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Abstract: Targeting the interaction between tumor suppressor p53 and murine 
double minute 2(MDM2) has been an attractive therapeutic strategy of recent 
cancer research. There are a few number of MDM2-targeted anticancer drug 
molecules undergoing clinical trials, yet none of them have been approved so far. In 
this study, a new approach is employed in which dynamics of MDM2 obtained by 
elastic network models are used as a guide in the generation of the ligand-based 
pharmacophore model prior to virtual screening. Hit molecules exhibiting high 
affinity to MDM2 were captured and tested by rigid and induced-fit molecular 
docking. The knowledge of the binding mechanism was used while creating the 
induced-fit docking criteria. Application of Molecular Mechanics-Generalized Born 
Surface Area (MM-GBSA) method provided an accurate prediction of the binding 
free energy values. Two leading hit molecules which have shown better docking 
scores, binding free energy values and drug-like molecular properties were 
identified. These hits exhibited extra intermolecular interactions with MDM2, 
indicating a stable complex formation and hence would be further tested in vitro. 
Finally, the combined computational strategy employed in this study can be a 
promising tool in drug design for the discovery of potential new hits.  

Konformasyonel Dinamik Yönlendirmeli Farmakofor Modelleme ile Güçlü Antikanser 
Ajanlarının Belirlenmesi  

Anahtar Kelimeler 
elastik ağ modeli,  
ilaç yeniden konumlandırma, 
uyarılmış-uyumlu moleküler 
yerleştirme,  
MDM2,  
p53 

Öz: Tümör baskılayıcı p53 ile Murine Double Minute 2 (MDM2) proteinleri 
arasındaki etkileşimi hedeflemek, son kanser araştırmalarında öne çıkan bir 
terapötik strateji olmuştur. Şu anda klinik deneylerde çalışılan birkaç MDM2 hedefli 
antikanser ilaç molekülü bulunmakla beraber hiçbiri henüz onay alamamıştır. Bu 
çalışmada, elastik ağ modelleri ile elde edilen MDM2 dinamiklerinin, ligand bazlı 
farmakofor modelinin oluşturulmasında ardından sanal tarama yürütülerek yeni 
MDM2 inhibitörlerinin araştırılmasında kılavuz olarak kullanıldığı bir yaklaşım 
yürütülmüştür. Sanal tarama sonucu elde edilen öncü moleküllerin MDM2'ye 
afiniteleri sabit ve uyarılmış-uyumlu moleküler yerleştirme (induced-fit docking) 
metodları ile test edilmiştir. İndüklenmiş yerleştirme kriterleri oluşturulurken 
bağlanma mekanizması bilgisi kullanılmıştır. Bağlanma serbest enerji değerlerinin 
doğru tahminini sağlayan Moleküler Mekanik Generalized Born-Surface Area (MM-
GBSA) yönteminin uygulanması ile, yüksek yerleştirme puanları, bağlanma serbest 
enerjileri ve ilaca benzer fizikokimyasal özelliklere sahip iki adet lider molekül 
belirlenmiştir. Bu lider moleküller, MDM2 ile ekstra etkileşimler sergilerken kararlı 
kompleks oluşturmaktadırlar ve sonraki aşamada in vitro çalışmalarda 
inceleneceklerdir. Sonuç olarak, burada uygulanan kombine bilgisayar destekli 
strateji, yeni ilaç adaylarının keşfinde başarılı bir yöntem olarak uygulanabilir. 
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1. Introduction

Cancer is one of the most life-threatening health 
problems that corresponds to one-fifth death of all 
diseases worldwide and ranks second in death cases 
after cardiovascular disorders [1, 2]. Currently, cancer 
treatment involves chemotherapy in combination 
with radiation treatment and/or surgical removal. 
However, the existing anticancer drugs affect the 
normal cells as well as the cancer cells. As a result, 
serious side effects such as myelosuppresion, 
mucositis, hair loss, cardiotoxicity, neurotoxicity, and 
immunosuppression are encountered. Moreover, the 
cancer cells can undergo mutations in this way they 
may develop resistance to the available drugs. 
Therefore, to overcome both the existing problems of 
chemotherapy and to improve the patient’s quality of 
life, anticancer agents that will be specifically 
cytotoxic towards the cancer cells only, with less side 
effects guide the recent cancer research [3]. Recently, 
chemotherapeutic agents consist of antimetabolites, 
DNA-interactive agents, anti-tubulin agents, 
hormones, and molecular targeting agents [4]. Tumor 
suppressor protein p53, has become one of the most 
important drug targets for cancer treatment since 
almost in all cancers, mutation or improper 
functioning of p53 has been detected [5].  P53 is a 
transcriptional factor that acts as the “guardian of 
genome” by playing crucial role in DNA repair and cell 
cycle arrest to prevent early cancerogenic events. 
When this repairing machinery fails, p53 induces 
apoptosis in the damaged cells, acting as a critical anti-
cancer agent [6, 7]. In normal cells, p53 is kept at low 
levels by murine double minute 2 protein (MDM2) 
which binds to p53 transactivation domain and thus 
prevents its DNA binding ability, targets p53 to 
nuclear export or directly ubiquitinates p53 leading to 
its degradation [8, 9]. Consequently, blocking MDM2-
p53 interaction by MDM2 antagonists has been an 
attractive therapeutic strategy of recent cancer 
research aiming to restore p53 function.  

Despite the successful achievements obtained in 
clinical trial phases, still the need for less toxic, more 
specific and more potent drug candidates targeting 
MDM2 inhibition with less side effects is getting 
serious. At present there are several drug candidates 
as MDM2 antagonists undergoing clinical trials, 
namely: nutlins [10], RG7112 [11], RG7388 [12], 
SAR405838 [13], AMG-232 [14], NVP-CGM097 [15] 
and NVP-HDM201 [16] for which the details are 
provided in Table 1.  Having limited number of 
molecules in clinical trials and the fact that none of 
them yet being FDA approved orients many works 
towards finding new inhibitors targeting MDM2 in 
order to boost p53 levels.  Bringing a new drug into 
market is a challenging and expensive process, which 
requires an average of 10-15 years, an investment cost 
of about 1-3 billion dollars, though unfortunately the 
success rates are around 2% [17-19]. Due to these 
facts, computer aided drug design (CADD) strategies 

step out to be efficient, fast and powerful tools that 
would increase the success rates and reduce the cost 
and time requirements considerably.   

Exploring protein dynamics by the investigation of 
conformational transitions bridges the gap between 
structure and function, which is crucial to understand 
the function of the protein and related binding 
mechanisms. Unfortunately, investigating protein-
protein interactions and inhibition mechanism at the 
experimental level or with atomistic computational 
methods such as molecular dynamics is challenging, 
time consuming and requires high computational 
efficiency [20-22]. At this respect, Elastic Network 
Models (ENM), namely Gaussian Network Model 
(GNM) [23, 24] and Anisotropic Network Model 
(ANM) [25] prove successful to shed light on protein-
protein or protein-small molecule interactions and 
binding mechanisms. Pharmacophore modeling in 
combination with virtual screening and molecular 
docking is a powerful strategy for discovery of novel 
compounds against a specific target. Many successful 
research have been put forth recently in this respect 
[26-32]. Ligand-based virtual screening methods 
enable fast screening based on a pharmacophore 
model that may be built upon a set of active ligands. 
Novel small molecule inhibitor design is likely to be a 
high costly and time-consuming process until the drug 
is approved and reaches the market. Therefore, 
generating a pharmacophore model based on the 
active available ligands undergoing clinical trials and 
validating the model by the conformational dynamics 
background to screen libraries can be a promising tool 
for potential new hits. There have also been several 
studies in which molecular docking, virtual screening 
and molecular dynamics tools were employed for the 
discovery of potent MDM2 inhibitors [33-41]. Some 
studies are conducted for elucidating the mechanism 
of binding of the native substrate p53 to MDM2. It was 
reported that an induced-fit mechanism was favored. 
Initially, p53 docks to the binding cleft of MDM2 and 
partially opens the binding site. Partial binding of p53 
induces MDM2 to undergo conformational 
rearrangements aiming to further enlarge the pocket. 
Finally, p53 nicely fits into the binding pocket by 
maintaining interactions for a stable complex 
formation [42, 43].  

Recently the conformational transitions and global 
motions of MDM2 and alterations brought about by 
the existence of its native inhibitor p53 and other 
small molecule inhibitors undergoing clinical trials 
were explored, using high efficiency low resolution 
elastic network modeling technique [44]. The aim of 
the present study is developing a new approach in the 
generation of the pharmacophore model prior to 
virtual screening in search for novel MDM2 inhibitors. 
Using these recent findings, a simulation strategy is 
conducted by incorporating protein dynamics in the 
generation and validation of the pharmacophore 
model. Virtual screening, rigid and induced-fit 
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molecular docking were carried out to capture several 
hit molecules showing high affinity to MDM2. The 
knowledge of the binding mechanism obtained from 
ENM was used while creating the induced-fit docking 
criteria.  Molecular mechanics-generalized born 
surface area (MM-GBSA) method was utilized for more 
accurate prediction of the binding free energy. 
Moreover, insights about the binding mechanism 
served as a useful guide for the conduction of the 
induced-fit docking which can fine tune the docking 
strategy. Two hit molecules exhibiting extra 
interactions with the target with promising docking 
scores, binding free energy values and drug-like 
properties were proposed.  

2. Material and Method

2.1. Protein Preparation 

The crystal structures of MDM2 complexed with small 
molecule inhibitor complex systems are obtained 
from the Protein Data Bank and prepared using 
Schrödinger’s Maestro Molecular Modeling Suite [45, 
46] and protein preparation wizard module [47].
Among the available MDM2 protein structures as
listed in Table 1, the lowest RMSD value between the
co-crystal ligand and the best re-docked pose was
attained in the case of 5OC8 as also discussed in recent
previous work [44]. So the MDM2 of 5OC8 pdb-coded
structure was used in all docking calculations as
macromolecular target. Target protein is first
corrected for bond orders and missing hydrogen
atoms. All heteroatoms other than the native ligand
are removed. But the water atoms within 5 Å around
the binding cleft were kept. In case there are any
missing side chains or missing loops, Prime module
was used to fill in these gaps (though this structure did
not have any). Protonation states were generated
using PROPKA at pH: 7.0. Finally, restrained
minimization was carried out using 0.3 Å RMSD and
OPLS2005 (Optimized potentials for liquid
simulations 2005) force field [48].

2.2. Ligand Preparation 

Prior to all docking simulations, the ligands were 
prepared using LigPrep module of Maestro, 
Schrödinger software [46, 47]. Ionization states and 
tautomers were generated using Epik at pH: 7.0 ± 2.0 
[49]. Stereoisomers were generated using chiralities 
from the 3D structure of the ligands.  

2.3. Pharmacophore Model Generation 

A 3-D pharmacophore model is a set of chemical 
features or functionalities aligned in three 
dimensional space. The essential interactions of small 
molecule ligands with the receptor binding site can 
then be represented via this spatial arrangement of 
chemical features. The pharmacophore model 
represents the chemical properties and 3D structure 

of a ligand, using one of the interaction types to form 
hydrogen bonding, hydrophobic, electrostatic, and 
charge transfer interactions [50, 51]. In this context, 
LigandScout 4.4.7 simulation program [51] was used 
to construct a pharmacophore model based on 7 X-ray 
crystal structures of human MDM2 inhibitors that are 
undergoing clinical trials as the relevant details such 
as protein data bank code (pdb code), half-inhibitory 
concentration (IC50), crystal structure resolution 
(Res.) and the related references (Ref.) are provided in 
Table 1. 

Separate structure-based pharmacophore models 
were generated using Ligand Scout 4.4.7 based on the 
crystal structures of these 7 inhibitors. X-ray 
structures were downloaded from Protein Data Bank 
automatically by Ligand Scout 4.4.7. The ligands were 
explored in detail in ligand-based perspective and 
energy minimized by MMFF94 force field [52] in order 
to generate possible minimum energy states. Initially, 
separate pharmacophores were generated from the 
interaction of these ligands with MDM2 receptor using 
pharmacophore generation tool in LigandScout 4.4.7. 
Then all seven pharmacophore hypotheses were 
aligned onto the reference pharmacophore of the 
reference receptor structure (pdb code: 5OC8) to 
extract the shared features using the shared feature 
generation module. Finally, the exclusion volumes 
were added to finalize the pharmacophore model for 
3D query in virtual screening. 

Table 1. Several MDM2 inhibitors undergoing clinical 
trials 

Molecule Pdb 
Code 

IC50 
(nM) 

Res. 
(Å) 

Ref. 

Nutlin3 4J3E 90 1.9 10 

RG 7112 4IPF 18 1.7 11 
RG 7388 4JRG 6 1.9 12 

SAR405838 5TRF 0.88 2.1 13 

AMG 232 4OAS 0.6 1.7 14 
NVP-CGM097 4ZYI 1.7 1.67 15 
NVP-HDM201 5OC8 0.21 1.56 16 

2.4. Molecular Docking (Rigid Docking and 
Induced Fit Docking Protocols) 

Molecular docking is a fast and powerful tool to find 
the best conformation among the possible ones that 
would fit the binding site of the receptor. Minimum 
energy conformation with maximum possible 
interactions is of interest. Molecular docking can 
supply a relative comparison of the binding affinities 
and thus potencies of available drug molecules 
towards target protein. The more negative the binding 
affinity value is, the more strongly the molecule 
interacts with the receptor. The protein of interest 
MDM2 is a structurally disordered and highly flexible 
protein which gain stability upon binding. This 
phenomena points out to the induced fit mechanism of 
MDM2 upon binding to inhibitors. Hence rigid docking 
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strategies may mislead while performing molecular 
docking with MDM2. Both strategies were performed 
and the results were compared.  

2.4.1. Rigid docking 
Once the common feature pharmacophore model was 
generated the Drug Bank [53] library of 9067 
molecules with known 3D structures was screened. 
The hits which match the pharmacophore (2177 hit 
molecules) were retrieved and then Lipinski’s Rule of 
five [54] and polar surface area pre-filters (polar 
surface area is preferred to be ≤ 140 Å) were applied 
and the remaining molecules (267 molecules) were 
first docked using Autodock Vina [55] which is 
incorporated within Ligand Scout software. Default 
parameters were used with the number of 
conformations generated being 9, exhaustiveness 
value of 3 and the maximum energy difference being 
3. Molecules having considerably high docking scores
(≤ -8.5) kcal/mol were further docked using Glide SP
(standard precision) and XP (extra precision)
algorithms [56, 57] in Ligand Docking Module of
Schrödinger Suite. The grid box was generated for the
target MDM2 around the binding cleft centered on the
centroid of the co-crystal ligand NVP-HDM201 (pdb
code: 5OC8) using the Receptor Grid Generation
module. Size of the grid box was selected to enable
docking of the ligands with length ≤ 20 Å. Same grid
file was used in all docking simulations for a reliable
comparison. All the docked ligands were prepared by
LigPrep module prior to docking as explained above.
Ligands were kept flexible and Epik state penalties
were added to docking scores. Maximum of ten poses
were obtained for each ligand.

2.4.2. Induced Fit Docking (IFD) 
Ligands that were prepared by LigPrep module of 
Schrödinger and all possible conformers for each 
ligand were docked to protein binding site with the 
same grid file prepared for rigid docking this time by 
accounting the protein flexibility. IFD generates 
binding poses for targets by considering both ligand 
and receptor conformational flexibility, which is 
crucial for more accurate docking of the ligand. IFD 
protocol [58] uses Glide to sample ligand binding 
modes and Prime to sample protein flexibility. 
Glide/SP docking was employed by changing the grid 
size to allow ligands ≤ 20 Å size to be docked, similar 
to rigid SP/XP docking protocols described above. By 
default, the ligand and the side chain residues within 5 
Å were refined and optimized. Receptor and ligand 
Van der Waals scaling factors were 0.7 and 0.5 by 
default. IFD protocol uses side-chain trimming option 
in order to create more room in the active site so that 
the non-native ligand can be sampled thoroughly.  The 
importance of helix-4 and basically Tyr 100 residue 
located in this region was illuminated in previous 
work. The size of the binding cleft was shown to be 
mainly controlled by the modifications in helix-4 
region. This region, outshined by Tyr 100 mainly, acts 
as a gate keeper, by keeping the cleft closed in the 

unbound; and open in bound states for better 
penetration and docking of the ligands. Hence Tyr 100 
residue side chain which is in close proximity with the 
ligand to be docked was trimmed while conducting 
IFD protocol so as to prevent any hindering effect. This 
residue was temporarily mutated to Alanine during 
the initial Glide docking, and then converted back 
during redocking by Glide after the side chain residues 
within 5 Å were optimized and refined by Prime 
module. Each ligand was finally redocked with 
Glide/SP and 20 poses were obtained.  

2.5. Conformational Dynamics and Mode Shapes 
by Elastic Network Models GNM and ANM 

GNM is a fast and efficient analytical approach that can 
be used for bridging the gap between global motions 
and biological functions of proteins. The vibrational 
dynamics of the protein is modeled by placing a node 
to each alpha-carbon of residues and connecting them 
with springs. Harmonic potential of the system and 
residue mean-square fluctutations are calculated. 
Total residue fluctuations are decomposed into high 
and low frequency fluctuations, namely fast and slow 
(or soft) modes [23, 24]. The fast modes, i.e. the high 
frequency fluctuations, correspond to the kinetically 
hot residues (binding hot spots) while the slow modes 
are associated with global (collective) dynamics of the 
overall structure. In the previous work [44] by using 
GNM and ANM, the global dynamics of MDM2 and the 
conformational changes it undergoes upon ligand 
binding in cases of both native ligand p53 and small 
molecule inhibitors NVP-CGM097 and NVP-HDM201 
binding were analyzed. Moreover, the domain 
motions in the softest modes were also illustrated 
around the binding site. Three distinct conserved 
regions were identified in MDM2 namely, Regions I 
(residues 50-77) and III (residues 90-105) 
corresponding to the binding interface of MDM2 
including α helix-2 (α2), Loop-2 (L2), and α helix-4 
(α4) domains which were actually stabilized during 
complex formation. Region II (residues 77-90), 
exhibiting high amplitude collective motion, was a 
highly flexible region in both unbound and complex 
forms. In the light of these findings, the 
pharmacophore was validated and made sure that the 
essential three distinct regions of MDM2 were 
comprised.  

2.6. Molecular Mechanics, the Generalized Born 
Model and Solvent Accessibility (MM-GBSA) 

Docking scores may only give a relative comparison 
between the compounds. A more thorough analysis on 
free energy of binding is carried out by MM-GBSA 
method. To perform more accurate binding free 
energy calculation, Prime MM-GBSA module of 
Schrödinger Suite was used. Free energy of binding 
can be expressed as the sum of the enthalpic and 
entropic contributions as follows:  
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∆𝐺𝑏𝑖𝑛𝑑  =  ∆𝐻 − 𝑇∆𝑆 (1) 

Since similar types of ligands are docked to the 
receptor, the entropic contribution can be neglected 
and hence: 

∆𝐺𝑏𝑖𝑛𝑑  ≅  ∆𝐻 (2) 

Enthalpic contribution includes molecular mechanics 
energy (ΔEmm) of the molecule and solvation energy 
(ΔGsol). Further, molecular mechanics energy of the 
molecule can be expressed by sum of its internal 
energy, electrostatic and van der Waals interactions; 
while the solvation energy is composed of polar (ΔGGB) 
and non-polar (ΔGSA) contributions [59, 60]:  

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐸𝑚𝑚 + ∆𝐺𝑠𝑜𝑙    (3) 

∆𝐸𝑚𝑚 =  ∆𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + ∆𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + ∆𝐸𝑣𝑑𝑊 (4) 

∆𝐺𝑠𝑜𝑙 =  ∆𝐺𝐺𝐵 + ∆𝐺𝑆𝐴 (5) 

Resulting complexes obtained as a result of IFD 
calculations were processed by Prime-GBSA to obtain 
free energy of binding values. IFD simulations returns 
a set of complexes as an output with the 
corresponding IFD score, i.e. different poses are valid 
for the ligand as well as for the receptor. Since output 
file of IFD simulations contain different protein-ligand 
complex conformations, the complex with the highest 
IFD score was selected and splitted up into its protein 
and ligand to carry out the MM-GBSA calculation. The 
solvation model used was VSGB [61], force field was 
OPLS2005 [48], and protein flexibility was allowed 
within 5 Å distance from the ligand.  

2.7. Virtual Screening Protocol and Workflow of 
the Methodology 

Figure 1 depicts the workflow employed in the present 
study. Drug/drug-like compounds retrieved from 
Drug Bank with known 3-D structures were screened 
against a shared feature pharmacophore which was 
guided by elastic network modeling results. First 
filtering was applied according to the pharmacophore 
fit score and further filtering was applied according to 
Lipinski’s rule of fives and polar surface area criteria. 
Predocking was accomplished by Autodock Vina and 
comparably strong binders are identified and docked 
using Glide SP/XP docking. Top ten highest docking 
score molecules were then processed with IFD where 
side chain trimming was employed for Tyr100 residue 
to enlarge the active site in the light of ENM results. 
For the top ten hit molecules more sophisticated free 
energy of binding analysis was conducted using MM-
GBSA method that pointed out to leading hit molecules 
that may serve as promising MDM2 inhibitors which 
exhibit better binding as compared to the clinical trial 
compounds.  

Figure 1. Schematic of the ENM-based pharmacophore 
model generation, virtual screening, docking and MM-GBSA 
calculation workflow 

3. Results

3.1. ENM-guided Pharmacophore model 
generation and validation 

The interaction of the most potent inhibitor under 
clinical trials NVP-HDM201 (pdb code: 5OC8) with the 
MDM2 active site is depicted in Figure 2.  
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Figure 2.  3-D (a) and 2-D (b) binding site and interactions 
of NVP-HDM201 with MDM2 (pdb code: 5OC8). (c) 3-D 
Pharmacophore model of NVP-HDM201 (d) 2-D 
representation of the pharmacophoric features 

The binding site interaction maps for 3-D and 2-D are 
demonstrated in panels a and b, respectively. The 
most crucial interaction is the hydrogen bonding 
accomplished between His 96 of MDM2 and 
pyrrolidine ring of the inhibitor (indicated in blue 
dashed line in panel a). Besides, there are hydrophobic 
interactions between Leu 54 and Leu 57 binding site 
of MDM2 with Cl attached pyridine group and Ile 99 
and Tyr 100 binding site with chlorophenyl group of 
the ligand (panel b). The ligand also exhibits hydrogen 
bonding with surrounding water molecules (yellow 
dashed lines in panel a). The pharmacophore model 
generated with NVP-HDM201 is provided in panel c. 
The key pharmacophoric features are basically: 4 
hydrophobic regions (yellow), 1 aromatic ring (blue) 
and 5 hydrogen bond acceptor groups (panel d red 
arrows).  

In the light of previous work [44], it was elucidated 
that the protein can basically be separated into three 
distinct regions: Region I, II and III (Figure 3, panel a). 
Region I and III consist of active site residues that take 
role in binding and hence the flexibilities of these 
residues are hindered upon binding by the stabilizing 
interactions. These are the hinge regions of protein 
with restricted motion that are located in the minima 
of residue fluctuation profile. Region II serves as the 
most flexible region for which the flexibility is even 
enhanced in presence of inhibitors enabling the 
neighboring regions to participate in binding. So 
basically, it is evident that Region I and III should be 
accounted for while figuring 
out the pharmacophore model to be used in virtual 
screening. 

Regions I and III are comprised of the hydrophobic 
features (yellow spheres) for inhibitor NVP-HDM201 
as presented in Figure 3, panel b. A pharmacophoric 
query was then generated using a shared feature 
model obtained from overlapping features of seven 
clinical trial inhibitor molecules listed in Table 1. A 
three feature pharmacophore model was obtained 
(Figure 3, panel c), consisting of three hydrophobic 
groups and utilized it in the virtual screening process. 
Indeed, the three hydrophobic features (yellow 
spheres) enclose the essential domains of MDM2 
(regions I and III).  

Before proceeding with the virtual screening, the 
model should be first validated. The model should 
successfully retrieve the active compounds from a 
database, i.e. differentiate between the actives and 
inactives (decoys). For this purpose a ROC (receiver 
operating characteristics) curve, which is a graphic 
representation of the relation existing between the 
sensibility and the specificity of a test, is plotted. 
Fraction of true positive rate (TPR) out of the total 
actual positives are plotted against the fraction of false 
positive rate (FPR) out of the total actual negatives. 
TPR (sensitivity) and FPR (specificity) are stated as 
follows: 
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Figure 3. Pharmacophoric features overlapping with the 
essential hinge regions (Regions I and III) in MDM2 (a) 
Mean-square fluctuations of MDM2 in the presence of 
inhibitors (b) Pharmacophore model generated with NVP-
HDM-201 inhibitor consisting of 4 hydrophobic regions 

(yellow spheres) and 5 hydrogen bond acceptor groups (red 
arrows) (c) Shared feature pharmacophore used in virtual 
screening. Three features that are common in all seven 
inhibitors are the three hydrophobic regions overlapping 
with the essential binding regions (Region I and III). 

TPR (sensitivity) =  TP/(TP+FN) (6) 

FPR (specificity) = TN/(TN+FP) (7) 

where, TN and TP are true negative and true positive 
values; and FN and FP are false negative and false 
positive values respectively [62, 63]. In this case, we it 
will be used for checking whether the pharmacophore 
model based virtual screening is able to differentiate 
active ligands from the inactive ligands (decoys). The 
area under the curve (AUC) can also be used to test the 
efficiency of the method. An excellent model has AUC 
near 1 which means it has a good measure of 
separability. A poor model has an AUC near 0 which 
means it has the worst measure of separability [64]. 
The ROC curve is plotted using Ligand Scout virtual 
screening module, prior to screening (you may refer to 
Appendix A, Figure A.1.). The active set was prepared 
with 23 molecules obtained from literature for which 
the activity data exists for inhibition of MDM2. The 
decoy set was 9067 compounds (from DrugBank) with 
unknown activity against MDM2. The ROC plot 
indicated that AUC= 0.99 and Enrichment Factor (EF)= 
22, which means that the model is rational and will be 
able to distinguish between positive class and 
negative class [29]. EF value of 22 means, we observe 
22 times more active compounds in the top 1% of our 
results. 

3.2. Virtual Screening and Capturing Hit Molecules 

The Drug Bank [53] library of small molecules which 
consist of 9067 drug and drug-like compounds for 
which 3-D structure exists was screened and 2177 
hits, which match the 3-feature pharmacophore model 
validated by statistical and ENM based models, were 
obtained. As a prefilter the ligands that do not obey 
Lipinski’s Rule of Five were removed and also the 
value of the polar surface area is maintained to be less 
than or equal to 140 Å. The number of hits retrieved 
were 267 to be docked into MDM2 binding pocket. 
Pre-docking by Autodock Vina which was 
incorporated in the Ligand Scout 4.4.7 was employed. 
The grid box was generated based on the pdb 
structure of NVP-HDM201 (pdb code: 5OC8). Docking 
resulted in totally 2351 different conformations 
together with corresponding binding affinity values. 
The strong binders were retrieved with binding 
affinity values less than -8.5 kcal/mol. Top 10% of 
highest affinity molecules (~186 molecules) were 
then docked with Glide SP (standart precision) and XP 
(extra precision) which were rigid docking strategies 
as well. Both SP and XP relies on empirical scoring 
functions. Glide XP performs with a more extensive 
sampling as compared to SP and uses more 
sophisticated scoring function for prediction of 
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binding affinities [57]. Since MDM2 is shown to 
possess an induced-fit mechanism upon binding, top 
10 good scoring molecules were then re-docked by 
using ENM-guided IFD protocol (induced fit docking) 
of Schrödinger. At the final stage, more thorough free 
energy of binding calculations were performed by 

MM-GBSA method which was processed by using IFD
best scoring conformations. The ten hit compounds
retrieved together with the corresponding docking
scores and MM-GBSA binding free energy values are
enlisted in Table 2 in comparison with the clinical trial
inhibitors.

Table 2. Glide SP/XP/IFD docking scores and MM-GBSA binding free energy results of highest scoring 10 hit molecules 
DrugBank  

ID 
Brand name Approved/ 

investigational 
Glide-SP 
DScore 
(kcal/mol) 

Glide-XP 
DScore 
(kcal/mol) 

Induced-Fit 
DScore  
(kcal/mol) 

MM-
GBSA 
(kcal/
mol) 

Clinical NVP-HDM201  
(Siremadlin)  

Clinical trials for MDM2 
inhibition 

-11.1 -11.3 -12.4 -90.8 

Clinical NVP-CGM097 Clinical trials for MDM2 
inhibition 

-9.9 -10.1 -10.8 -83.5 

Clinical Nutlin3 Clinical trials for MDM2 
inhibition 

-8.9 -9.4 -10.2 -70.3 

06666 Lixivaptan Clinical trials for 
treatment hyponatremia 
and congestive heart 
failure 

-9.0 -9.5 -12.7 -94.3

04016 not available experimental -11.0 -10.2 -13.7 -86.0
04852 Implitapide Clinical trials for 

treatment of 
atherosclerosis 

-8.9 -9.7 -10.1 -81.6 

00637 Astemizole Approved/ withdrawn 
for treatment of allergy 
symptoms 

-8.7 -8.3 -9.3 -79.7 

16266 Olodanrigan Clinical trials for 
treatment of diabetic 
neuropathies 

-8.5 -8.9 -9.8 -79.6 

11399 Slentrol, dirlotapide Approved for managing 
obesity in dogs (not for 
human use) 

-9.5 -9.3 -9.9 -78.2 

11787 Ralimetinib Clinical trials for 
treatment of breast and 
ovarian cancer 

-8.1 -7.6 -8.9 -72.5 

02668 JE-2147 tigecycline experimental -8.3 -9.5 -12.1 -70.0 

12457 Rimegepant Approved for treatment 
of migraines 

-8.8 -8.1 -8.4 -64.2 

09280 Lumacaftor Approved for treatment 
of cystic fibrosis 

-7.3 -6.9 -7.7 -42.4 

Most potent clinical trial molecules for MDM2 
inhibition (NVP-HDM201, NVP-CGM097 and nutlin3) 
are given in the first three rows. Out of ten hits, two 
compounds (DB 06666 and DB 04016) step forward 
in terms of better MM-GBSA and docking scores 
(values indicated in bold) as compared to potent 
clinical trial molecules. For sure, the more negative the 
values of MM-GBSA binding free energy and docking 
score, the stronger the compound would bind to the 
target. Hence compounds DB 06666 (lixivaptan) and 
DB 04016 are expected to have promising potencies as 
compared to the clinical trial compounds and deserves 
further experimental validation.   

Pharmacophore model mapping together with 3-D 
and 2-D interactions of the two hit compounds (DB 
06666 and DB 04016) are depicted in Figures 4 and 5, 

respectively. Investigation of the interactions 
accomplished by DB 06666 (lixivaptan) reveals that in 
addition to hydrogen bonding accomplished between 
His 96 of MDM2 and pyrrolidine ring of the inhibitor 
NVP-HDM201, lixivaptan exhibits additional 
interactions (Figure 4). His 96 of MDM2 makes 
hydrogen bonding with –NH group that lies between 
the chlorophenyl and fluorophenyl ring groups of 
lixivaptan. At the same time, pi-cation and pi-pi 
stacking interactions are also detected between His 96 
and the chlorophenyl ring of lixivaptan. Other than His 
96, Tyr 100 residue is inspected to participate in pi-pi 
stacking interaction with the fluorophenyl group of 
lixivaptan (Figure 4b and 4c). These interactions 
would have positive contributions to the total binding 
free energy and stability of lixivaptan in the binding 
site.  
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The crucial role of Tyr 100 in the active site 
interactions was previously discussed and mentioned 
in literature [37]. Its participation would enhance the 
stability of the complex which agrees with the findings 
obtained here. As a result, lixivaptan interacts with 
MDM2 through helix-4 residues, namely His 96 and 
Tyr 100. The mapping of the other leading hit 
compound DB 04016 onto the pharmacophore model 
together with the binding site interactions are 
depicted in Figure 5. Investigation of the interactions 
of compound DB 04016 with MDM2 revealed that His 
96 participates in pi-pi stacking and pi-cation 
interactions, additionally, His 96 together with Lys 94 
creates salt-bridges with DB 04016 (Figure 5b and 5c). 
Gln 72 and Leu 54 contribute to hydrogen bonding 
reaching the compound DB 04016, by the help of 
surrounding water molecules. Overall, DB 04016 
interacts through all essential residues mentioned in 
literature, namely Gln 72, Leu 54, Lys 94 and His 96 
that are known to contribute to the majority of the 
binding free energy in the active site.  

3.3. Drug-likeness and molecular properties of the 
two leading hit compounds  

Lixivaptan (DB 06666) belongs to the class of 
benzanilides, which are aromatic compounds 
containing an anilide group. It is investigated for 
use/treatment in hyponatremia and congestive heart 
failure (65, 66). DB 04016 is an experimental 
compound belonging to the class of organic 
compounds known as stilbenes. It is known to interact 
with Cathepsin G (Serine-type endopeptidase) found 
in human which has antibacterial activity; and with 
Chymase (Serine-type peptidase) again in human 
which is suspected to play roles in vasoactive peptide 
generation, extracellular matrix degradation, and 
regulation of gland secretion [65-67]. 

Several molecular descriptors (molecular weight, 
solubility, lipophilicity, topological polar surface area, 
plasma protein binding and human intestinal 
absorption) are tabulated for these two leading hit 
compounds and compared with two potent MDM2 
inhibitors (Table 3). Values are obtained using AlogPS 
[68] and PreAdmet [69].The molecular property
values of the two leading hit molecules are found to be
in acceptable ranges for drug-likeness. Figure 4. Pharmacophore model alignment (a), 3-D (b) and 

2-D (c) interactions of the hit compound DB 06666 
(lixivaptan) in the binding site

Table 3. Molecular properties of two potent MDM2 inhibitors and two leading hit compounds 
Molecule Mol.W. (g/mol) Log S a (Alogps) Log P b (Alogps) TPSA c (Å) P.prot.bind d (%) 
NVP-CGM097 659.3 -5.3 6.6 65.6 88.0 
NVP-HDM201 555.4 -4.8 4.19 102.68 92.3 
DB 06666 473.9 -6 4.99 54.34 92.1 
DB 04016 670.6 -6.7 4.49 115.22 100 

a log S: pure water solubility (log S ≤  -6.0 insoluble; -4.0 
≤logS ≤-6.0 moderately soluble) 
b log P: lipophilicity (suitable if ≤ 5)  
c topological polar surface area (suitable if ≤ 140 Å2) 

d plasma protein binding (strong binder if ≥ 90%) 
e human intestinal absorption (well absorbed if ≥ 70%) 



N. Kantarci-Carsibasi/ Pharmacophore Model Guided by Conformational Dynamics Reveals Potent Anticancer Agents

60 

Figure 5. Pharmacophore model alignment (a), 3-D (b) and 
2-D (c) interactions of the hit compound DB 04016 in the 
binding site 

4. Discussion and Conclusion

The absence of an FDA-approved drug yet, inspires 
drug development studies to be targeted on the MDM2 
protein. In this study, an ENM-guided pharmacophore 
model generation and validation based on shared 
features among the seven potent clinical trial MDM2 

inhibitor molecules was presented. This model was 
then used to screen the Drug Bank database for which 
3-D structures exist. Due to the intrinsically
disordered dynamics of MDM2, induced-fit docking
was preferred together with other docking methods in
the filtration of database. The binding modes obtained
from the ENM simulations were also used in the
creation of the IFD protocol. Lipinski rule of five and
polar surface area criterion were applied for the
elimination. Advanced free energy of binding
calculations by MM-GBSA scoring functions helped to
identify top ranked hit molecules which have high
affinity towards MDM2. MM-GBSA calculations
performed over docking trajectory provided useful
knowledge about binding free energies. Further
studies may be conducted with Molecular Dynamics
(MD) Simulations and MM-GBSA culculations may also
be performed concerning MD trajectories. It was
worth noting besides their high docking scores, the
two leading hits obtained (DB 06666 and DB 04016)
have extra intermolecular interactions with MDM2
which indicates a stable complex formation as
compared to the clinical trial MDM2 inhibitors. Having
molecular properties in suitable ranges contributes
positively for the hit compounds to be drug-like and
can be further tested by in vitro experiments. The
combined computational strategy employed in this
study may serve as a useful tool in the initial step of
drug design or drug-repurposing which would
contribute to saving time and money.

Acknowledegements 

Helpful suggestions of Dr. Abdulillah Ece from Biruni 
University Pharmacy Department and technical 
supports of Rita Podzuna from Schrödinger Inc. are 
gratefully appreciated.  

References 

[1] Ferlay, J., Colombet, M., Soerjomataram, I. 2019.
Estimating the global cancer incidence and mortality
in 2018: Globocan sources and methods. International
Journal of Cancer, 144 (8), 1941-1953.

[2] Siegel, R. L., Miller, K. D., Jemal, A. 2016. Cancer
statistics. CA Cancer Journal for Clinicians 2016, 66, 7-
30.

[3] Singh, S., Sharma, B., Kanwar, S., Kumar, A. 2016.
Lead phytochemicals for anticancer drug
development. Frontiers in Plant Science, 7, 1667.

[4] Choudri, A. S., Mandave, P. C., Deshpande, M.,
Ranjekar, P., Prakash, O. 2020. Phytochemicals in
cancer treatment: From preclinical studies to clinical
practice. Frontiers in Pharmacology, 10, 1614.

[5] Khoo, K. H., Verma, C. S., Lane, D. P. 2014. Drugging
the p53 pathway: understanding the route to clinical
efficacy. Nature Reviews Drug Discovery,13, 217-236.

[6] Lane, D. P. 1992. P53, guardian of the
genome. Nature, 358, 15–16.



N. Kantarci-Carsibasi/ Pharmacophore Model Guided by Conformational Dynamics Reveals Potent Anticancer Agents

61 

[7] Skalniak, L., Surmiak, E., Holak, T. A. 2019. A
therapeutic patent overview of MDM2/X-targeted
therapies (2014-2018). Expert Opinion on
Therapeutic Patents, 29 (3), 151-170.

[8] Momand, J. G., Zambetti, P., Olson, D. C., Donna, G.,
George, D., Levine, A. J. 1992. The MDM2 oncogene
product forms a complex with the p53 protein and
inhibits p53 mediated transactivation. Cell, 69 (7),
1237-1245.

[9] Roth, J., Dobbelstein, M., Freedman, D., Shenk, T.,
Levine, A. J. 1998. Nucleo-cytoplasmic shuttling of the
hdm2 oncoprotein regulates the levels of the p53
protein via a pathway used by the human
immunodeficiency virus rev protein. Embo Journal,
17, 554-564.

[10] Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., 
Podlaski, F. 2001. In vivo activation of the p53
pathway by small-molecule antagonists of MDM2.
Science, 303, 844-8.

[11] Vu, B., Wovkulich, P., Pizzolato, G., Lovey, A., Ding,
Q., Jiang, N. 2013. Discovery of RG7112: a small-
molecule MDM2 inhibitor in clinical development. ACS
Medicinal Chemistry Letters, 4, 466−9.

[12] Ding, Q., Zhang, Z., Liu, J. J., Jiang, N., Zhang, J., Ross,
T. M. 2013. Discovery of RG7388, a potent and
selective p53-MDM2 inhibitor in clinical development.
Journal of Medicinal Chemistry, 56, 5979-83.

[13] Bill, K. L. J., Garnett, J., Meaux. I., Creighton, C. J.,
Bolshakov, S., Barriere, C. 2016. SAR405838: a novel
and potent inhibitor of the MDM2: p53 Axis for the
treatment of dedifferentiated liposarcoma. Clinical
Cancer Research, 22, 1150-60.

[14] Sun, D.,  Li, Z., Rew, Y., Gribble, M., Bartberger, M.
D., Beck, H. P. 2014. Discovery of AMG 232, a potent,
selective, and orally bioavailable MDM2-p53 inhibitor
in clinical development. Journal of Medicinal
Chemistry, 57, 1454-72.

[15] Holzer, P., Masuya, K., Furet, P., Kallen, J., Valat-
Stachyra, T., Ferretti, S., Berghausen. J. 2015. Discovery
of a dihydroisoquinolinone derivative (NVP-CGM097):
a highly potent and selective MDM2 inhibitor
undergoing phase 1 clinical trials in p53wt tumors.
Journal of Medicinal Chemistry, 58, 6348-58.

[16] Stachyra-Valat, T., Baysang, F., D'Alessandro, A. C.,
Dirk, E., Furet, P. 2016. HDM201: biochemical and
biophysical profile of a novel highly potent and
selective PPI inhibitor of p53-Mdm2. Cancer Research,
76, 1239.

[17] Talevi, A., Bellera, C. L. 2020. Challenges and
opportunities with drug repurposing: finding
strategies to find alternative uses of therapeutics.
Expert Opinion in Drug Discovery, 15(4), 397-401.

[18] Parvathaneni, V., Kulkarni, N. S., Muth, A., Gupta,
V. 2019. Drug repurposing: a promising tool to
accelerate the drug discovery process. Drug Discovery
Today, 24(10), 2076-2085.

[19] Pushpakom, S., Iorio, I., Eyers, P. A., Escott, K. J.,
Hopper, S., Wells, A., Doig, A. 2019. Drug repurposing:
progress, challanges, and recommendations. Nature
Reviews Drug Discovery, 18, 41-58.

[20] Tiwari, S., Reuter, N. 2018. Conservation of
intrinsic dynamics in proteins-what have
computational models taught us. Current Opinion in
Structural Biology, 50, 75-81.

[21] Bahar, I., Lezon, T. R., Yang, L. W., Eyal, E. 2010.
Global dynamics of proteins: bridging between
structure and function. Annual Reviews in Biophysics,
39, 23-42.

[22] Kantarci-Carsibasi, N., Haliloglu, T., Doruker, P.
2008. Conformational transition pathways explored
by monte carlo simulations integrated with collective
modes. Biophysical Journal, 95 (12), 5862-5873.

[23] Haliloglu, T., Bahar, I., Erman, B. 1997. Gaussian
Dynamics of folded proteins, Physical Review Letters,
79, 3090-3093.

[24] Bahar, I., Atilgan, A. R., Demirel, M. C., Erman, B.
1998. Vibrational dynamics of folded proteins:
Significance of slow and fast motions in relation to
function and stability. Physical Review Letters, 80,
2733-2736.

[25] Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel,
M. C., Keskin, O., Bahar, I. 2001. Anisotropy of
fluctuation dynamics of proteins with an elastic
network model. Biophysical Journal, 80, 505-515.

[26] Lu, S. H., Wu, J. W., Liu, H. L., Zhao, J. H. 2011. The
discovery of potential acetylcholinesterase inhibitors:
a combination of pharmacophore modeling, virtual
screening, and molecular docking studies. Journal of
Biomedical Science, 18 (1), 8.

[27] Dhanjal, J. K., Sharma, S., Grover, A., Das, A. 2015.
Use of ligand-based pharmacophore modeling and
docking approach to find novel acetylcholinesterase
inhibitors for treating Alzheimer's. Biomedicine
Pharmacotherapy, 71, 146-52.

[28] Malik, R., Mehta, P., Srivastava, S., Choudhary, B.
S., Sharma, M. 2017. Structure-based screening,
ADMET profiling, and molecular dynamic studies on
mGlu2 receptor for identification of newer
antiepileptic agents. Journal of Biomolecular Structure
and Dynamics, 35(16), 3433-3448.

[29] Ece, A. 2020. Towards more effective
acetylcholinesterase inhibitors: a comprehensive
modelling study based on human acetylcholinesterase
protein-drug complex. Journal of Biomolecular
Structure and Dynamics, 38 (2), 565-572.

[30] Alamri, M. A., Alamri, M. A. 2019. Pharmacophore
and docking-based sequential virtual screening for the
identification of novel Sigma 1 receptor ligands.
Bioinformation, 15(8), 586-595.



N. Kantarci-Carsibasi/ Pharmacophore Model Guided by Conformational Dynamics Reveals Potent Anticancer Agents

62 

[31] Moussa, N., Hassan, A., Gharaghani, S. 2021.
Pharmacophore model, docking, QSAR, and molecular
dynamics simulation studies of substituted cyclic
imides and herbal medicines as COX-2 inhibitors.
Heliyon, 7(4), e06605.

[32] Yuce, M., Cicek, E., Inan, T., Dag, A. B., Kurkcuoglu,
O., Sungur, F. A. 2021. Repurposing of FDA-approved
drugs against active site and potential allosteric drug-
binding sites of COVID-19 main protease. Proteins:
Structure Function and Bioinformatics, 89(11), 1425-
1441.

[33] Aydin, G. M., Paksoy, N., Orhan, M. D., Avsar, T.,
Yurtsever, M., Durdagi, S. 2020. Proposing novel
MDM2 inhibitors: Combined physics-driven high-
throughput virtual screening and in vitro
studies. Chemical Biology and Drug Design,
96, 684– 700.

[34] Chen, J., Wang, J., Zhu, W. A. 2013. Computational
analysis of binding modes and conformational
changes of MDM2 induced by p53 and inhibitor
bindings. Journal of Computer Aided Molecular
Design, 27, 965-974.

[35] Chene, P. 2004. Inhibition of the p53-MDM2
interaction: targeting a protein-protein interface,
Molecular Cancer Research, 2, 20-28.

[36] Das, P., Mattaparthi, V. 2020. Computational
investigation on the p53-MDM2 interaction using the
potential of mean force study. ACS Omega, 5, 8449-
8462.

[37] Dasdidar, S. G., Lane, D. P., Verma, C. S. 2009.
Modulation of p53 binding to MDM2: computational
studies reveal important roles of Tyr100. BMC
Bioinformatics, 10(Suppl 15), S6.

[38] Estrada-Ortiz, N., Neochoritis, C. G., Dömling, A.
2016. How to design a successful p53-MDM2/X
interaction inhibitor: a thorough overview based on
crystal structures. Chem Med Chem, 1, 757–772.

[39] Atatreh, N., Ghattas, M. A., Bardaweel, S. K.,
Rawashdeh, S. A., Sorkhy, M. A. 2018. Identification of
new inhibitor of MDM2-p53 interactions via
pharmacophore and structure-based virtual
screening. Drug Design Development and Therapy, 12,
3741-3752.

[40] Pantelopus, G. A., Mukherjee, S., Voelz, V. A. 2015.
Microsecond simulations of MDM2 and its complex
with p53 yield insight into force field accuracy and
conformational Dynamics. Proteins, 83, 1665-1676.

[41] Zhao, P., Cao, H., Chen, Y., Zhu, T. 2019. Insights
into the binding mechanisms of inhibitors of MDM2
based on molecular dynamics simulations and binding
free energy calculations. Chemical Physics Letters,
728, 94-101.

[42] Chen, J., Wang, J., Zhu, W. A. 2013. Computational
analysis of binding modes and conformational
changes of MDM2 induced by p53 and inhibitor
bindings. Journal of Computer Aided Molecular
Design, 27, 965-74.

[43] Zou, R., Zhou, Y., Wang, Y., Kuang, G. 2020. Free
Energy Profile and Kinetics of Coupled Folding and
Binding of the Intrinsically Disordered Protein p53
with MDM2. Journal of Chemical Information and
Modeling, 60(3),1551-1558.

[44] Kantarci-Carsibasi, N. 2021. Elucidation of
conformational dynamics of MDM2 and alterations
induced upon inhibitor binding using elastic network
simulations and molecular docking. Journal of
Computational Biophysics and Chemistry, 20 (7), 751-
763.

[45] Schrödinger. 2015. Small-molecule drug
discovery suite (version 2015-3). New York, NY:
Schrödinger, LLC.

[46] Schrödinger. 2018. Maestro (version 2018-4).
New York, NY: Schrödinger, LLC.

[47] Sastry, G., Adzhigirey, M., Day, T., Annabhimoju,
R., Sherman, W. 2013. Protein and ligand preparation:
parameters, protocols, and influence on virtual
screening enrichments. Journal of Computer Aided
Molecular Design, 27 (3), 221-234.

[48] Jorgensen, W. L., Tirado-Rives, J. 1988. The OPLS
(optimized potentials for liquid simulations) potential
functions for protein, energy minimizations for
crystals of cyclic peptides, and crambin. Journal of
American Chemical Society, 118(45), 1657-1666.

[49] Shelly, J. C., Cholleti, A., Frye, L. L., Greenwood, J.
R., Timlin, M. R., Uchimaya, M. 2007. Epik: a software
program for pK a prediction and protonation state
generation for drug-like molecules Journal of
Computer Aided Molecular Design, 21 (12), 681-691.

[50] Langer, T., Hoffmann, R., Bachmair, F., Begle, S.
2000. Chemical function based pharmacophore
models as suitable filters for virtual screening. Journal
of Molecular Structure, 503, 59.

[51] Wolber, G., Langer, T. 2005. LigandScout: 3-D
pharmacophores derived from protein-bound ligands
and their use as virtual screening filters. Journal of
Chemical Informationa and Modeling, 45(1), 160–169.

[52] Halgren, T. A. 1996. Merck molecular force field:
Basis, form, scope, parameterization, and performance
of MMFF94. Journal of Computational Chemistry,
17 (5–6), 490-519.

[53] Wishart, D. S., Knox, C., Guo, A. C. 2006. Drug Bank:
a comprehensive resource for in silico drug discovery
and exploration. Nucleic Acids Research, 34, 668-672.

[54] Lipinski, C. A. 2000. Drug-like properties and the
causes of poor solubility and poor permeability.
Journal of Pharmacology Toxicology Methods, 44(1),
235-249.



N. Kantarci-Carsibasi/ Pharmacophore Model Guided by Conformational Dynamics Reveals Potent Anticancer Agents

63 

[55] Trott, O., Olson, A. J. 2009. AutoDock Vina:
Improving the Speed and Accuracy of Docking with a
New Scoring Function, Efficient Optimization, and
Multithreading. Journal of Computational Chemistry,
31(2), 174-82.

[56] Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren
T. A. 2004. Glide: a new approach for rapid, accurate
docking and scoring: 1. method and assessment of
docking accuracy. Journal of Medicinal Chemistry, 47
(7), 1739-1749.

[57] Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye,
L. L., Greenwood, J. R. 2006. Extra precision glide:
Docking and scoring incorporating a model of
hydrophobic enclosure for protein-ligand complexes.
Journal of Medicinal Chemistry, 49 (21), 6177-6196.

[58] Clark, A. J., Tiwary, P., Borrelli, K., Feng, S., Miller,
E. B. 2016. Prediction of Protein-Ligand Binding Poses
via a Combination of Induced Fit Docking and
Metadynamics Simulations. Journal of Chemical
Theory and Computation, 12 (6), 2990-2998.

[59] Rastelli, G., Del Rio, A., Degliesposti, G., Sgobba, M.
2010. Fast and accurate predictions of binding free
energies using MM-PBSA and MM-GBSA. Journal of
Computational Chemistry, 31(4),797-810.

[60] Hou, T., Wang, J., Li, Y., Wang, W. 2011. Assessing
the performance of the molecular mechanics/Poisson
Boltzmann surface area and molecular
mechanics/generalized Born surface area methods. II.
The accuracy of ranking poses generated from
docking. Journal of Computational Chemistry, 32(5),
866-77.

[61] Jianing, L., Abel, R., Zhu, K., Cao, Y., Zhao, S.,
Friesner, R. A. 2011. The VSGB 2.0 model: A next
generation energy model for high resolution protein
structure modeling. Proteins, 79 (10), 2794-2812.

[62] Walter, S. D. 2005. The partial area under the ROC
curve. Statistics in Medicine; 24:2025-40.

[63] Basu, S., Wallner, B. 2016. Finding correct
protein-protein docking models using PRoQDock.
Bioinformatics, 32 (12), i262-i270.

[64] Truchon, J. F., Bayly, C. I. 2007. Evaluating virtual
screening methods: good and bad metrics for the
"early recognition" problem. Journal of Chemical
Information and Modeling, 47(2), 488-508.

[65] Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J.,
Bryant, S. H. 2009. PubChem: a public information
system for analyzing bioactivities of small molecules.
Nucleic Acids Research, 37, 623–633.

[66] Kim, S., Chen, J., Cheng, T. 2021. PubChem in 2021:
new data content and improved web
interfaces. Nucleic Acids Research, 49(D1), D1388–
D1395.

[67] Overington, J. P., Al-Lazikani, B., Hopkins, A. L.
2006. How many drug targets are there? Nature
Reviews Drug Discovery, 5(12), 993-996.

[68] Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A.
2005. Virtual computational chemistry laboratory
design and description. Journal of Computer Aided
Molecular Design, 19, 453-463.

[69] Lee, S. K., Lee, I. H., Kim, H. J., Chang, G. S., Chung,
J. E., No, K. T. 2003. The PreADME Approach: web-
based program for rapid prediction of
physicochemical, drug absorption and drug-like
properties. Euro QSAR 2002 designing drugs and crop
protectants: processes, problems and solutions,
Blackwell Publishing, Massachusetts, USA. 418–420.

Appendix A 

Figure A.1. Receiver operating characteristics (ROC) curve 
indicating the efficiency of the pharmacophore model used 
in virtual screening.  




