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Abstract. In this research, the minimal and maximal operators defined by

q- difference expression are given in the Hilbert space L2
q(0,∞). The existence

problem of a q−1-normal extension for the minimal operator is mentioned. In

addition, the sets of the minimal operator spectrum and the maximal operator
spectrum are examined.

1. Introduction

The q-analysis first appeared in the 1740s, when Euler launched the division the-
ory, also called the total analytic number theory, Euler wrote and compiled works
in the early 1800s [4]. The advancement of q-calculus continued in 1813 under the
study of Gauss, who gave the hypergeometric series and their interrelationships [5].

The study of quantum calculus, or q-calculus, which has been going on for 300
years since Euler, has often been regarded as one of the most difficult topics to
deal with in mathematics. Today, due to its use in a variety of areas, such as
mathematics, physics, rapid progress is being made in studies in the field of q-
calculus. The working history of q- analysis, quantum mechanics, theta functions,
hypergeometric functions, analytic number theory, finite difference theory, Mock
theta functions, Bernoulli and Euler polynomials, gamma function theory has a
wide variety of applications in combinatorics. Moreover, there is the application
of the q-difference operator to thermodynamics. It has been demonstrated that
the formalization of the q-calculus may be used to realize the thermodynamics of
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the q-deformed algebra. It is found that if it is used a suitable Jackson deriva-
tive instead of the ordinary thermodynamic derivative, then the entire structure of
thermodynamics is maintained [9]. For some numerous contributions the history
of q-calculus, fundamental principles, and fundamentals of q-differential equations,
the key books [3], [8] and [1] can be cited.

Moreover, a closed linear operator T with dense domain on any Hilbert space is
said formally q-normal operator iff D(T ) ⊂ D(T ∗) and

TT ∗ = qT ∗T.

When D(T ) = D(T ∗) is satisfied for a formally q-normal operator, then T said a
q-normal operator. Moreover, q-normal operators appear in quantum group theory
in the study of the hermitean quantum plane and of quantum groups. For instance,
the q-deformed quantum plane C1

q is a ∗-algebra with one generator T such that
TT ∗ = qT ∗T [10]. Definitions of these and other classes which are called q-deformed
operators was given and investigated by Ota [10], for detail analysis see [2, 11–14].

2. The Minimal and Maximal Operators L2
q (0,+∞)

Suppose that L2
q(0,+∞) is defined as

L2
q (0,+∞) =

{
u : [0,+∞) → C :

+∞
∫
0

|u (t)|2dqt = (1− q)

+∞∑
k=−∞

qk
∣∣u (qk)∣∣2 < +∞

}
.

L2
q(0,+∞) is a linear vector space with equivalent classes, which are defined for

two functions u and v in the same equivalent class iff u
(
qk
)
= v

(
qk
)
, k ∈ Z. Also

L2
q(0,+∞) is separable and its the inner product is follows [1]

(u, v)L2
q(0,+∞) :=

+∞
∫
0

u (t) v (t)dqt , u, v ∈ L2
q (0,+∞) .

In addition, Jackson reintroduced the q-difference operator [7] and he defined as

Dqu (t) =
u (t)− u (qt)

(1− q)t
, t ̸= 0

and also the q-derivative for t = 0 is defined for |q| < 1 as

Dqu (0) = lim
n→+∞

u (tqn)− u (0)

tqn
, t = 0,

if there is the limit and it is independent of t.
Note that we have assume 0 < q < 1 for this paper.

Corollary 1. If u ∈ L2
q (0,+∞), then lim

n→+∞
u
(

1
qn

)
= 0.

Proposition 1. If Dqu (t) ∈ L2
q (0,+∞), then the limit lim

n→+∞
u (qn) exists.
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Proof. Let Dqu (t) be in L2
q (0,+∞). Because the characteristic function χ[0,1] ∈

L2
q (0,+∞) and(

Dqu, χ[0,1]

)
L2

q(0,+∞)
=

+∞
∫
0

χ[0,1] (t)Dqu (t) dqt

= (1− q)

+∞∑
k=0

qk
u
(
qk
)
− u

(
qk+1

)
(1− q) qk

=

+∞∑
k=0

u
(
qk
)
− u

(
qk+1

)
= lim

n→+∞

n∑
k=0

u
(
qk
)
− u

(
qk+1

)
= u(1)− lim

n→+∞
u (qn) ,

are true, the limit lim
n→+∞

u (qn) exists. □

First of all, we give the abstract definition of maximal and minimal operators
for differential operators [6]. Suppose that Ω is an n-dimensional infinitely differ-
entiable manifold and a differential expression

p (.) =
∑

|α|⩽m

aαD
α,

where the coefficients aα are infinitely differentiable functions of x = (x1, . . . , xn).
Also, α ∈ Cn, |α| = α1 + . . .+ αn, D

α = Dα1
1 Dα2

2 . . . Dαn
n and Dk = 1

i
∂

∂xk
are de-

noted. The formal adjoint of the expression p(.) is the form p+ (.) =
∑

|α|⩽m

(−1)
|α|

aαD
α

in L2 (Ω). In this case, two operators

P0
′u = p(u), P0

′ : C∞
0 (Ω) ⊂ L2 (Ω) → L2 (Ω) ,

P+
0

′
u = p+(u), P+

0

′
: C∞

0 (Ω) ⊂ L2 (Ω) → L2 (Ω)

have closures in L2 (Ω) and these closures are denoted by P0 and P+
0 respectively.

The operator P0 is said as the minimal operator defined by the expression p. Sim-
ilarly, P+

0 is called the minimal operator defined by the differential expression p+.
The adjoint P of P+

0 is said the maximal operator generated by p. It is easy seen
that D(P0) = D(P+) and D(P ) = D(P+

0 ).

The q-derivative for multiplication of two functions u(t) and v(t) defined on
[0,+∞) is follows for all t ∈ (0,+∞)

Dq (uv) (t) = v (t)Dqu (t) + u (qt)Dqv (t) .
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This relation said q-product rule. It is obtain that

+∞
∫
0

Dq (uv) (t) dqt = (1− q)

+∞∑
k=−∞

qk

(
u
(
qk
)
v
(
qk
)
− u

(
qk+1

)
v
(
qk+1

)
(1− q) qk

)

=

+∞∑
k=−∞

u
(
qk
)
v
(
qk
)
− u

(
qk+1

)
v
(
qk+1

)
= lim

n,m→+∞

n∑
k=−m

u
(
qk
)
v
(
qk
)
− u

(
qk+1

)
v
(
qk+1

)
= lim

n,m→+∞
u
(
q−m

)
v
(
q−m

)
− u

(
q−m+1

)
v
(
q−m+1

)
+u
(
q−m+1

)
v
(
q−m+1

)
− u

(
q−m+2

)
v
(
q−m+2

)
+u
(
q−m+2

)
v
(
q−m+2

)
− . . .+ u

(
q−1
)
v
(
q−1
)

−u (1) v (1) + u (q) v (q) + . . .+ u (qn) v (qn)− u
(
qn+1

)
v
(
qn+1

)
= lim

n,m→+∞
u
(
q−m

)
v
(
q−m

)
− u (qn) v (qn)

= − lim
n→+∞

u (qn) v (qn)

is finite for any u (t) , v (t) , Dqu (t) , Dqv (t) ∈ L2
q ((0,+∞)). Because

(Dqu, v)L2
q(0,+∞) =

+∞
∫
0

Dqu (t) v (t)dqt (1)

= − lim
k→+∞

u
(
qk
)
v (qk)−

+∞
∫
0

u (t)Dqu (t)dqt

= − lim
k→+∞

u
(
qk
)
v (qk)− (1− q)

+∞∑
k=−∞

qku
(
qk+1

) u (qk)− u
(
qk+1

)
(1− q) qk

= − lim
k→+∞

u
(
qk
)
v (qk) + (1− q)

+∞∑
k=−∞

qk+1u
(
qk+1

) u (qk+1
)
− u

(
qk
)

(1− q) qk+1

= − lim
k→+∞

u
(
qk
)
v (qk)− (1− q)

+∞∑
k=−∞

qku
(
qk
) 1
q
Dq−1u (t)

= − lim
k→+∞

u
(
qk
)
v (qk) +

+∞
∫
0

u (t)−1

q
Dq−1v (t)dqt

= − lim
k→+∞

u
(
qk
)
v (qk) +

(
u,−1

q
Dq−1v

)
L2

q(0,+∞)

, (2)

the formal adjoint expression of the expression Dq is − 1
qDq−1 on L2

q (0,+∞).
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Now, let’s define the linear operators L0 : D0 ⊂ L2
q (0,+∞) → L2

q (0,+∞) of the
form L0u (t) = Dqu (t) where its domain is

D0 =

{
u ∈ L2

q (0,+∞) : Dqu (t) ∈ L2
q (0,+∞) and lim

k→+∞
u
(
qk
)
= 0

}
and L : D ⊂ L2

q (0,+∞) → L2
q (0,+∞) of the form L0u (t) = Dqu (t) where

D =
{
u ∈ L2

q (0,+∞) : Dqu (t) ∈ L2
q (0,+∞)

}
.

We say that these operators are the minimal operator and the maximal operator
generated by the q-difference expression, respectively. Moreover, L0 ⊂ L is obvious,
i.e. the maximal operator L is an extension of the minimal operator L0.

Theorem 1. The operator L0 is a formally q−1-normal operator on L2
q (0,+∞).

Proof. The set of functions

φm (t) :=


1

q
m
2
√
1− q

, t = qm

0, , otherwise
, m ∈ Z

is an orthogonal basis of L2
q (0,+∞) and this basis is clearly contained in D0.

Therefore, the minimal linear operator L0 has dense domain.
Now let’s show that the minimal operator is closed. Suppose that any sequence

{un} ⊂ D0 such that un −−−−→
n→∞

u and L0un −−−−→
n→∞

f . In this case,

∥un − u∥2L2
q(0,+∞) = (1− q)

+∞∑
k=−∞

qk
∣∣un

(
qk
)
− u

(
qk
)∣∣2 −−−−→

n→∞
0.

Because of the last relation, we have

lim
n→∞

un

(
qk
)
= u

(
qk
)

(3)

From this relation,

lim
n→+∞

un

(
qk
)
− un

(
qk+1

)
(1− q) qk

=
u
(
qk
)
− u

(
qk+1

)
(1− q) qk

= f
(
qk
)
, k ∈ Z.

is attained. Also, from (3) and the boundary condition at t = 0∣∣u (qk)∣∣ ⩽ ∣∣un

(
qk
)
− u

(
qk
)∣∣+ ∣∣un

(
qk
)∣∣ −−−−−−→

n,k→+∞
0

is true. This means that u ∈ D(L0) and Lu (t) = f . Therefore, the minimal linear
operator L0 is closed. On the other hand, D(L∗

0) = D and the following equations
can be easily obtained

∥L0u (t)∥2L2
q(0,+∞) =

+∞
∫
0

|Dqu (t)|2dqt
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= (1− q)

+∞∑
k=−∞

qk
∣∣Dqu

(
qk
)∣∣2

= (1− q)

+∞∑
k=−∞

qk

∣∣∣∣∣u
(
qk
)
− u

(
qk+1

)
(1− q) qk

∣∣∣∣∣
2

for any u ∈ D(L0). Also,

∥L∗
0u (t)∥

2
L2

q(0,+∞) =
+∞
∫
0

∣∣∣∣−1

q
Dq−1u (t)

∣∣∣∣2dqt
= (1− q)

+∞∑
k=−∞

qk
∣∣∣∣−1

q
Dq−1u

(
qk
)∣∣∣∣2

=
1

q2
(1− q)

+∞∑
k=−∞

qk

∣∣∣∣∣∣u
(
qk
)
− u

(
qk−1

)(
1− 1

q

)
qk

∣∣∣∣∣∣
2

=
1

q
(1− q)

+∞∑
k=−∞

qk−1

∣∣∣∣∣u
(
qk−1

)
− u

(
qk
)

(1− q) qk−1

∣∣∣∣∣
2

=
1

q
(1− q)

+∞∑
k=−∞

qk

∣∣∣∣∣u
(
qk
)
− u

(
qk+1

)
(1− q) qk

∣∣∣∣∣
2

.

is hold. As a result of the last equations for all u ∈ D(L0) ⊂ D(L∗
0)

∥L∗
0u∥ =

√
q−1 ∥L0u∥

is seen. This is completed the proof. □

Corollary 2. The minimal operator L0 is a maximal formally q-normal in L2
q (0,+∞).

Proof. Assume that L̃0 is a q-normal extension of L0, i.e. L0 ⊂ L̃0. Therefore, for

all u ∈ D(L̃0) = D(L̃0
∗
)(

L̃0u, u
)
L2

q(0,+∞)
−
(
u, L̃0

∗
u
)
L2

q(0,+∞)
= (Dqu, u)L2

q(0,+∞) −
(
u,−1

q
Dq−1u

)
L2

q(0,+∞)

= − lim
k→+∞

|u
(
qk
)
|2 = 0

is obtained from the equation (1). This means that D(L̃0) = D(L0) and L̃0 = L0.
However this is a contradiction. According to this result and Theorem 2.1, the
minimal operator L0 is a maximal formally q-normal operator in L2

q (0,+∞). □
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3. Spectrum Sets of the operators L0 and L

Theorem 2. The point spectrum set of L0 is

σp(L0) =

{
qm

1− q
: m ∈ Z

}
.

Proof. Suppose that a complex number λ is an element of the point spectrum of
L0. Therefore, there is a non-zero element u(t) corresponding to a complex number
λ in D(L0), which that satisfies the following equation

u
(
qk
)
− u

(
qk+1

)
(1− q) qk

= λu
(
qk
)
, k ∈ Z.

We gain that

u
(
qk+1

)
=
(
1− λ (1− q) qk

)
u
(
qk
)

(4)

for all k ∈ Z. If λ = 1
(1−q)qm for any m ∈ Z is true, then the eigenvector u(t) should

be defined as
u
(
qk
)
= 0, k ⩾ m+ 1

u
(
qk
)
=

( −1∏
i=k−m

1

1− qi

)
u (qm) , k ⩽ m− 1.

Since 0 < q < 1 and the limit

lim
k→−∞

∣∣1− qk
∣∣ = +∞

is true, a negative integer k0 is exist such that

−1∏
n=k0+1−m

1

|1− qn|
⩽ 1.

From this result and 0 < q < 1 it is get that

∥u∥2L2
q(0,+∞) =

+∞∑
k=−∞

qk
∣∣u (qk)∣∣2

=

m∑
k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

qk
∣∣u (qk)∣∣2

=

m∑
k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

qk

( −1∏
i=k−m

∣∣∣∣ 1

1− qi

∣∣∣∣2
)
|u (qm)|2

⩽
m∑

k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

qk
∣∣∣∣ 1

1− qk−m

∣∣∣∣2|u (qm)|2
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=

m∑
k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

qk
∣∣∣∣ q−k

q−k − q−m

∣∣∣∣2|u (qm)|2

=

m∑
k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

q−k

∣∣∣∣ 1

q−k − q−m

∣∣∣∣2|u (qm)|2 < +∞.

These prove that u(t) is an eigenvector corresponding to qm

1−q for m ∈ Z.

On the other hand, λ is different from 1
(1−q)qm for any m ∈ Z, then

u
(
qk
)
=

(
k−1∏
i=0

(
1− λ (1− q) qi

))
u (1) , k ∈ N.

Hence, u ∈ D0, u
(
qk
)
−−−−−→
k→+∞

0 iff there exists m ∈ N satisfied the following

equality

1− λ (1− q) qm = 0

must be supplied [15] or u(1) = 0. In this case, u(1) = 0 and so u = 0 is obtained

from the equation (4). These results imply that σr(L0) =
{

qm

1−q : m ∈ Z
}
. □

Theorem 3. The set of L0 residual spectrum is empty.

Proof. Assume that λ ∈ C is in σr (L0). Since L2
q (0,+∞) = R(L0 − λE) ⊕

Ker
(
L∗
0 − λ̄E

)
is provided, where E is the identity operator in L2

q (0,+∞), it

is clear that λ̄ ∈ σp (L
∗
0). Therefore, there exists an element u ∈ L2

q (0,+∞) , u ̸= 0
and

L∗
0u (t) = λ̄u (t) .

Therefore, we have

−1

q

u
(
qk
)
− u

(
qk−1

)(
1− 1

q

)
qk

=
u
(
qk
)
− u

(
qk−1

)
(1− q) qk

= λ̄u
(
qk
)

for all k ∈ Z. The following equation is obtained from this equation

u
(
qk−1

)
=
(
1− λ̄ (1− q) qk

)
u
(
qk
)

for all k ∈ Z. If λ̄ is equal to 1
(1−q)qm for any m ∈ Z, then

u
(
qk
)
= 0, k ⩽ m− 1

u
(
qk
)
=

(
k∏

i=m+1

1

1− qi−m

)
u (qm) , k ⩾ m+ 1
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is holds. Because
+∞∑

k=m+1

qk
(

k∏
i=m+1

1
1−qi−m

)2

converges to a complex number, the

function u(t) defined as above is an element of L2
q (0,+∞).

Otherwise, if λ̄ is not equal to 1
(1−q)qm for any m ∈ Z, then it must be u(1) ̸= 0

and

u
(
qk
)
=

(−k∏
i=0

(
1− λ̄ (1− q) q−i

))
u(1), k ⩽ 0.

But the limit lim
k→−∞

u
(
qk
)
does not exist when λ̄ is not equal to 1

(1−q)qm for any

m ∈ Z. As a result of these,

σr (L0) = ∅
is obtained.

□

Corollary 3. It is held that 0 ∈ σc(L0) for the minimal operator L0.

Corollary 4. The point spectrum and residual spectrum of L∗
0 are as follows

σp(L
∗
0) =

{
qm

1− q
: m ∈ Z

}
and σr(L

∗
0) = ∅.

Theorem 4. The point and continuous spectrum sets of the maximal operator are
in the form

σp (L) = C\ {0} and σc (L) = {0} .

Proof. Suppose that λ is a nonzero complex number. We deal with the solution of
following problem

(L− λE)u
(
qk
)
= 0, k ∈ Z.

It is written for any k ∈ Z

u
(
qk+1

)
=
(
1− λ (1− q) qk

)
u
(
qk
)
. (5)

If u
(
qk
)
are different from zero for all k ∈ Z, then we have

u
(
qk+1

)
=

(
k∏

n=0

(1− λ (1− q) qn)

)
u (1)

for all positive integer k. Since the infinite product
+∞∏
k=0

(
1− λ (1− q) qk

)
converges,

the sequence
{
u
(
qk
)}

k∈N is bounded. From this result the series
+∞∑
k=0

qk
∣∣u (qk)∣∣2 is

finite.
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In the case of negative integers, we gain

u
(
qk
)
=

( −1∏
n=k

(
1− λ (1− q) qk

)−1

)
u (1)

for all k ⩽ −1. Because the limit

lim
k→−∞

∣∣1− λ (1− q) qk
∣∣ = +∞ (6)

is true, it is clear that
−1∏

n=k−1

1

|1− λ (1− q) qn|
⩽ 1

for small enough negative integers k. This result give us the following inequality

qk
∣∣u (qk)∣∣2 = qk

( −1∏
n=k

1

|1− λ (1− q) qn|2

)
|u (1)|2

⩽ qk
1

|1− λ (1− q) qk|2
|u (1)|2

= qk
q−2k

|q−k − λ (1− q)|2
|u (1)|2

=
q−k

|q−k − λ (1− q)|2
|u (1)|2

for small enough negative integers k. Because of the limit (6) and the fact that the

geometric series
0∑

k=−∞
αq−k converges for 0 < q < 1, these results allow us that

the series
0∑

k=−∞
qk
∣∣u (qk)∣∣2 converges absolutely. These show us to conclude that

+∞∑
k=−∞

qk
∣∣u (qk)∣∣2 is convergent.

When u(qm+1) is equal to zero for an integer m ∈ Z, it is obtained that u(qk) = 0

for all k ⩾ m+1. We note that this condition includes the case of λ = q−m

1−q , m ∈ Z.
Moreover, the equation

u
(
qk
)
=

(
m−1∏
n=k

(1− λ (1− q) qn)
−1

)
u (qm)

is easily checked for all k < m. We already know that

m−1∑
k=−∞

qk

(
m−1∏
n=k

∣∣∣(1− λ (1− q) qn)
−1
∣∣∣2) |u (qm)|2
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is convergent. Because of all these reasons, we get that u(t) is an eigenvector of the
maximal operator L for λ ∈ C\ {0}.

If λ = 0, then returning to the equation (5) it must be u(t) = 0. This means
that zero is not an eigenvalue. Also, if 0 ∈ σr(L), then it must be 0 ∈ σp(L

∗)

because of L2
q (0,+∞) = R(L) ⊕ Ker (L∗). But, it can be easily proved that

0 /∈ σp(L
∗). Therefore, it must be σc (L) = {0} from the fact of the closeness of

the spectrum. □

Remark 1. It can be defined the two operators P0 and P defined by p(.) = d
dt

in L2(0,+∞) and these operators are called the minimal and maximal operators,
respectively. Also, their domains are as follows

D(P0) =
{
u ∈ L2 (0,+∞) : u′ ∈ L2 (0,+∞) and u (0) = 0

}
,

D(P ) =
{
u ∈ L2 (0,+∞) : u′ ∈ L2 (0,+∞)

}
.

The operator P0 is maximal formal normal. It means that there is not any normal
extension of L0. Moreover, the point and residual spectrum sets of P0 are σp(P0) =
∅ and σr(P0) = {λ ∈ C : Re(λ) > 0} and the spectrum parts of the maximal
operator P are σp(P ) = {λ ∈ C : Re(λ) < 0}, σr(P ) = ∅ and σc(P ) = {λ ∈ C :
Re(λ) = 0}.
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