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A BST R AC T  

Minimizing time step intervals of numerical solutions for mass-spring-damper system is one 

technique to reduce numerical errors, but it considerably increases the total computation cost. Using 

high resolution schemes for first and second derivatives rather than the first order accurate 

techniques is another way to reduce numerical errors. The central difference approach is a second-

order accurate scheme that can approximate first and second derivatives. Nevertheless, utilizing the 

central difference technique to approximate the first derivative does not contain current time step 

data. Approximation of the first derivative, on the other hand, should be based mostly on current 

time step data. When the current time step data are ignored to estimate the first derivative, 

considerable numerical inaccuracies arise, especially for some important points such as the usage 

of sharp external force. Approximation of the first derivative, the third order resolution scheme uses 

not only the next and previous time step values, but also the current and two prior time step data. 

To approximate the first and second derivatives, this paper presents combination of second order 

resolution scheme and third order accurate method. The proposed technique is more accurate than 

previous methods in terms of order of convergence. 
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Yüksek Çözünürlüklü Şemalar Kullanılarak Kütle-Yay-Damper 

Sisteminin Sayısal Simülasyonları 

ÖZ 

Kütle-yay-sönüm sistemi için sayısal çözümlerin zaman adımlarını küçültmek sayısal hataları 

azaltmak için bir tekniktir, ancak toplam hesaplama süresini önemli ölçüde artırır. Birinci dereceden 

doğruluktaki teknikler yerine birinci ve ikinci türevler için yüksek çözünürlüklü şemalar kullanmak, 

sayısal hataları azaltmanın başka bir yoludur. Merkezi fark yaklaşımı, birinci ve ikinci türevleri 

tahmin edebilen ikinci dereceden doğruluktaki bir şemadır. Bununla birlikte, birinci türevi tahmin 

etmek için merkezi fark tekniğini kullanmak, mevcut zaman adımı verilerini içermez. Birinci türevin 

yaklaşıklığı ise çoğunlukla mevcut zaman adımı verilerine dayanmaktadır. Birinci türevi tahmin 

etmek için mevcut zaman adımı verileri göz ardı edildiğinde, özellikle keskin dış kuvvet kullanımı 

gibi bazı önemli noktalarda önemli sayısal hatalar ortaya çıkmaktadır. Birinci türevin yaklaşıklığı, 
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üçüncü derece çözümleme şeması ile hesaplanırken, yalnızca sonraki ve önceki zaman adımı 

değerlerini değil, aynı zamanda mevcut ve iki önceki zaman adımı verileri de kullanılır. Birinci ve 

ikinci türevleri hesaplamak için, bu makale ikinci dereceden çözümleme şeması ve üçüncü 

dereceden doğruluktaki yöntemin bir kombinasyonunu sunmaktadır. Önerilen teknik, yakınsama 

derecesi açısından önceki yöntemlerden daha yüksek doğruluktadır. 

Anahtar Kelimeler: Yüksek çözünürlüklü şemalar, sonlu farklar yöntemi, kütle-yay-damper 

system 

1 Introduction 

A variety of engineering field applications has made extensive use of damper mass spring systems (Aly 

and Salem, 2013; Qureshi, 2021; Bandivadekar and Jangid, 2012). They can be classified into active 

and passive mechanical equipment, with springs and dampers functioning as examples of the former 

while various types of actuators and sensors operate as examples of the latter (Agharkakli et. al., 2012; 

Kahveci and Kolmanovsky, 2010). The applications of damper mass spring systems have attracted the 

attention of many researchers, who have conducted numerous theoretical and experimental experiments. 

Some of these literatures concentrated on the investigation of the dynamic behavior of the mechanical 

components in the applied system, while others, which deal with the analysis of control system, relied 

on the relevant mathematical models to perform the numerical simulation of damper mass spring system 

(Badr et. al., 2020; Humaidi et. al., 2018; Abry et. al., 2013; Basri et. al., 2014; Rahmat et. al., 2011). In 

order to obtain well posed numerical solution of the motion equation of mass-spring-damper systems, 

first and second derivatives in this equation must be properly approximated. The poor approximation of 

first and second derivatives causes the numerical errors. A variety of studies have been conducted to 

approximate derivatives. The first derivative has been numerically calculated using first-order accurate 

scheme (Esfandiari, 2017; Ertekin et. al., 2001). It is based on the Taylor series' expansion.  First-order 

upwinding method is one of the simplest ways to calculate the first derivative. However, it leads 

numerical dispersion significantly. The second-order approach (Schwendt and  Pötz, 2020; Peaceman, 

2000) is another method for predicting numerical derivatives. It can be used on first or second 

derivatives. The third-order scheme (Leonard, 1994; Wolcott, 1996; Peng et. al., 2013; Mazumder, 

2015) is another approach for numerically approximating the first derivative that decreases numerical 

dispersion considerably. The main objective of this study is the application of third order accurate 

schemes for numerical solution of the motion equation of mass-spring-damper systems to minimize 

numerical errors compared to previously developed method. 

2 Material and Method 

Equation 1 indicates the equation of motion for mass-spring-damper systems: 

)(tfkxxcxm =++                              (1) 

In equation 1, m represents mass, c represents damping coefficient, k represents stiffness coefficient, 

f(t) represents external load, x  represents acceleration, x  represents velocity, and x  represents 

displacement. This equation includes first and second derivatives. The numerical values of first and 

second derivatives must be calculated precisely to represent physical system of mass-spring-damper 

component correctly. The main objective of this study is the determination of these derivatives with 

minor numerical errors. There are there techniques to calculate first derivative numerically: first-order 

upstream method, second-order technique and third-order Leonard method. Equation2, Equation 3 and 

Equation 4 show first-order upstream method, second-order technique and third-order Leonard method 

respectively: 
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In Equation 2, Equation 3 and Equation 4 2−tx  represents two previous displacements, 1−tx  represents 

a previous displacement, tx  represents current displacement and 1+tx  represents a next displacement in 

time domain. t represents time step interval. The beauty of Equation 4 (third-order Leonard method) 

is that it depends two previous data, previous data, current data and next data. That is why it is more 

accurate compared to first and second order techniques. Therefore, third-order method decreases 

numerical errors significantly. Equation 5 indicates second derivative that is named as central difference 

method. 
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In this study, three different techniques for first derivative and central difference method for second 

derivative have been combined to compare each method. 

Equation 6 represents numerical solution of the equation of motion for mass-spring-damper system 

using combination of first-order method for first derivative and central difference method for second 

derivative: 
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Equation 7 can be derived by rearranging equation 6 to leave the next time step value. 
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Similarly, Equation 8 represents numerical solution of the equation of motion for mass-spring-damper 

system using combination of second-order method for first derivative and central difference method for 

second derivative: 
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Equation 9 represents numerical solution of the equation of motion for mass-spring-damper system 

using combination of third-order method for first derivative and central difference method for second 

derivative: 

Osman ÜNAL, Nuri AKKAŞ

Numerical Simulations of the Mass-Spring-Damper System using High Resolution Schemes

Journal of Marine and Engineering Technology 2(2), 58-67, 2022 60













+























−
+



+−

−−= −
−−

+
t

c
t

m
t

xx
m

t

xxx

ckxtfx tt
ttt

tt
3

11
/

26

1

2

1

)(
22

1
21

1                   (9) 

In this study, analytical solution must be used in order to validate all numerical solutions. For mass-

spring-damper systems, an analytical solution is provided in literature if the external load is harmonic 

as in equation 10. 

( ) ( )twftf esin=                                          (10) 

Equation 11 is utilized to obtain analytical solution for harmonic external load and free vibration 

response of mass-spring-damper systems (Wu, 2013). 
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d , ,  ,  , f and e  are represented by damped natural frequency, undamped natural frequency, 

damping ratio, undamped natural frequency over exciting frequency, amplitude of f(t) and exciting 

frequency in equation 11. 

3 Results and Discussion 

In this study, amplitude of sinusoidal force ( f ) is selected as 15 Newton exciting frequency (we) is 

preferred as 15 rad/s. Figure 1 shows harmonic force using Equation 10. 

<  
Figure 1: Harmonic external force. 
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All simulations below assume an initial displacement of 0.15 m relative to the original position, an initial 

velocity of 1.2 m/s, a mass of 0.8 kg, a damping coefficient of 5 Ns/m and a stiffness coefficient of 20 

N/m. Figure 2 exhibits analytical (exact) solution to validate numerical solutions of mass-spring-damper 

system with harmonic external force. 

 

Figure 2: Simulation for harmonic external force. 

Figure 3 indicates order of convergence for first-order upstream method, second-order method and 

proposed third-order method. According to Figure 3, while the inclination of proposed third-order 

method is 2.30, first and second methods have 1.17 and 1.98 gradient, respectively.  For this reason 

proposed model is more accurate than other methods. 

 
Figure 3: Order of convergence. 
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4 Conclusions  

In numerical simulations of the mass-spring-damper system, there are two typical techniques for 

decreasing numerical errors. Using small time increments is the first technique. Very long total 

simulation duration is encountered by using small time step intervals. Calculating first and second 

derivatives using higher order finite difference approximation rather than first order accurate techniques 

is the second method for reducing numerical errors. The central difference method uses to approximate 

the first and second derivatives with second-order precision. However, the central difference 

approximation of the first derivative does not employ the current time step data. Discarding those results 

in significant numerical errors since the first derivative's estimate largely depends on the current time 

step values. On the other hand, the Leonard approach's numerical estimate of the first derivative is third 

order accurate and depends not only on the data for the current time step and the two time steps before 

it, but also on the data for the next and previous time steps. This research presents a unique model that 

combines the third-order approach with central difference techniques to estimate the first and second 

derivatives for numerical solution of mass-spring-damper system. The proposed model provides the best 

degree of convergence compared to previous methods. 
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Appendices 

tic 

clc 

clearvars 

close all 

% Mass-Spring-Damper System 

% SDOF 

%% Input Data 

p=5;                %Points for order of convergence 

err=zeros(p,4);     %Error matrix 

dt_i=0.03;          %Initial time step 

dt_f=0.09;          %Final time step 

i=1;                %First time step loop 

  

%Time step loop (second) 

for dt=linspace(dt_i,dt_f,p) 

m=1;                %kg 

k=25;               %N/m 

c=5;                %N s/m (xi=0.05) 

w=sqrt(k/m);        %Undamped natural frequency 

xi=c/(2*m*w);       %Damping ratio 

wd=w*sqrt(1-xi^2);  %Damped natural frequency 

x0=0.1;             %Initial condition (displacement) 

dx0=1;              %Initial condition (velocity) 

tf=2.5;             %Final time (second) 

t=0:dt:tf;          %Time (second) 

%External Force 

F_ex='Harmonic';    %Harmonic or Arbitrary 

f=0;                %N (Amplitude) 

if isequal(F_ex,'Harmonic') 

we=0;               %rad/s 

omega=we/w;         %Frequency ratio 

ft=@(tn) f*sin(we*tn); 

elseif isequal(F_ex,'Arbitrary') 

prd=10000000; 

pw=1; 

pd=1; 

st=0.9; 

ft=@(tn) ( (tn>pd*st)-(tn>(pd+pw)*st) )*f; 

end 

%% Output Data 

%% Exact solution 

if isequal(F_ex,'Harmonic') 

x_exact=zeros(1,length(t)); 

for n=1:length(t) 

x_exact(n)=exp(-xi*w*t(n))*((dx0+xi*w*x0)/wd*sin(wd*t(n))... 

    +x0*cos(wd*t(n)))+f/(m*w^2*((1-omega^2)^2+(2*xi*omega)^2))... 

    *((1-omega^2)*(-exp(-xi*w*t(n))*we/wd*sin(wd*t(n))... 

    +sin(we*t(n)))+2*xi*omega*(exp(-xi*w*t(n))*(xi*w/wd... 

    *sin(wd*t(n))+cos(wd*t(n)))-cos(we*t(n)))); 

end 

end 

%% Explicit Euler Method 

A=[m 0;0 1]; 

B=[c k;-1 0]; 

Y0=[dx0;x0]; 

Y=zeros(2,length(t)); 

Y(:,1)=Y0; 

for n=2:length(t) 

F=[ft(t(n-1));0]; 

Y(:,n)=Y(:,n-1)+dt*A^-1*(F-B*Y(:,n-1)); 

end 

x_eem=Y(2,:); 

%% Central Difference Method 

x_dt=x0-dt*dx0+1/2*dt^2*(ft(t(1))-c*dx0-k*x0)/m; 

x_cdm=zeros(1,length(t)); 
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x_cdm(1)=x0; 

x_cdm(2)=(ft(t(1))-(k-2/dt^2*m)*x_cdm(1)... 

    -(1/dt^2*m-1/(2*dt)*c)*x_dt)/(1/dt^2*m+1/(2*dt)*c); 

for n=3:length(t) 

x_cdm(n)=(ft(t(n-1))-(k-2/dt^2*m)*x_cdm(n-1)... 

    -(1/dt^2*m-1/(2*dt)*c)*x_cdm(n-2))/(1/dt^2*m+1/(2*dt)*c); 

end 

%% Quick Difference Method 

x_dt=x0-dt*dx0+1/2*dt^2*(ft(t(1))-c*dx0-k*x0)/m; 

x_qdm=zeros(1,length(t)); 

x_qdm(1)=x0; 

x_qdm(2)=(ft(t(1))-(k-2/dt^2*m)*x_qdm(1)... 

    -(1/dt^2*m-1/(2*dt)*c)*x_dt)/(1/dt^2*m+1/(2*dt)*c); 

x_qdm(3)=(ft(t(2))-(k-2/dt^2*m)*x_qdm(2)... 

    -(1/dt^2*m-1/(2*dt)*c)*x_qdm(1))/(1/dt^2*m+1/(2*dt)*c); 

for n=4:length(t) 

x_qdm(n)=(ft(t(n-1))-m/dt^2*(-2*x_qdm(n-1)+x_qdm(n-2))... 

    -c/dt*(1/2*x_qdm(n-1)-x_qdm(n-2)+1/6*x_qdm(n-3))... 

    -k*x_qdm(n-1))/(m/dt^2+c/(3*dt)); 

end 

%% Simulink Heun Method 

if isequal(F_ex,'Harmonic') 

sim('simH') 

elseif isequal(F_ex,'Arbitrary') 

sim('simA') 

end 

%% Plot Solution 

figure(i*2-1) 

set(gcf, 'Units', 'Normalized', 'OuterPosition', [0.2 0.2 0.35 0.55]); 

plot(t,ft(t),'b-','lineWidth',1.5) 

xlabel('Time (s)','fontsize',16) 

ylabel('f(t) (N)','fontsize',16) 

figure(i*2) 

set(gcf, 'Units', 'Normalized', 'OuterPosition', [0.2 0.2 0.35 0.55]); 

if isequal(F_ex,'Harmonic') 

plot(t,x_exact,'k-','lineWidth',0.8) 

end 

hold on 

plot(t,x_sim,'bo','MarkerSize',5) 

plot(t,x_qdm,'rv','MarkerSize',4) 

xlabel('Time (s)','fontsize',16) 

ylabel('Displacement (m)','fontsize',16) 

axis tight 

if isequal(F_ex,'Harmonic') 

legend({'Exact Solution','Simulink','Hybrid Method'},... 

    'Location','Best','fontsize',11) 

else 

legend({'Simulink','Hybrid Method'},'Location','Best','fontsize',11) 

end 

%% Error 

if isequal(F_ex,'Harmonic') 

err(i,1)=norm(x_exact-x_eem,inf); 

err(i,2)=norm(x_exact-x_cdm,inf); 

err(i,3)=norm(x_exact-x_qdm,inf); 

err(i,4)=norm(x_exact-x_sim',inf); 

end 

i=i+1; 

end 

%% Order of Convergence 

if isequal(F_ex,'Harmonic') 

o_eem=polyfit(log10(linspace(dt_i,dt_f,p)'),log10(err(:,1)),1); 

o_cdm=polyfit(log10(linspace(dt_i,dt_f,p)'),log10(err(:,2)),1); 

o_qdm=polyfit(log10(linspace(dt_i,dt_f,p)'),log10(err(:,3)),1); 

o_sim=polyfit(log10(linspace(dt_i,dt_f,p)'),log10(err(:,4)),1); 

figure(i*2-1) 

set(gcf, 'Units', 'Normalized', 'OuterPosition', [0.2 0.2 0.35 0.55]); 

hold on 

plot(log10(linspace(dt_i,dt_f,p*20)),... 
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    polyval(o_eem,log10(linspace(dt_i,dt_f,p*20))),'g-') 

plot(log10(linspace(dt_i,dt_f,p*20)),... 

    polyval(o_cdm,log10(linspace(dt_i,dt_f,p*20))),'b-') 

plot(log10(linspace(dt_i,dt_f,p*20)),... 

    polyval(o_qdm,log10(linspace(dt_i,dt_f,p*20))),'r-') 

plot(log10(linspace(dt_i,dt_f,p*20)),... 

    polyval(o_sim,log10(linspace(dt_i,dt_f,p*20))),'b--') 

plot(log10(linspace(dt_i,dt_f,p)),log10(err(:,1)),'g*') 

plot(log10(linspace(dt_i,dt_f,p)),log10(err(:,2)),'bs') 

plot(log10(linspace(dt_i,dt_f,p)),log10(err(:,3)),'rv') 

plot(log10(linspace(dt_i,dt_f,p)),log10(err(:,4)),'bo') 

xlabel('log(dt)','fontsize',16) 

ylabel('log(err)','fontsize',16) 

axis tight 

legend({sprintf('Euler=%.2f',o_eem(1)),... 

    sprintf('Central=%.2f',o_cdm(1)),sprintf('Hybrid=%.2f',o_qdm(1)),... 

    sprintf('Simulink=%.2f',o_sim(1))},'Location','Best','fontsize',11) 

end 

toc 

In order to reach Matlab files, please use following Google Drive link: 

https://drive.google.com/drive/folders/1RQn9rgrtEjv1IG9URDReIGww6OjrImYV?usp=sharing 
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