r}}$-cyclic code of even length n over R_{r}. Then there exists $h(x)=$ $h_{0}+h_{1} x+h_{2} x^{2}+\cdots+h_{k-1} x^{k-1}+h_{k} x^{k} \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$ such that $x^{n}-1=h(x) g(x)$. Let $c(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-2} x^{n-2}+c_{n-1} x^{n-1}$. By Lemma 3.2.3, we have $c(x) h(x)=$ 0 in $R_{r}^{\left(n, \delta_{\theta r}\right)}$. Hence the coefficients of $x^{k}, x^{k+1}, \ldots, x^{n-1}$ in $c(x) h(x)$ are all zero. If k is odd, we have
$c_{i} h_{k}+c_{i+1}\left(\theta_{r}\left(h_{k-1}\right)+\delta_{\theta_{r}}\left(h_{k}\right)\right)+c_{i+2} h_{k-2}+\cdots+c_{i+k}\left(\theta_{r}\left(h_{0}\right)+\delta_{\theta_{r}}\left(h_{1}\right)\right)=0$
for an even i, and
$c_{i} \theta_{r}\left(h_{k}\right)+c_{i+1} h_{k-1}+c_{i+2}\left(\theta_{r}\left(h_{k-2}\right)+\delta_{\theta_{r}}\left(h_{k-1}\right)\right)+\cdots+c_{i+k} h_{0}+c_{i+k+1} \delta_{\theta_{r}}\left(h_{0}\right)=0$
for an odd i. If k is even, we have
$c_{i} h_{k}+c_{i+1}\left(\theta_{r}\left(h_{k-1}\right)+\delta_{\theta_{r}}\left(h_{k}\right)\right)+c_{i+2} h_{k-2}+\cdots+c_{i+k} h_{0}+c_{i+k+1} \delta_{\theta_{r}}\left(h_{0}\right)=0$
for an even i, and
$c_{i} \theta_{r}\left(h_{k}\right)+c_{i+1} h_{k-1}+c_{i+2}\left(\theta_{r}\left(h_{k-2}\right)+\delta_{\theta_{r}}\left(h_{k-1}\right)\right)+\cdots+c_{i+k}\left(\theta_{r}\left(h_{0}\right)+\delta_{\theta_{r}}\left(h_{1}\right)\right)=0$
for an odd i. By equations (13) and (14) (or (15) and (16)), $H c^{T}=0$, where H is dimension $(n-k) \times n$ matrix. Then we get $G H^{T}=0$, where G is a generator matrix of C. By Lemma 3.2.4, $\theta_{r}\left(h_{k}\right)$ is unit, as h_{k} is a unit. Since the diagonal elements of H are h_{k} or $\theta_{r}\left(h_{k}\right), H$ contains a square submatrix of dimension $(n-k) \times(n-k)$ with non-zero determinant. Then all rows of H are linearly independent. Hence $|\operatorname{Span}(H)|=\left|R_{r}\right|^{n-k}=\left|C^{\perp}\right|$. Therefore $\operatorname{Span}(H)=C^{\perp}$, and so the following corollary is obtained.

Corollary 3.2.5. Let $C=\langle g(x)\rangle$ be a $\delta_{\theta_{r}}$-cyclic code of even length n over R_{r} such that $x^{n}-$ $1=h(x) g(x)$ for some $h(x)=h_{0}+h_{1} x+h_{2} x^{2}+\cdots+h_{k-1} x^{k-1}+h_{k} x^{k} \in R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$. Then the $(n-k) \times n$ parity check matrix H of C is

$$
\left[\begin{array}{cccccccc}
h_{k} & \theta_{r}\left(h_{k-1}\right)+\delta_{\theta_{r}}\left(h_{k}\right) & h_{k-2} & \cdots & \theta_{r}\left(h_{0}\right)+\delta_{\theta_{r}}\left(h_{1}\right) & \cdots & 0 & 0 \\
0 & \theta_{r}\left(h_{k}\right) & h_{k-1} & \cdots & h_{0} & \delta_{\theta_{r}}\left(h_{0}\right) & \cdots & 0 \\
0 & 0 & h_{k} & h_{k-2} & \theta_{r}\left(h_{k-3}\right)+\delta_{\theta_{r}}\left(h_{k-2}\right) & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & h_{k} & \theta_{r}\left(h_{k-1}\right)+\delta_{\theta_{r}}\left(h_{k}\right) & \cdots & h_{1} & \theta_{r}\left(h_{0}\right)+\delta_{\theta}\left(h_{1}\right)
\end{array}\right]
$$

for an odd k, and

$$
\left[\begin{array}{cccccccc}
h_{k} & \theta_{r}\left(h_{k-1}\right)+\delta_{\theta_{r}}\left(h_{k}\right) & h_{k-2} & \ldots & h_{0} & \delta_{\theta_{r}}\left(h_{0}\right) & \ldots & 0 \\
0 & \theta_{r}\left(h_{k}\right) & h_{k-1} & \ldots & h_{1} & \theta_{r}\left(h_{0}\right)+\delta_{\theta_{r}}\left(h_{1}\right) & \ldots & 0 \\
0 & 0 & h_{k} & \ldots & h_{2} & \theta_{r}\left(h_{1}\right)+\delta_{\theta_{r}}\left(h_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \theta_{r}\left(h_{k}\right) & h_{k-1} & \ldots & h_{1} & \theta_{r}\left(h_{0}\right)+\delta_{\theta_{r}}\left(h_{1}\right)
\end{array}\right]
$$

for an even k.
Now, we give the parity check matrix of $\delta_{\theta_{r}}$-cyclic code C in Example 3.1.9.

Example 3.2.6. Let $r \in 2 \mathbb{Z}_{2^{m}}+1$. Let C be a $\delta_{\theta_{r}}$-cyclic code of length 6 over R_{r} generated by the right divisor $g(x)=\left(2^{m-1}+u\right) x^{3}+2^{m-1} x^{2}-u \quad$ of $\quad x^{6}-1=\left(r^{-1} u x^{3}+\right.$ $\left.2^{m-1} r^{-1} u x^{2}+r^{-1} u\right)\left(\left(2^{m-1}+u\right) x^{3}+2^{m-1} x^{2}-u\right) . \quad$ Let $\quad h(x)=r^{-1} u x^{3}+$ $2^{m-1} r^{-1} u x^{2}+r^{-1} u$. By Corollary 3.2.5, the parity check matrix H of C is

$$
\left[\begin{array}{cccccc}
r^{-1} u & 2^{m-1} & 0 & 2^{m-1} r^{-1}+r^{-1} u & 0 & 0 \\
0 & 2^{m-1} r^{-1}+r^{-1} u & 2^{m-1} r^{-1} u & 0 & 2^{m-1} r^{-1} & 2^{m-1}+2^{m-1} u \\
0 & 0 & r^{-1} u & 2^{m-1} & 0 & 2^{m-1} r^{-1}+r^{-1} u
\end{array}\right],
$$

and so $\operatorname{Span}(H)=C^{\perp}$.

4. Conclusion

Sharma and Bhaintwal (2018) have studied a class of δ_{θ}-cyclic codes over $\mathbb{Z}_{4}+u \mathbb{Z}_{4} ; u^{2}=1$ with derivation. We define a generalization of these codes as $\delta_{\theta_{r}}$-cyclic codes over $\mathbb{Z}_{2}{ }^{m}+$ $u \mathbb{Z}_{2^{m}} ; u^{2}=r$ for $r \in \mathbb{Z}_{2^{m}}$ with derivation. We establish existence of the right division algorithm in $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$. A $\delta_{\theta_{r}}$-cyclic code is proved to be a left $R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]$-submodule of $\frac{R_{r}\left[x, \theta_{r}, \delta_{\theta_{r}}\right]}{\left\langle x^{n}-1\right\rangle}$. The form of a generator matrix of $\delta_{\theta_{r}}$-cyclic code of length n over R_{r} is obtained. The properties of $\delta_{\theta_{r}}$-cyclic codes as well as dual of $\delta_{\theta_{r}}$-cyclic codes are investigated. The form of a parity-check matrix of a free $\delta_{\theta_{r}}$-cyclic code of even length n over R_{r} is given. Then we find the generator matrix of its dual.

Ethics in Publishing

There are no ethical issues regarding the publication of this study.

References

[1] Blake, I. F., (1972). "Codes over certain rings", Information and Control, 20(4), 396-404.
[2] Blake, I. F., (1975). "Codes over integer residue rings", Information and Control, 29(4), 295-300.
[3] Boucher, D., Geiselmann, W., Ulmer, F., (2007). "Skew cyclic codes", Appl. Algebra Engrg. Comm. Comput., 18, 379-389.
[4] Boucher, D., Solé, P., Ulmer, F., (2008). "Skew constacylic codes over Galois rings", Adv. Math. Commun., 2(3), 273-292.
[5] Boucher, D., Ulmer, F., (2011). "A note on the dual codes of module skew codes", In Proc. of the $13^{\text {th }}$ IMA International Conference on Cryptography and Coding, Oxford, UK, LNCS, 7089, 230-243.
[6] Boucher, D., Ulmer, F., (2009). "Codes as modules over skew polynomial rings", In Proc. of the $12^{\text {th }}$ IMA International Conference on Cryptography and Coding, Cirencester, UK, LNCS, 5921, 38-55.
[7] Boucher, D., Ulmer, F., (2009). "Coding with skew polynomial rings", J. of Symbolic Comput., 44(12), 1644-1656.
[8] Boucher, D., Ulmer, F., (2014). "Linear codes using skew polynomials with automorphisms and derivations", Des. Codes Cryptogr., 70, 405-431.
[9] Boulagouaz, M., Deajim, A., (2022). "Characterizations and properties of monic principal skew codes over rings", Security and Communication Networks.
[10] Boulagouaz, M., Deajim, A., (2021). "Matrix-product codes over commutative rings and
constructions arising from (σ, δ)-codes ", Journal of Mathematics.
[11] Çalı̧̧kan, B., (2022). "Türetim ile $\mathrm{Z}_{2}{ }^{s}+\mathrm{uZ}_{2}$ s halkası üzerinde aykırı devirli kodlar", Journal of Advanced Research in Natural and Applied Sciences, 8(1), 114-123.
[12] Hammons, A. R., Kumar, P. V., Calderbank, A. R., Sloane, N. J. A., Solé, P., (1994). "The Z_{4}-linearity of Kerdock, Preparata, Goethals, and related codes", IEEE Trans. Inf. Theory, 40(2), 301-319.
[13] Ore, O., (1933). "Theory of non-commutative polynomials", Ann. Math., 2nd Ser, 34(3), 480-508.
[14] Prange, E., (1957). "Cyclic error-correcting codes in two symbols", Air Force Cambridge Research Center, Cambridge, MA, Tech. Rep. AFCRC-TN, 57-103.
[15] Sharma, A., Bhaintwal, M., (2018). "A class of skew cyclic codes over $\mathrm{Z}_{4}+\mathrm{uZ}_{4}$ with derivation", Adv. Math. Commun., 12(4), 723-739.
[16] Spiegel, E., (1977). "Codes over $\mathrm{Z}_{\mathrm{m}} "$, Information and Control, 35(1), 48-51.
[17] Spiegel, E., (1978). "Codes over Z_{m} (revisited)", Information and Control, 37(1), 100104.

