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Abstract 

Let 𝑅𝑟 = ℤ2𝑚 + 𝑢ℤ2𝑚 be a finite ring, where 𝑢2 = 𝑟 for 𝑟 ∈ ℤ2𝑚 , 𝑚 is a positive integer, and 𝑚 ≥ 2. In this 

paper, we study a class of skew-cyclic codes using a skew polynomial ring over 𝑅𝑟 with an automorphism 𝜃𝑟 

and a derivation 𝛿𝜃𝑟
. We generalize the skew-cyclic codes over ℤ4 + 𝑢ℤ4; 𝑢2 = 1 to the skew-cyclic codes over 

𝑅𝑟, and call such codes as 𝛿𝜃𝑟
-cyclic codes. We investigate the structures of a skew polynomial ring 

𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]. A 𝛿𝜃𝑟

-cyclic code is showed to be a left 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]-submodule of  

𝑅𝑟[𝑥,𝜃𝑟,𝛿𝜃𝑟]

〈𝑥𝑛−1〉
. We give the 

generator matrix of a 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟. Also, we present the generator matrix of the dual of 

a free 𝛿𝜃𝑟
-cyclic code of even length 𝑛 over 𝑅𝑟. 
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Türetim ile 
ℤ𝟐𝒎[𝒖]

〈𝒖𝟐−𝒓〉
 Halkası Üzerindeki Aykırı Devirli Kodların Bir Sınıfı 

Öz 

𝑚 pozitif bir tamsayı, 𝑚 ≥ 2 ve 𝑟 ∈ ℤ2𝑚 için 𝑢2 = 𝑟 olmak üzere 𝑅𝑟 = ℤ2𝑚 + 𝑢ℤ2𝑚 sonlu halkası verilsin. Bu 

çalışmada, 𝜃𝑟 bir otomorfizm ve  𝛿𝜃𝑟
 bir türetim olmak üzere 𝑅𝑟 üzerindeki bir aykırı polinom halkası 

kullanılarak aykırı devirli kodların bir sınıfı çalışılmıştır. 𝑢2 = 1 olmak üzere ℤ4 + 𝑢ℤ4 üzerindeki aykırı devirli 

kodlar, 𝑅𝑟 üzerindeki aykırı devirli kodlara genelleştirilmiştir ve bu kodlar 𝛿𝜃𝑟
-devirli kodlar olarak 

adlandırılmştır. 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] aykırı polinom halkasının yapıları incelenmiştir. 𝛿𝜃𝑟

-devirli kodun 
𝑅𝑟[𝑥,𝜃𝑟,𝛿𝜃𝑟]

〈𝑥𝑛−1〉
 

halkasının bir sol 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]-alt modülü olduğu gösterilmiştir. 𝑅𝑟 üzerinde 𝑛 uzunluğundaki 𝛿𝜃𝑟

-devirli 

kodun üreteç matrisi verilmiştir. Ayrıca, 𝑅𝑟 üzerinde 𝑛 çift uzunluğundaki bir serbest 𝛿𝜃𝑟
-devirli kodun dualinin 

üreteç matrisi verilmiştir. 

 

Anahtar Kelimeler: Devirli kodlar, aykırı polinom halkaları, aykırı devirli kod. 
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1. Introduction 

Fractional analysis is a branch of mathematics that studies derivatives and integrals of real or 

complex order. Differential equations involving non-integer derivatives are used to model 

various physical phenomena. Therefore, in addition to its applications in mathematics, it is also 

used in the application of many branches of science such as physics, engineering, biology and 

finance (see [1]- [5]). Some of the most comprehensive studies for fractional derivatives and 

integrals (see [6]- [7]). 

Cyclic codes are a significant family of linear codes because of their rich algebraic structure 

and high efficiency. Many crucial codes, including such binary Hamming codes, Golay codes 

and BCH codes, are equivalent to cyclic codes. These codes were first studied by Prange (1957), 

and have been studied extensively since then. (Blake 1972, 1975)  and (Spiegel 1977, 1978), 

have initiated the work of cyclic codes over ring. After a landmark work of Hammons et al. 

(1994), codes over rings have become popular among researchers. They have demonstrated that 

some good non-linear codes over ℤ2 can be seen as the Gray images of linear codes over ℤ4. 

However, in most of these studies, the use of cyclic codes is constrained to commutative rings. 

Boucher et al. (2007), generalized the notion of cyclic codes by defining non-commutative skew 

polynomial rings of automorphism type. This codes are known as skew cyclic codes. Also, 

(Boucher et al. 2008), (Boucher, Ulmer 2009) and (Boucher, Ulmer 2011), generalized works 

in skew cyclic codes. Boulagouaz and Deajim (2021), constructed novel matrix-product codes 

arising from (𝜎, 𝛿)-codes. Boulagouaz and Deajim (2022), gave a characterization of monic 

principal 𝜎-codes whose dual codes are also monic principal 𝜎-codes. Boucher and Ulmer 

(2014), used skew polynomial rings with automorphism and derivation to study linear codes. 

Sharma and Bhaintwal (2014), have studied a family of skew-cyclic codes over ℤ4 + 𝑢ℤ4 with 

an automorphism 𝜃 and a derivation 𝛿𝜃, where 𝑢2 = 1. By Çalışkan (2022), these codes are 

generalized for the ℤ2𝑠 + 𝑢ℤ2𝑠, where 𝑢2 = 1. Motivated by Sharma and Bhaintwal (2014), we 

consider a family of skew-cyclic codes over 𝑅𝑟 = ℤ2𝑚 + 𝑢ℤ2𝑚 with  an automorphism  𝜃𝑟 of  

𝑅𝑟 and a derivation of 𝛿𝜃𝑟
  𝑅𝑟, where 𝑢2 = 𝑟 for 𝑟 ∈ ℤ2𝑚 . 

The paper is structured as follows. In Section 2, we present some fundamental definitions and 

results that are required for this paper. Moreover, we discuss the structural properties of skew 

polynomial ring 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] for 𝑟 ∈ ℤ2𝑚 . In Section 3.1, we introduce the 𝛿𝜃𝑟

-cyclic codes 

over 𝑅𝑟, and investigate their properties. These codes are a generalization of the 𝛿𝜃-cyclic codes 

over ℤ4 + 𝑢ℤ4 in Sharma and Bhaintwal (2014). In Section 3.2, we determine the structure of 

the dual of a free 𝛿𝜃𝑟
-cyclic codes of even length 𝑛 over 𝑅𝑟. In Section 4, the paper concludes. 

2. Preliminaries 

Let 𝑚 ≥ 2 be an integer. Throughout the paper, 𝑅𝑟 denotes the ring ℤ2𝑚 + 𝑢ℤ2𝑚 =

{𝑎 + 𝑢𝑏 | 𝑎, 𝑏 ∈  ℤ2𝑚} with 𝑢2 = 𝑟 for 𝑟 ∈ ℤ2𝑚 . Clearly, 𝑅𝑟 ≅
ℤ2𝑚[𝑢]

〈𝑢2−𝑟〉
. 𝑅𝑟 has characteristic 2𝑚 

and cardinality 22𝑚. We define a map  𝜃𝑟: 𝑅𝑟 → 𝑅𝑟 for 𝑟 ∈ ℤ2𝑚  such that 

 𝜃𝑟(𝑎 + 𝑢𝑏) = 𝑎 + (𝑢 + 2𝑚−1)𝑏. 
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It can be easily shown that  𝜃𝑟 is an automorphism of 𝑅𝑟. Also, since 

 𝜃𝑟
2(𝛼) = 𝛼                                                                                                                              (1) 

for all 𝛼 ∈ 𝑅𝑟, the order of  𝜃𝑟 is 2. 

Definition 2.1. Let 𝑹 be a finite ring and Θ be an automorphism of 𝑹. Then a map ΔΘ: 𝑹 → 𝑹 

is said to be a derivation on 𝑹 if 

ΔΘ(𝑎 + 𝑏) = ΔΘ(𝑎) + ΔΘ(𝑏), 

ΔΘ(𝑎𝑏) = ΔΘ(𝑎)𝑏 + Θ(𝑎)ΔΘ(𝑏). 

We define a map 𝛿𝜃𝑟
: 𝑅𝑟 → 𝑅𝑟 for 𝑟 ∈ ℤ2𝑚  such that 

𝛿𝜃𝑟
(𝑎 + 𝑢𝑏) = (1 + 𝑢)(𝜃𝑟(𝑎 + 𝑢𝑏) − (𝑎 + 𝑢𝑏)). 

That is,  

𝛿𝜃𝑟
(𝑎 + 𝑢𝑏) = (1 + 𝑢)(𝑎 + (𝑢 + 2𝑚−1)𝑏 − 𝑎 − 𝑢𝑏) 

                        = 2𝑚−1𝑏 + 2𝑚−1𝑏𝑢 

                     = {
0,                  𝑏 ∈ 2ℤ2𝑚 (b is a non unit of ℤ2𝑚)

2𝑚−1 + 2𝑚−1𝑢, 𝑏 ∈ 2ℤ2𝑚 + 1 (b is a unit of ℤ2𝑚).
 

Corollary 2.2. Let 2 ≤ 𝑛 ∈ ℤ. We have 𝛿𝜃𝑟

𝑛(𝛼) = 0 for all 𝛼 ∈ 𝑅𝑟. 

Theorem 2.3. The map 𝛿𝜃𝑟
 is a derivation on 𝑅𝑟. 

Proof. Let 𝛼, 𝛽 ∈ 𝑅𝑟. Since  𝜃𝑟 is an automorphism of 𝑅𝑟, we get 

𝛿𝜃𝑟
(𝛼 + 𝛽) = (1 + 𝑢)(𝜃𝑟(𝛼 + 𝛽) − (𝛼 + 𝛽)) 

                   = (1 + 𝑢)(𝜃𝑟(𝛼) − 𝛼)+(1 + 𝑢)(𝜃𝑟(𝛽) − 𝛽) 

                   = 𝛿𝜃𝑟
(𝛼) + 𝛿𝜃𝑟

(𝛽), 

and 

𝛿𝜃𝑟
(𝛼𝛽) = (1 + 𝑢)(𝜃𝑟(𝛼𝛽) − 𝛼𝛽) 

              = (1 + 𝑢) 𝜃𝑟(𝛼) 𝜃𝑟(𝛽)-(1 + 𝑢)𝛼𝛽 

              = (1 + 𝑢) 𝜃𝑟(𝛼) 𝜃𝑟(𝛽)-(1 + 𝑢)𝛼𝛽-(1 + 𝑢) 𝜃𝑟(𝛼)𝛽+(1 + 𝑢) 𝜃𝑟(𝛼)𝛽 

              = (1 + 𝑢) 𝜃𝑟(𝛼)(𝜃𝑟(𝛽) − 𝛽)+(1 + 𝑢)𝛽(𝜃𝑟(𝛼) − 𝛼) 
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              = 𝛿𝜃𝑟
(𝛽) 𝜃𝑟(𝛼) + 𝛿𝜃𝑟

(𝛼)𝛽. 

Thus by Definition 2.1, 𝛿𝜃𝑟
 is a derivation on 𝑅𝑟.                                                                         ◻ 

The skew polynomial ring was defined by Ore (1933) as follows: 

Definition 2.4. Let 𝑹 be a ring with automorphism Θ and derivation ΔΘ. Then the skew 

polynomial ring 𝑹[𝑥, Θ, ΔΘ] is the set of all polynomials over 𝑹 with the addition as the usual 

addition of polynomials and the multiplication is defined using the commutation rule 

𝑥𝛼 = Θ(𝛼)𝑥 + ΔΘ(𝛼) 

for any 𝛼 ∈ 𝑹 and extended by distributivity and associativity. 

 

By Definition 2.4, since 𝑅𝑟   is a ring with automorphism 𝜃𝑟 and derivation 𝛿𝜃𝑟
, we have 

 𝑥𝛼 = 𝜃𝑟(𝛼)𝑥 + 𝛿𝜃𝑟
(𝛼)                                           (2) 

for any 𝛼 ∈ 𝑅𝑟. 

 

Lemma 2.5. For any element 𝛼 ∈ 𝑅𝑟, 𝛿𝜃𝑟
(𝜃𝑟(𝛼)) + 𝜃𝑟 (𝛿𝜃𝑟

(𝛼)) = 0. 

 

Proof. Let 𝛼 = 𝑎 + 𝑢𝑏 ∈ 𝑅𝑟. So 

𝛿𝜃𝑟
(𝜃𝑟(𝛼)) = 𝛿𝜃𝑟

(𝑎 + (𝑢 + 2𝑚−1)𝑏) 

                    = 2𝑚−1𝑏 + 2𝑚−1𝑏𝑢, 

and 

 𝜃𝑟 (𝛿𝜃𝑟
(𝛼)) =  𝜃𝑟(2

𝑚−1𝑏 + 2𝑚−1𝑏𝑢) 

                     = 2𝑚−1𝑏 + (𝑢 + 2𝑚−1)2𝑚−1𝑏 

                     = 2𝑚−1𝑏 + 2𝑚−1𝑏𝑢, 

which proves.                                                                                                           ◻ 

Lemma 2.6. For all 𝛼 ∈ 𝑅𝑟 , 𝑥2𝛼 = 𝛼𝑥2. 

Proof. By (1), (2), Corollary 2.2 and Lemma 2.5, we get 

𝑥2𝛼 = 𝑥 (𝜃𝑟(𝛼)𝑥 + 𝛿𝜃𝑟
(𝛼)) 

       = (𝑥 𝜃𝑟(𝛼))𝑥 + 𝑥𝛿𝜃𝑟
(𝛼) 

        = (𝜃𝑟
2(𝛼)𝑥 + 𝛿𝜃𝑟

( 𝜃𝑟(𝛼)))𝑥 + (𝜃𝑟 (𝛿𝜃𝑟
(𝛼)) 𝑥 + 𝛿 𝜃𝑟

2 (𝛼)) 



A Class of Skew-Cyclic Codes over 
ℤ𝟐𝒎[𝒖]

〈𝒖𝟐−𝒓〉
  with Derivation 

331 

 

       = 𝛼𝑥2 + (𝛿𝜃𝑟
( 𝜃𝑟(𝛼)) +  𝜃𝑟 (𝛿𝜃𝑟

(𝛼))) 𝑥 

       = 𝛼𝑥2.                                                                                                      ◻ 

By (2) and Lemma 2.6, we get the following corollary. 

Corollary 2.7. For any element 𝛼 ∈ 𝑅𝑟, 

𝑥𝑛𝛼 = {
(𝜃𝑟(𝛼)𝑥 + 𝛿𝜃𝑟

(𝛼)) 𝑥𝑛−1, if 𝑛 is odd

𝛼𝑥𝑛,                                      if 𝑛 is even.
 

Example 2.8. Let 𝑓(𝑥) = 𝑥3 + 𝛼1𝑥, 𝑔(𝑥) = 𝑥2 + 𝛽1𝑥 + 𝛽0 ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] for 𝑟 ∈ ℤ2𝑚 . 

Then 

𝑓(𝑥) +  𝑔(𝑥) = 𝑥3 + 𝑥2 + (𝛼1 + 𝛽1)𝑥 + 𝛽0 

                         = 𝑔(𝑥) + 𝑓(𝑥). 

By Corollary 2.7, 

𝑓(𝑥) 𝑔(𝑥) = (𝑥3 + 𝛼1𝑥)(𝑥2 + 𝛽1𝑥 + 𝛽0)    

                  = 𝑥3(𝑥2 + 𝛽1𝑥 + 𝛽0) + 𝛼1𝑥(𝑥2 + 𝛽1𝑥 + 𝛽0) 

                  = 𝑥5 + (𝜃𝑟(𝛽1)𝑥 + 𝛿𝜃𝑟
(𝛽1)) 𝑥2𝑥 + (𝜃𝑟(𝛽0)𝑥 + 𝛿𝜃𝑟

(𝛽0)) 𝑥3+𝛼1𝑥
3 

                     +𝛼1 (𝜃𝑟(𝛽1)𝑥 + 𝛿𝜃𝑟
(𝛽1)) 𝑥 + 𝛼1 (𝜃𝑟(𝛽0)𝑥 + 𝛿𝜃𝑟

(𝛽0)) 

                 = 𝑥5 + (𝜃𝑟(𝛽1) +  𝜃𝑟(𝛽0))𝑥
4 + (𝛿𝜃𝑟

(𝛽1) + 𝛿𝜃𝑟
(𝛽0) + 𝛼1)𝑥

3 + 𝛼1 𝜃𝑟(𝛽1)𝑥
2 

                    +(𝛼1𝛿𝜃𝑟
(𝛽1) + 𝛼1 𝜃𝑟(𝛽0)) 𝑥 + 𝛼1𝛿𝜃𝑟

(𝛽0), 

and 

𝑔(𝑥)𝑓(𝑥)  = (𝑥2 + 𝛽1𝑥 + 𝛽0)(𝑥
3 + 𝛼1𝑥) 

                  = 𝑥2(𝑥3 + 𝛼1𝑥) + 𝛽1𝑥(𝑥3 + 𝛼1𝑥) + 𝛽0(𝑥
3 + 𝛼1𝑥) 

                  = 𝑥5 + 𝛼1𝑥
2𝑥 + 𝛽1𝑥

4 + 𝛽1 (𝜃𝑟(𝛼1)𝑥 + 𝛿𝜃𝑟
(𝛼1)) 𝑥 + 𝛽0𝑥

3 + 𝛽0𝛼1𝑥  

                  = 𝑥5+𝛽1𝑥
4 + (𝛼1 + 𝛽0)𝑥

3+𝛽1 𝜃𝑟(𝛼1)𝑥
2 + (𝛽1𝛿𝜃𝑟

(𝛼1) + 𝛽0𝛼1)𝑥. 

Since 𝑓(𝑥) 𝑔(𝑥) ≠ 𝑔(𝑥)𝑓(𝑥), 𝑅𝑟[𝑥,  𝜃𝑟 , 𝛿𝜃𝑟
] is a non-commutative ring.                                                                   
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Let 𝑅𝑟
 𝜃𝑟 = {𝑎 + 𝑢𝑏 | 𝑎 ∈ ℤ2𝑚 , 𝑏 ∈ 2ℤ2𝑚} for 𝑟 ∈ ℤ2𝑚 . 𝑅𝑟

 𝜃𝑟 is subring of 𝑅𝑟. Also 𝛼 is fixed by  

 𝜃𝑟, that is 𝜃𝑟(𝛼) = 𝛼, and 𝛿𝜃𝑟
(𝛼) = 0 for all 𝛼 ∈ 𝑅𝑟. Hence we have 𝑥𝛼 = 𝛼𝑥 for all 𝛼 ∈ 𝑅𝑟. 

Definition 2.9. An element 𝑓(𝑥) ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] is said to be a central element of 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟

] 

if 𝑓(𝑥)𝑐(𝑥) = 𝑐(𝑥)𝑓(𝑥) for all 𝑐(𝑥) ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]. 

Lemma 2.10. Let 𝛼 ∈ 𝑅𝑟 for 𝑟 ∈ ℤ2𝑚 . Then  𝜃𝑟(𝛼) − 𝛼 ≠ 𝛿𝜃𝑟
(𝛽) for any 𝛽 ∈ 𝑅𝑟 unless 𝛼, 𝛽 

both are fixed by  𝜃𝑟 . 

Proof. Let  𝜃𝑟(𝛼) − 𝛼 = 𝛿𝜃𝑟
(𝛽) for some arbitrary fixed values of 𝛼 and 𝛽. The only possible 

values of 𝛿𝜃𝑟
(𝛽) are 0 and 2𝑚−1 + 2𝑚−1𝑢. Suppose 𝛿𝜃𝑟

(𝛽) = 0. Clearly,  𝜃𝑟(𝛼) = 𝛼. Then 𝛼 

and 𝛽 both are fixed by  𝜃𝑟. Suppose 𝛿𝜃𝑟
(𝛽) = 2𝑚−1 + 2𝑚−1𝑢. Let 𝛽 = 𝛽0 + 𝛽1𝑢 such that 

𝛽0, 𝛽1 ∈ ℤ2𝑚 . Since 𝛽1 ∈ 2ℤ2𝑚 , 𝜃𝑟(𝛽) = 𝛽. Let 𝛼 = 𝛼0 + 𝛼1𝑢 such that 𝛼0, 𝛼1 ∈ ℤ2𝑚 . Then 

 𝜃𝑟(𝛼) − 𝛼 = 2𝑚−1𝛼1, which contradicts  𝜃𝑟(𝛼) − 𝛼 contains 𝑢. Therefore, the proof is 

completed.                                                                                                                                          ◻ 

 

We define 

𝑆𝑟 = {𝑎 + 𝑢𝑏 | 𝑎, 𝑏 ∈ 2ℤ2𝑚} 

for 𝑟 ∈ ℤ2𝑚 . 

 

Lemma 2.11. For all 𝛼 ∈ 𝑆𝑟 and 𝛽 ∈ 𝑅𝑟, 𝛼𝜃𝑟(𝛽) = 𝛼𝛽 and 𝛼𝛿𝜃𝑟
(𝛽) = 0. 

 

Proof. Let 𝛼 = 2𝛼0 + 2𝛼1𝑢 and 𝛽 = 𝛽0 + 𝛽1𝑢 such that 𝛼0, 𝛼1, 𝛽0, 𝛽1 ∈ ℤ2𝑚 . Then we have 

𝛼𝜃𝑟(𝛽) = (2𝛼0 + 2𝛼1𝑢)𝜃𝑟(𝛽0 + 𝛽1𝑢 ) 

             = (2𝛼0 + 2𝛼1𝑢)(𝛽0 + 𝑢𝛽1 + 2𝑚−1𝛽1) 

               = (2𝛼0 + 2𝛼1𝑢)(𝛽0 + 𝑢𝛽1) +(2𝑚𝛼0𝛽1 + 2𝑚𝛼1𝛽1𝑢)  

             = 𝛼𝛽, 

and if 𝛽1 ∈ 2ℤ2𝑚  , it is clear that 𝛼𝛿𝜃𝑟
(𝛽) = 0, if 𝛽1 ∈ 2ℤ2𝑚 + 1, then 

𝛼𝛿𝜃𝑟
(𝛽) = (2𝛼0 + 2𝛼1𝑢)(2𝑚−1 + 2𝑚−1𝑢) 

               = 2(𝛼0 + 𝛼1𝑢)2𝑚−1(1 + 𝑢) 

               = 2𝑚(𝛼0 + 𝛼1𝑢)(1 + 𝑢) 

               = 0.                                                                                                                                ◻ 

 

Theorem 2.12. A polynomial 𝑓(𝑥) ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] is a central element if and only if  𝑓(𝑥) ∈

𝑅𝑟
 𝜃𝑟[𝑥] such that the coefficients of all odd powers of 𝑥 belong to the set 𝑆𝑟 =

{𝑎 + 𝑢𝑏 | 𝑎, 𝑏 ∈ 2ℤ2𝑚}. 

 

Proof. (⇒): Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + ⋯+ 𝛼𝑘𝑥

𝑘 ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] be a polynomial of 

odd degree. Suppose 𝑓(𝑥) is a central element. Then 

0 = 𝑥𝑓(𝑥) − 𝑓(𝑥)𝑥 

   = 𝑥𝛼0 + 𝑥𝛼1𝑥 + 𝑥𝛼2𝑥
2 + ⋯+ 𝑥𝛼𝑘𝑥

𝑘 − (𝛼0𝑥 + 𝛼1𝑥
2 + 𝛼2𝑥

3 + ⋯+ 𝛼𝑘𝑥
𝑘+1) 
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   = (𝜃𝑟(𝛼0)𝑥 + 𝛿𝜃𝑟
(𝛼0)) + (𝜃𝑟(𝛼1)𝑥 + 𝛿𝜃𝑟

(𝛼1)) 𝑥 + (𝜃𝑟(𝛼2)𝑥 + 𝛿𝜃𝑟
(𝛼2)) 𝑥2 + ⋯    

        + (𝜃𝑟(𝛼𝑘)𝑥 + 𝛿𝜃𝑟
(𝛼𝑘)) 𝑥𝑘 − ∑𝛼𝑖𝑥

𝑖+1

𝑘

𝑖=0

 

   = 𝛿𝜃𝑟
(𝛼0) + ∑ (𝜃𝑟(𝛼𝑖) + 𝛿𝜃𝑟

(𝛼𝑖+1))

𝑘−1

𝑖=0

𝑥𝑖+1+𝜃𝑟(𝛼𝑘)𝑥
𝑘+1 − ∑𝛼𝑖𝑥

𝑖+1.

𝑘

𝑖=0

 

If we equate coefficients of all terms to zero then we get 

𝛿𝜃𝑟
(𝛼0) = 0                                               (3) 

𝜃𝑟(𝛼𝑖) − 𝛼𝑖 + 𝛿𝜃𝑟
(𝛼𝑖+1) = 0;  𝑖 = 0,1, … , 𝑘 − 1             (4) 

𝜃𝑟(𝛼𝑘) − 𝛼𝑘 = 0.                                 (5) 

We have 𝜃𝑟(𝛼𝑖) = 𝛼𝑖  for 𝑖 = 0,1, … , 𝑘 by equations (3), (4), (5), and Lemma 2.10. Let 𝛼𝑖 =

𝛼0
(𝑖) + 𝛼1

(𝑖)𝑢 for 𝑖 = 0,1, … , 𝑘. As 𝜃𝑟(𝛼𝑖) = 𝛼𝑖, we get 𝛼1
(𝑖) ∈ 2ℤ2𝑚 . Then 𝑓(𝑥) ∈ 𝑅𝑟

 𝜃𝑟[𝑥].  

As 𝑓(𝑥) is a central element, we have 𝑓(𝑥)𝛽 = 𝛽𝑓(𝑥) for all 𝛽 ∈ 𝑅𝑟. We choose 𝛽 = 𝛽0 +

𝛽1𝑢 ∈ 𝑅𝑟 such that  𝜃𝑟(𝛽) ≠ 𝛽. Then 𝛽1 ∈ 2ℤ2𝑚 + 1. By Corollary 2.7, we have 

0 = 𝛽𝑓(𝑥) − 𝑓(𝑥)𝛽 

   = ∑𝛽𝛼𝑖𝑥
𝑖 − ∑ 𝛼2𝑖𝑥

2𝑖𝛽 −

𝑘−1
2

𝑖=0

𝑘

𝑖=0

∑ 𝛼2𝑖+1𝑥
2𝑖+1𝛽

𝑘−1
2

𝑖=0

 

   = ∑ 𝛽𝛼2𝑖𝑥
2𝑖 + ∑ 𝛽𝛼2𝑖+1𝑥

2𝑖+1 −

𝑘−1
2

𝑖=0

𝑘−1
2

𝑖=0

∑ 𝛼2𝑖𝛽𝑥2𝑖 −

𝑘−1
2

𝑖=0

∑ 𝛼2𝑖+1 (𝜃𝑟(𝛽)𝑥 + 𝛿𝜃𝑟
(𝛽))

𝑘−1
2

𝑖=0

𝑥2𝑖 

   = ∑ (𝛽𝛼2𝑖 − 𝛼2𝑖𝛽 − 𝛼2𝑖+1𝛿𝜃𝑟
(𝛽))𝑥2𝑖

𝑘−1
2

𝑖=0

+ ∑(𝛽𝛼2𝑖+1 − 𝛼2𝑖+1𝜃𝑟(𝛽))𝑥2𝑖+1

𝑘−1
2

𝑖=0

 

   = − ∑ 𝛼2𝑖+1𝛿𝜃𝑟
(𝛽)𝑥2𝑖

𝑘−1
2

𝑖=0

+ ∑ 𝛼2𝑖+1(𝛽 − 𝜃𝑟(𝛽))𝑥2𝑖+1.

𝑘−1
2

𝑖=0

 

This implies that 𝛼2𝑖+1𝛿𝜃𝑟
(𝛽) = 0 and 𝛼2𝑖+1(𝛽 − 𝜃𝑟(𝛽)) = 0 for all 𝑖 = 0,1,2, … ,

𝑘−1

2
. 
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We denote 𝛼2𝑖+1 = 𝛼0
(2𝑖+1)

+ 2𝛾(2𝑖+1)𝑢 for 𝑖 = 0,1,2, … ,
𝑘−1

2
. As 𝛽1 ∈ 2ℤ2𝑚 + 1, 𝛿𝜃𝑟

(𝛽) =

2𝑚−1 + 2𝑚−1𝑢. Since 

0 = (𝛼0
(2𝑖+1)

+ 2𝛾(2𝑖+1)𝑢 )(2𝑚−1 + 2𝑚−1𝑢) 

   = 2𝑚−1𝛼0
(2𝑖+1)

+ 2𝑚𝑟𝛾(2𝑖+1) + (2𝑚−1𝛼0
(2𝑖+1)

+ 2𝑚𝛾(2𝑖+1))𝑢    

   = 2𝑚−1𝛼0
(2𝑖+1)

+ 2𝑚−1𝛼0
(2𝑖+1)

𝑢, 

 so 𝛼0
(2𝑖+1)

∈ 2ℤ2𝑚 . Moreover since 

0 = 𝛼2𝑖+1(𝛽0 + 𝛽1𝑢 − 𝜃𝑟(𝛽0 + 𝛽1𝑢)) 

   = (𝛼0
(2𝑖+1)

+ 2𝛾(2𝑖+1)𝑢)(−2𝑚−1𝛽1)  

   = −2𝑚−1𝛽1𝛼0
(2𝑖+1)

, 

and 𝛽1 ∈ 2ℤ2𝑚 + 1, then 𝛼0
(2𝑖+1)

∈ 2ℤ2𝑚 . Hence we have 𝛼2𝑖+1 ∈ 𝑆𝑟 for all 𝑖 = 0,1,2, … ,
𝑘−1

2
. 

It can be proved similarly for polynomials of even degree.                                                               

(⇐): Suppose 𝑓(𝑥) satisfies the given conditions. Then to show 𝑓(𝑥)𝑐(𝑥) = 𝑐(𝑥)𝑓(𝑥) for all 

𝑐(𝑥) ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
], it is sufficient to show that (𝑐𝑖𝑥

𝑖)(𝛼𝑗𝑥
𝑗) = (𝛼𝑗𝑥

𝑗)(𝑐𝑖𝑥
𝑖) for 0 ≤ 𝑖 ≤

deg(𝑐) and 0 ≤ 𝑗 ≤ deg(𝑓). Since 𝑓(𝑥) ∈ 𝑅𝑟
 𝜃𝑟[𝑥], we have 𝜃𝑟(𝛼𝑖) = 𝛼𝑖 and 𝛿𝜃𝑟

(𝛼𝑖) = 0 for 

𝑖 = 0,1, … , 𝑘. We obtain the following by Corollary 2.7.  If 𝑖 is even, we have 

(𝑐𝑖𝑥
𝑖)(𝛼𝑗𝑥

𝑗) = 𝑐𝑖(𝛼𝑗𝑥
𝑖)𝑥𝑗 = 𝑐𝑖𝛼𝑗  𝑥

𝑖+𝑗.                                                     (6) 

If 𝑖 is odd, we have  

(𝑐𝑖𝑥
𝑖)(𝛼𝑗𝑥

𝑗) = 𝑐𝑖(𝑥
𝑖𝛼𝑗)𝑥

𝑗  

                      = 𝑐𝑖 (𝜃𝑟(𝛼𝑗)𝑥 + 𝛿𝜃𝑟
(𝛼𝑗)) 𝑥𝑖−1𝑥𝑗 

                      = 𝑐𝑖𝛼𝑗  𝑥
𝑖+𝑗.                                          (7) 

Also, if 𝑗 is even, we have  

(𝛼𝑗𝑥
𝑗)(𝑐𝑖𝑥

𝑖) = 𝛼𝑗(𝑐𝑖𝑥
𝑗)𝑥𝑖 = 𝑐𝑖𝛼𝑗  𝑥

𝑖+𝑗.                   (8) 

If 𝑗 is odd, 𝛼𝑗 ∈ 𝑆𝑟 and then we have  

(𝛼𝑗𝑥
𝑗)(𝑐𝑖𝑥

𝑖) = 𝛼𝑗(𝑥
𝑗𝑐𝑖)𝑥

𝑖 
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                      = 𝛼𝑗 (𝜃𝑟(𝑐𝑖)𝑥 + 𝛿𝜃𝑟
(𝑐𝑖)) 𝑥𝑗−1𝑥𝑖 

                      = (𝛼𝑗𝜃𝑟(𝑐𝑖)𝑥 + 𝛼𝑗𝛿𝜃𝑟
(𝑐𝑖)) 𝑥𝑖+𝑗−1   

                      = 𝑐𝑖𝛼𝑗  𝑥
𝑖+𝑗                                           (9) 

by Lemma 2.11. Therefore, we obtain the required result by (6), (7), (8) and (9).                   ◻ 

The ring 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] is not a left or right Euclidean ring, so the division algorithm does not 

hold in it. But we can still apply division algorithm on some particular elements of 

𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]. We give this case in the following theorem. 

Theorem 2.13. (Right division algorithm) Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] such that 𝑔(𝑥) has 

leading coefficient a unit of 𝑅𝑟. Then  

𝑓(𝑥) =  𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥) 

for some 𝑞(𝑥), 𝑟(𝑥) ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
], where 𝑟(𝑥) = 0 or deg(𝑟) < deg(𝑔). 

Proof. Let 

𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + ⋯+ 𝛼𝑠𝑥

𝑠 

𝑔(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + ⋯+ 𝛽𝑡𝑥

𝑡, 

where  𝛽𝑡 is a unit of 𝑅𝑟. If 𝑠 < 𝑡, then 𝑓(𝑥) = 0 ⋅ 𝑔(𝑥) + 𝑓(𝑥) gives the required result. 

Suppose 𝑠 ≥ 𝑡. We define 

ℎ(𝑥) = 𝑓(𝑥) − 𝐴𝑟(𝑥)𝑔(𝑥), 

where 

𝐴𝑟(𝑥) = {
𝛼𝑠𝜃𝑟(𝛽𝑡

−1)𝑥𝑠−𝑡,   if 𝑠 − 𝑡 is odd

𝛼𝑠𝛽𝑡
−1𝑥𝑠−𝑡,          if 𝑠 − 𝑡 is even

.             (10) 

By Corollary 2.7, if 𝑠 − 𝑡 is odd, the most degree term of ℎ(𝑥) is  

𝛼𝑠𝑥
𝑠 − 𝛼𝑠𝜃𝑟(𝛽𝑡

−1)𝜃𝑟(𝛽𝑡)𝑥𝑥𝑠−𝑡−1𝑥𝑡 = 𝛼𝑠𝑥
𝑠 − 𝛼𝑠𝜃𝑟(𝛽𝑡

−1)𝜃𝑟(𝛽𝑡)𝑥
𝑠 

                                                           = 0 ⋅ 𝑥𝑠, 

and if 𝑠 − 𝑡 is even, the most degree term of ℎ(𝑥) is  

𝛼𝑠𝑥
𝑠 − 𝛼𝑠𝛽𝑡

−1𝑥𝑠−𝑡𝛽𝑡𝑥
𝑡 = 𝛼𝑠𝑥

𝑠 − 𝛼𝑠𝛽𝑡
−1𝛽𝑡𝑥

𝑠−𝑡𝑥𝑡 

                                       = 0 ⋅ 𝑥𝑠. 
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Then, ℎ(𝑥) is a polynomial of degree deg(𝑓) − 1. We prove the result by induction on deg(𝑓). 

Assume that the result is true for every polynomial having degree less than deg(𝑓). Clearly, the 

result is true for deg(𝑓) = 0. Let deg(𝑓) > 0. As deg(ℎ) < deg(𝑓), there exist 𝑞′(𝑥), 𝑟(𝑥) 

such that ℎ(𝑥) = 𝑞′(𝑥)𝑔(𝑥) + 𝑟(𝑥), where 𝑟(𝑥) = 0  or deg(𝑟) < deg(𝑔). So by (10), we 

obtain 

𝑓(𝑥) =  𝑞′(𝑥)𝑔(𝑥) + 𝑟(𝑥) + 𝐴𝑟(𝑥)𝑔(𝑥) 

         = (𝑞′(𝑥) + 𝐴𝑟(𝑥))𝑔(𝑥) + 𝑟(𝑥)a 

         =  𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥), 

where  𝑞(𝑥) = 𝑞′(𝑥) + 𝐴𝑟(𝑥). Therefore, the proof is completed.                                            ◻ 

Similarly, the left division algorithm can be proved. Throughout the  paper, division means the 

right division. 

Example 2.14. Let 𝑚 = 5, 𝑟 = 12 ∈ ℤ25 and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] such that 

𝑓(𝑥) = (3 + 20𝑢)𝑥3 + (14 + 2𝑢)𝑥2 + 4𝑢 

𝑔(𝑥) = (7 + 18𝑢)𝑥2 + 11𝑢. 

Here 𝑠 = 3, 𝑡 = 2, 𝛼3 = 3 + 20𝑢, 𝑢2 = 12, 𝛽2 = 7 + 18𝑢, 𝛽2
−1 = 7 + 14𝑢. By (10), 

 𝐴12(𝑥) = 𝛼3𝜃12 (𝛽2
−1

)𝑥3−2 

              = (3 + 20𝑢)𝜃12(7 + 14𝑢)𝑥 

              = (3 + 20𝑢)(7 + 14𝑢)𝑥 

              = (21 + 22𝑢)𝑥. 

Then  

𝐴12(𝑥)𝑔(𝑥) = (21 + 22𝑢)𝑥((7 + 18𝑢)𝑥2 + 11𝑢) 

                    = (21 + 22𝑢) (𝜃12(7 + 18𝑢)𝑥 + 𝛿𝜃12
(7 + 18𝑢)) 𝑥2 

                        +(21 + 22𝑢) (𝜃12(11𝑢)𝑥 + 𝛿𝜃12
(11𝑢)) 

                    = (21 + 22𝑢)(7 + 18𝑢)𝑥3 + (21 + 22𝑢)(16 + 11𝑢)𝑥 

                        +(21 + 22𝑢)(16 + 16𝑢) 

                    = (3 + 20𝑢)𝑥3 + (8 + 7𝑢)𝑥 + (16 + 16𝑢). 

We define 
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ℎ(𝑥) = 𝑓(𝑥) − 𝐴12(𝑥)𝑔(𝑥)                                   (11) 

         = (14 + 2𝑢)𝑥2 + (24 + 25𝑢)𝑥 + (16 + 20𝑢). 

Now repeating the above argument on ℎ(𝑥), we have 

𝑟(𝑥) = ℎ(𝑥) − 𝑞′(𝑥)𝑔(𝑥)                                   (12) 

        = (24 + 25𝑢)𝑥 + (8 + 14𝑢) 

such that 𝑞′(𝑥) = 18 + 18𝑢 by (10). Hence by (11) and (12) we obtain 𝑓(𝑥) = 𝑞(𝑥) 𝑔(𝑥) +

𝑟(𝑥), where 𝑞(𝑥) = (21 + 22𝑢)𝑥 + (18 + 18𝑢). 

3. Main Theorem and Proof 

3.1. 𝜹𝜽𝒓
−Cyclic Codes over 𝑹𝒓 

In this section, we define a class of skew-cyclic codes over 𝑅𝑟 for 𝑟 ∈ ℤ2𝑚  and call them 𝛿𝜃𝑟
-

cyclic codes over 𝑅𝑟. 

A code of length 𝑛 over 𝑅𝑟 is a non-empty subset of 𝑅𝑟
𝑛, and a code of length 𝑛 is a linear code 

over 𝑅𝑟 if it is an 𝑅𝑟-submodule of  𝑅𝑟
𝑛. By identifying 𝑅𝑟

𝑛 with 
𝑅𝑟[𝑥,𝜃𝑟,𝛿𝜃𝑟]

〈𝑓(𝑥)〉
, where 𝑓(𝑥) is a 

polynomial of degree 𝑛 over 𝑅𝑟, we can associate a word 𝛼 = (𝛼0, 𝛼1, 𝛼2, … , 𝛼𝑛−1) ∈ 𝑅𝑟
𝑛 with 

the polynomial 𝛼(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + ⋯+ 𝛼𝑛−1𝑥

𝑛−1 ∈
𝑅𝑟[𝑥,𝜃𝑟,𝛿𝜃𝑟]

〈𝑓(𝑥)〉
. In addition,  

𝑅𝑟[𝑥,𝜃𝑟,𝛿𝜃𝑟]

〈𝑓(𝑥)〉
 is a left 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟

]-module with scalar multiplication defined by 𝑟(𝑥)(𝛼(𝑥) +

〈𝑓(𝑥)〉) = 𝑟(𝑥)𝛼(𝑥) + 〈𝑓(𝑥)〉.  

Definition 3.1.1. A code 𝐶 is called a 𝛿𝜃𝑟
-linear code of length 𝑛 over 𝑅𝑟 if 𝐶 is a left 

𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]-submodule of  

𝑅𝑟[𝑥,𝜃𝑟,𝛿𝜃𝑟]

〈𝑓(𝑥)〉
, where 𝑓(𝑥) is a polynomial of degree 𝑛 over 𝑅𝑟. 

Moreover, if 𝑓(𝑥) is a central polynomial in 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
], then 𝐶 is called a central 𝛿𝜃𝑟

-linear 

code. 

Definition 3.1.2. (𝛿𝜃𝑟
- cyclic code) A code 𝐶 is called a 𝛿𝜃𝑟

-cyclic code of length 𝑛 over 𝑅𝑟 if 

𝐶 is a 𝛿𝜃𝑟
-linear code of length 𝑛 over 𝑅𝑟, and for all 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) ∈ 𝐶, we have 

𝑇𝛿𝜃𝑟
(𝑐) = (𝜃𝑟(𝑐𝑛−1) + 𝛿𝜃𝑟

(𝑐0),  𝜃𝑟(𝑐0) + 𝛿𝜃𝑟
(𝑐1),… ,  𝜃𝑟(𝑐𝑛−2) + 𝛿𝜃𝑟

(𝑐𝑛−1)) ∈ 𝐶. Here, 𝑇𝛿𝜃𝑟
 

is called the 𝛿𝜃𝑟
-cyclic shift operator. 

We denote 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
 by 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
: =

𝑅𝑟[𝑥,𝜃𝑟,𝛿𝜃𝑟]

〈𝑥𝑛−1〉
. 
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Lemma 3.1.3. If 𝛼(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + ⋯+ 𝛼𝑛−1𝑥

𝑛−1 ∈ 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
 represents the word 

𝛼 = (𝛼0, 𝛼1, 𝛼2, … , 𝛼𝑛−1) ∈ 𝑅𝑟
𝑛, then 𝑥𝛼(𝑥) represents the word (𝜃𝑟(𝛼𝑛−1) +

𝛿𝜃𝑟
(𝛼0),  𝜃𝑟(𝛼0) + 𝛿𝜃𝑟

(𝛼1),… ,  𝜃𝑟(𝛼𝑛−2) + 𝛿𝜃𝑟
(𝛼𝑛−1)) ∈ 𝑅𝑟

𝑛. 

Proof. Since 𝑥𝑛 = 1, we have 

𝑥𝛼(𝑥) = 𝑥 (∑ 𝛼𝑖𝑥
𝑖

𝑛−1

𝑖=0

) = ∑(𝑥𝛼𝑖)𝑥
𝑖

𝑛−1

𝑖=0

 

            = ∑ (𝜃𝑟(𝛼𝑖)𝑥 + 𝛿𝜃𝑟
(𝛼𝑖)) 𝑥𝑖

𝑛−1

𝑖=0

 

           = ∑  𝜃𝑟(𝛼𝑖)𝑥
𝑖+1

𝑛−1

𝑖=0

+ ∑ 𝛿𝜃𝑟
(𝛼𝑖)𝑥

𝑖

𝑛−1

𝑖=0

 

          = ∑  𝜃𝑟(𝛼𝑖−1)𝑥
𝑖 +  𝜃𝑟(𝛼𝑛−1)𝑥

𝑛

𝑛−1

𝑖=1

+ ∑ 𝛿𝜃𝑟
(𝛼𝑖)𝑥

𝑖

𝑛−1

𝑖=1

+ 𝛿𝜃𝑟
(𝛼0)𝑥

0 

          = ∑ (𝜃𝑟(𝛼𝑖−1)𝑥 + 𝛿𝜃𝑟
(𝛼𝑖)) 𝑥𝑖 ,

𝑛−1

𝑖=0

 

where indices are in modulo 𝑛. Then the proof is completed.                                                            ◻ 

Theorem 3.1.4. A code 𝐶 is a 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟 if and only if 𝐶 is an 

𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]-submodule of  𝑅𝑟

(𝑛,𝛿𝜃𝑟)
. 

Proof. Suppose 𝐶 is a 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟. Then for any 𝑐(𝑥) ∈ 𝐶, 𝑥𝑐(𝑥) ∈ 𝐶 

and for all 𝑖 ∈ ℤ+,  𝑥𝑖𝑐(𝑥) ∈ 𝐶 by Lemma 3.1.3. It follows that 𝑎(𝑥)𝑐(𝑥) ∈ 𝐶 for all 𝑎(𝑥) ∈

𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]. Therefore 𝐶 is an 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟

]- submodule of  𝑅𝑟

(𝑛,𝛿𝜃𝑟)
. Converse is clear.        ◻ 

Corollary 3.1.5. If 𝐶 is a 𝛿𝜃𝑟
-cyclic code of even length 𝑛 over 𝑅𝑟, then 𝐶 is an ideal of 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
, 

and so, 𝐶 is a central 𝛿𝜃𝑟
-linear code. 

Proof. By Theorem 2.12, since 𝑛 is even, 𝑥𝑛 − 1 is a central element. Then 〈𝑥𝑛 − 1〉 is a two-

sided ideal of 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
], and so 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
 is a ring. In addition, as 𝐶 is a submodule of 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
 

by Theorem 3.1.4, 𝐶 is an ideal of 𝑅𝑟

(𝑛,𝛿𝜃𝑟
)
. By Definition 3.1.1, since 𝑥𝑛 − 1  is a central 

polynomial, 𝐶 is a central 𝛿𝜃𝑟
-linear code.                                                                                  ◻ 
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Theorem 3.1.6. Let 𝐶 be a 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟. Then the following statements 

hold. 

i)  If 𝑛 is odd, 𝐶 is a cyclic code of length 𝑛 over 𝑅𝑟. 

ii) If 𝑛 is even, 𝐶 is a quasi-cyclic code of length 𝑛 and index 2 over 𝑅𝑟. 

Proof. Let 𝑐(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯+ 𝑐𝑛−2𝑥
𝑛−2 + 𝑐𝑛−1𝑥

𝑛−1 ∈ 𝐶. 

i) Let 𝑛 be odd. Then there exist an integer 𝑠 such that 2𝑠 = 𝑛 + 1. Since 𝑥𝑛 = 1, we have 

𝑥2𝑠𝑐(𝑥) = 𝑥𝑛+1𝑐(𝑥) 

              = 𝑐0𝑥
𝑛+1 + 𝑐1𝑥

𝑛+2 + ⋯+ 𝑐𝑛−2𝑥
𝑛+𝑛−1 + 𝑐𝑛−1𝑥

𝑛+𝑛 

              = 𝑐𝑛−1 + 𝑐0𝑥 + 𝑐1𝑥
2 + ⋯+ 𝑐𝑛−2𝑥

𝑛−1, 

which is a cyclic shift of 𝑐(𝑥) by Lemma 2.6. As 𝑥2𝑠𝑐(𝑥) ∈ 𝐶, 𝐶 is a cyclic code. 

ii) Let 𝑛 is even. In general, 𝐶 is not cyclic.  Since 𝑥𝑛 = 1, we have 

𝑥2𝑐(𝑥) = 𝑐0𝑥
2 + 𝑐1𝑥

3 + ⋯+ 𝑐𝑛−2𝑥
𝑛 + 𝑐𝑛−1𝑥

𝑛+1 

           = 𝑐𝑛−2 + 𝑐𝑛−1𝑥 + 𝑐0𝑥
2 + 𝑐1𝑥

3 + ⋯+ 𝑐𝑛−4𝑥
𝑛−2 + 𝑐𝑛−3𝑥

𝑛−1, 

which is a cyclic shift of 𝑐(𝑥) by two positions by Lemma 2.6. As 𝑥2𝑐(𝑥) ∈ 𝐶, 𝐶 is quasi-cyclic 

code of index 2.                                                                                                                            ◻ 

Let 𝐶 be a 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟 such that 𝐶 contains a minimum degree 

polynomial 𝑔(𝑥) with its leading coefficient is a unit. Hence 𝐶 = 〈𝑔(𝑥)〉. Also it is easy to see 

that 𝑔(𝑥)|(𝑥𝑛 − 1) and {𝑔(𝑥), 𝑥𝑔(𝑥),… , 𝑥𝑛−𝑘−1𝑔(𝑥)} is a basis of 𝐶, where 𝑘 = deg(𝑔). 

Clearly, if 𝐶 is free, we have the following corollary. 

Corollary 3.1.7. Let 𝐶 be a free 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟. Then there exists a 

minimum degree polynomial 𝑔(𝑥) such that 𝐶 = 〈𝑔(𝑥)〉 and 𝑔(𝑥)|(𝑥𝑛 − 1). 

Let 𝐶 = 〈𝑔(𝑥)〉 be a 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟 generated by a right divisor 𝑔(𝑥) with 

its leading coefficient is a unit of 𝑥𝑛 − 1. Then the (𝑛 − 𝑘) × 𝑛 generator matrix of 𝐶 is  

𝐺 =

[
 
 
 
 

𝑔(𝑥)

𝑥𝑔(𝑥)

𝑥2𝑔(𝑥)
⋮

𝑥𝑛−𝑘−1𝑔(𝑥)]
 
 
 
 

, 

where 𝑔(𝑥) = 𝑔0 + 𝑔1𝑥 + 𝑔2𝑥
2 + ⋯+ 𝑔𝑘𝑥

𝑘. Then we have the following corollary. 
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Corollary 3.1.8. Let 𝐶 = 〈𝑔(𝑥)〉 be a 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟 such that 𝑔(𝑥) =

𝑔0 + 𝑔1𝑥 + 𝑔2𝑥
2 + ⋯+ 𝑔𝑘𝑥

𝑘. Then the (𝑛 − 𝑘) × 𝑛 generator matrix 𝐺 of 𝐶 is 

[
 
 
 
 

𝑔0

𝛿𝜃𝑟
(𝑔0)

0
⋯
0

𝑔1

 𝜃𝑟(𝑔0) + 𝛿𝜃𝑟
(𝑔1)

0
⋯
0

𝑔2

 𝜃𝑟(𝑔1) + 𝛿𝜃𝑟
(𝑔2)

𝑔0

⋯
⋯

⋯
⋯
⋯
⋱
0

𝑔𝑘

 𝜃𝑟(𝑔𝑘−1) + 𝛿𝜃𝑟
(𝑔𝑘)

𝑔𝑘−3

⋯
𝑔0 ⋯

0
 𝜃𝑟(𝑔𝑘)
𝑔𝑘−2

⋱
𝑔𝑘−2

⋯
⋯
⋯
⋱

𝑔𝑘−1

0
0
0
⋯
𝑔𝑘]

 
 
 
 

 

for an odd 𝑛 − 𝑘, and 

[
 
 
 
 

𝑔0

𝛿𝜃𝑟
(𝑔0)

0
⋯
0

𝑔1

 𝜃𝑟(𝑔0) + 𝛿𝜃𝑟
(𝑔1)

0
⋯
0

𝑔2

 𝜃𝑟(𝑔1) + 𝛿𝜃𝑟
(𝑔2)

𝑔0

⋯
⋯

⋯
⋯
⋯
⋱

𝛿𝜃(𝑔0)

𝑔𝑘

 𝜃𝑟(𝑔𝑘−1) + 𝛿𝜃𝑟
(𝑔𝑘)

𝑔𝑘−3

⋯
 𝜃𝑟(𝑔0) + 𝛿𝜃𝑟

(𝑔1)

0
 𝜃𝑟(𝑔𝑘)
𝑔𝑘−2

⋱
⋯

⋯
⋯
⋯
⋱

 𝜃𝑟(𝑔𝑘−1) + 𝛿𝜃𝑟
(𝑔𝑘)

0
0
0
⋯

 𝜃𝑟(𝑔𝑘)]
 
 
 
 

 

for an even 𝑛 − 𝑘. 

Example 3.1.9. Let 𝑟 ∈ 2ℤ2𝑚 + 1. Let 𝐶 be a 𝛿𝜃𝑟
-cyclic code of length 6 over 𝑅𝑟 generated by 

the right divisor 𝑔(𝑥) = (2𝑚−1 + 𝑢)𝑥3 + 2𝑚−1𝑥2 − 𝑢 of 𝑥6 − 1. Then the set 

{𝑔(𝑥), 𝑥𝑔(𝑥), 𝑥2𝑔(𝑥)} = {(2𝑚−1 + 𝑢)𝑥3 + 2𝑚−1𝑥2 − 𝑢, 𝑢𝑥4 + 2𝑚−1𝑢𝑥3 + (2𝑚−1 − 𝑢)𝑥 +

2𝑚−1 + 2𝑚−1𝑢, (2𝑚−1 + 𝑢)𝑥5 + 2𝑚−1𝑥4 − 𝑢𝑥2} forms a basis for 𝐶. Thus 𝐶 has cardinality 

26𝑚. The generator matrix of  𝐶 is 

[
−𝑢 0

2𝑚−1 + 2𝑚−1𝑢 2𝑚−1 − 𝑢
0 0

2𝑚−1 2𝑚−1 + 𝑢
0 2𝑚−1𝑢

−𝑢 0

0 0
𝑢 0

2𝑚−1 2𝑚−1 + 𝑢
]. 

3.2. Dual of 𝜹𝜽𝒓
−Cyclic Codes over 𝑹𝒓 

In this section, we find the generator matrix of the dual of 𝛿𝜃𝑟
-cyclic code 𝐶 of even length 𝑛 

over 𝑅𝑟. Hence we need to find the parity check matrix of 𝐶. 

Definition 3.2.1. Let 𝐶 be a free 𝛿𝜃𝑟
-cyclic code of length 𝑛 over 𝑅𝑟. Then its dual is defined 

as 

𝐶⊥ = {𝑥 ∈ 𝑅𝑟
𝑛|𝑥 ⋅ 𝑦 = 0, ∀𝑦 ∈ 𝐶}, 

where 𝑥 ⋅ 𝑦 denotes the usual inner product of 𝑥 and 𝑦. 

Lemma 3.2.2. Let 𝑛 be an even. 𝑥𝑛 − 1 is a central element of 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]. Also we have 

𝑥𝑛 − 1 = ℎ(𝑥)𝑔(𝑥) = 𝑔(𝑥)ℎ(𝑥) 

for some  ℎ(𝑥), 𝑔(𝑥) ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]. 

Proof. By Theorem 2.12, it is clear that 𝑥𝑛 − 1 = ℎ(𝑥)𝑔(𝑥) is a central element. Since 

ℎ(𝑥)𝑔(𝑥) is a central element, we get 
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ℎ(𝑥)(ℎ(𝑥)𝑔(𝑥)) = (ℎ(𝑥)𝑔(𝑥))ℎ(𝑥) = ℎ(𝑥)(𝑔(𝑥)ℎ(𝑥))                            . 

As 𝑅𝑟[𝑥,  𝜃𝑟 , 𝛿𝜃𝑟
] has non-trivial zero divisors, ℎ(𝑥) is not a zero divisor. Hence the proof is 

completed.                                                                                                                                     ◻ 

We obtain the following lemma from Lemma 3.2.2. 

Lemma 3.2.3. Let 𝐶 = 〈𝑔(𝑥)〉 be a 𝛿𝜃𝑟
-cyclic code of even length 𝑛 over 𝑅𝑟, where 𝑔(𝑥) is a 

monic right divisor of 𝑥𝑛 − 1. Let 𝑥𝑛 − 1 = ℎ(𝑥)𝑔(𝑥). Then 𝑐(𝑥) ∈ 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
 is in 𝐶 if and 

only if 𝑐(𝑥)ℎ(𝑥) = 0 in 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
. 

Proof. If 𝑐(𝑥) ∈ 𝐶, then there exists 𝑎(𝑥) ∈ 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
 such that 𝑐(𝑥) = 𝑎(𝑥)𝑔(𝑥). By Lemma 

3.2.2,  

𝑐(𝑥)ℎ(𝑥) = 𝑎(𝑥)𝑔(𝑥)ℎ(𝑥) = 𝑎(𝑥)ℎ(𝑥)𝑔(𝑥) = 𝑎(𝑥)(𝑥𝑛 − 1) = 0 

in 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
. Conversely, if 𝑐(𝑥)ℎ(𝑥) = 0 in 𝑅𝑟

(𝑛,𝛿𝜃𝑟)
, then by Lemma 3.2.2 there exists 𝑏(𝑥) ∈

𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] such that 

𝑐(𝑥)ℎ(𝑥) = 𝑏(𝑥)(𝑥𝑛 − 1) = 𝑏(𝑥) ℎ(𝑥)𝑔(𝑥) = 𝑏(𝑥)𝑔(𝑥)ℎ(𝑥). 

Since ℎ(𝑥) is not a zero divisor, we get 𝑐(𝑥) = 𝑏(𝑥) 𝑔(𝑥). So the proof is completed.                  ◻ 

Lemma 3.2.4. If 𝛼 ∈ 𝑅𝑟 is a unit in 𝑅𝑟, then  𝜃𝑟(𝛼) + 𝛿𝜃𝑟
(𝛽) is a unit for all 𝛽 ∈ 𝑅𝑟. 

Proof. Let 𝛾 =  𝜃𝑟(𝛼) + 𝛿𝜃𝑟
(𝛽), where 𝛼, 𝛽 ∈ 𝑅𝑟 such that 𝛼 is a unit. Let  𝜃𝑟(𝛼) = 𝑎 + 𝑢𝑏. 

Then 𝑎 + 𝑢𝑏 is a unit, and hence either 𝑎 or 𝑏 is unit but not both. We know 𝛿𝜃𝑟
(𝛽) is either 0 

or 2𝑚−1 + 2𝑚−1𝑢 for all 𝛽 ∈ 𝑅𝑟. If 𝛿𝜃𝑟
(𝛽) = 0, then we are done. Otherwise, we have 

𝛾 = 𝑎 + 𝑢𝑏 + 2𝑚−1 + 2𝑚−1𝑢 

   = (𝑎 + 2𝑚−1) + (𝑏 + 2𝑚−1)𝑢. 

Moreover, any 𝑣 ∈ ℤ2𝑚  is a unit if and only if 𝑣 + 2𝑚−1 is a unit. Hence 𝛾 is a unit.                ◻ 

Let 𝐶 = 〈𝑔(𝑥)〉 be a 𝛿𝜃𝑟
-cyclic code of even length 𝑛 over 𝑅𝑟. Then there exists ℎ(𝑥) =

ℎ0+ℎ1𝑥 + ℎ2𝑥
2 + ⋯+ ℎ𝑘−1𝑥

𝑘−1 + ℎ𝑘𝑥𝑘 ∈ 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
] such that 𝑥𝑛 − 1 = ℎ(𝑥)𝑔(𝑥). Let 

𝑐(𝑥) = 𝑐0+𝑐1𝑥 + 𝑐2𝑥
2 + ⋯+ 𝑐𝑛−2𝑥

𝑛−2 + 𝑐𝑛−1𝑥
𝑛−1. By Lemma 3.2.3, we have 𝑐(𝑥)ℎ(𝑥) =

0 in 𝑅𝑟

(𝑛,𝛿𝜃𝑟
)
. Hence the coefficients of 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛−1 in 𝑐(𝑥)ℎ(𝑥) are all zero. If 𝑘 is odd, 

we have 

𝑐𝑖ℎ𝑘 + 𝑐𝑖+1 (𝜃𝑟(ℎ𝑘−1) + 𝛿𝜃𝑟
(ℎ𝑘)) + 𝑐𝑖+2ℎ𝑘−2 + ⋯+ 𝑐𝑖+𝑘 (𝜃𝑟(ℎ0) + 𝛿𝜃𝑟

(ℎ1)) = 0                              (13) 

for an even 𝑖, and 
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𝑐𝑖  𝜃𝑟(ℎ𝑘) + 𝑐𝑖+1ℎ𝑘−1 + 𝑐𝑖+2 (𝜃𝑟(ℎ𝑘−2) + 𝛿𝜃𝑟
(ℎ𝑘−1)) + ⋯+ 𝑐𝑖+𝑘ℎ0 + 𝑐𝑖+𝑘+1𝛿𝜃𝑟

(ℎ0) = 0                (14) 

for an odd 𝑖. If 𝑘 is even, we have 

𝑐𝑖ℎ𝑘 + 𝑐𝑖+1 (𝜃𝑟(ℎ𝑘−1) + 𝛿𝜃𝑟
(ℎ𝑘)) + 𝑐𝑖+2ℎ𝑘−2 + ⋯+ 𝑐𝑖+𝑘ℎ0 + 𝑐𝑖+𝑘+1𝛿𝜃𝑟

(ℎ0) = 0                      (15) 

for an even 𝑖, and 

𝑐𝑖  𝜃𝑟(ℎ𝑘) + 𝑐𝑖+1ℎ𝑘−1 + 𝑐𝑖+2 (𝜃𝑟(ℎ𝑘−2) + 𝛿𝜃𝑟
(ℎ𝑘−1)) + ⋯+ 𝑐𝑖+𝑘 (𝜃𝑟(ℎ0) + 𝛿𝜃𝑟

(ℎ1)) = 0              (16) 

for an odd 𝑖. By equations (13) and (14) (or (15) and (16)), 𝐻𝑐𝑇 = 0, where 𝐻 is dimension 

(𝑛 − 𝑘) × 𝑛 matrix. Then we get 𝐺𝐻𝑇 = 0, where 𝐺 is a generator matrix of 𝐶. By Lemma 

3.2.4,  𝜃𝑟(ℎ𝑘) is unit, as ℎ𝑘 is a unit. Since the diagonal elements of 𝐻 are ℎ𝑘 or  𝜃𝑟(ℎ𝑘), 𝐻 

contains a square submatrix of dimension (𝑛 − 𝑘) × (𝑛 − 𝑘) with non-zero determinant. Then 

all rows of 𝐻 are linearly independent. Hence |𝑆𝑝𝑎𝑛(𝐻)| = |𝑅𝑟|
𝑛−𝑘 = |𝐶⊥|. Therefore 

𝑆𝑝𝑎𝑛(𝐻) = 𝐶⊥, and so the following corollary is obtained. 

Corollary 3.2.5. Let 𝐶 = 〈𝑔(𝑥)〉 be a 𝛿𝜃𝑟
-cyclic code of even length 𝑛 over 𝑅𝑟 such that 𝑥𝑛 −

1 = ℎ(𝑥)𝑔(𝑥) for some ℎ(𝑥) = ℎ0+ℎ1𝑥 + ℎ2𝑥
2 + ⋯+ ℎ𝑘−1𝑥

𝑘−1 + ℎ𝑘𝑥𝑘 ∈ 𝑅𝑟[𝑥, 𝜃𝑟, 𝛿𝜃𝑟
]. Then 

the (𝑛 − 𝑘) × 𝑛 parity check matrix 𝐻 of 𝐶 is 

[
 
 
 
 
 
ℎ𝑘  𝜃𝑟(ℎ𝑘−1) + 𝛿𝜃𝑟

(ℎ𝑘) ℎ𝑘−2 ⋯  𝜃𝑟(ℎ0) + 𝛿𝜃𝑟
(ℎ1)         ⋯      0             0              

0           𝜃𝑟(ℎ𝑘)                ℎ𝑘−1 ⋯              ℎ0                𝛿𝜃𝑟
(ℎ0)   ⋯             0                 

0
⋮
0
            

0
⋮
0
                      

ℎ𝑘

⋱
⋯

    
ℎ𝑘−2

⋱
ℎ𝑘

 𝜃𝑟(ℎ𝑘−3) + 𝛿𝜃𝑟
(ℎ𝑘−2)

⋱
 𝜃𝑟(ℎ𝑘−1) + 𝛿𝜃𝑟

(ℎ𝑘)

⋯
⋮
⋯

 

 ⋯
⋱
ℎ1

 0
⋮

  𝜃𝑟(ℎ0)+𝛿𝜃(ℎ1) ]
 
 
 
 
 

 

for an odd 𝑘, and 

[
 
 
 
 
 
ℎ𝑘  𝜃𝑟(ℎ𝑘−1) + 𝛿𝜃𝑟

(ℎ𝑘) ℎ𝑘−2 ⋯ ℎ0          𝛿𝜃𝑟
(ℎ0)         ⋯               0           

0           𝜃𝑟(ℎ𝑘)                ℎ𝑘−1 ⋯ ℎ1     𝜃𝑟(ℎ0) + 𝛿𝜃𝑟
(ℎ1)  ⋯               0           

0
⋮
0
            

0
⋮
0
                      

ℎ𝑘

⋱
⋯

    

⋯
⋱

 𝜃𝑟(ℎ𝑘)

ℎ2

⋱
ℎ𝑘−1

 𝜃𝑟(ℎ1) + 𝛿𝜃𝑟
(ℎ2)

⋮
⋯

 

 ⋯
⋱
ℎ1

 

 0
⋮

  𝜃𝑟(ℎ0) + 𝛿𝜃𝑟
(ℎ1)]

 
 
 
 
 

 

for an even 𝑘. 

Now, we give the parity check matrix of 𝛿𝜃𝑟
-cyclic code 𝐶 in Example 3.1.9. 

Example 3.2.6. Let 𝑟 ∈ 2ℤ2𝑚 + 1. Let 𝐶 be a 𝛿𝜃𝑟
-cyclic code of length 6 over 𝑅𝑟 generated by 

the right divisor 𝑔(𝑥) = (2𝑚−1 + 𝑢)𝑥3 + 2𝑚−1𝑥2 − 𝑢 of 𝑥6 − 1 = (𝑟−1𝑢𝑥3 +

2𝑚−1𝑟−1𝑢𝑥2 + 𝑟−1𝑢)((2𝑚−1 + 𝑢)𝑥3 + 2𝑚−1𝑥2 − 𝑢). Let ℎ(𝑥) = 𝑟−1𝑢𝑥3 +

2𝑚−1𝑟−1𝑢𝑥2 + 𝑟−1𝑢. By Corollary 3.2.5, the parity check matrix 𝐻 of 𝐶 is 

[
𝑟−1𝑢 2𝑚−1

0 2𝑚−1𝑟−1 + 𝑟−1𝑢
0 0

0 2𝑚−1𝑟−1 + 𝑟−1𝑢
2𝑚−1𝑟−1𝑢 0

𝑟−1𝑢 2𝑚−1

0 0
2𝑚−1𝑟−1 2𝑚−1 + 2𝑚−1𝑢

0 2𝑚−1𝑟−1 + 𝑟−1𝑢
], 
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and so 𝑆𝑝𝑎𝑛(𝐻) = 𝐶⊥. 

4. Conclusion 

Sharma and Bhaintwal (2018) have studied a class of 𝛿𝜃-cyclic codes over ℤ4 + 𝑢ℤ4; 𝑢2 = 1 

with derivation. We define a generalization of these codes as 𝛿𝜃𝑟
-cyclic codes over ℤ2𝑚 +

𝑢ℤ2𝑚; 𝑢2 = 𝑟 for 𝑟 ∈ ℤ2𝑚  with derivation. We establish existence of the right division 

algorithm in 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]. A 𝛿𝜃𝑟

-cyclic code is proved to be a left 𝑅𝑟[𝑥, 𝜃𝑟 , 𝛿𝜃𝑟
]-submodule of  

𝑅𝑟[𝑥,𝜃𝑟,𝛿𝜃𝑟]

〈𝑥𝑛−1〉
. The form of a generator matrix of 𝛿𝜃𝑟

-cyclic code of length 𝑛 over 𝑅𝑟 is obtained. 

The properties of 𝛿𝜃𝑟
-cyclic codes as well as dual of 𝛿𝜃𝑟

-cyclic codes are investigated. The form 

of a parity-check matrix of a free 𝛿𝜃𝑟
-cyclic code of even length 𝑛 over 𝑅𝑟 is given. Then we 

find the generator matrix of its dual. 
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