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Abstract: In this study, the microstructural properties of Cu-Cr-B4C-CNF hybrid composites produced by powder metallurgy were 

investigated. While microstructural properties were examined by optical, SEM-EDS and XRD analyzes, hardness test was performed 

to determine the mechanical properties. The microstructure results, especially the EDS-MAP analysis, showed that the reinforcement 

elements were relatively homogeneously dispersed in the copper matrix. Since carbon nanofiber has nano size, it was detected in SEM 

photographs with larger magnification. Cu, CrB2, Cr2B3 and C phases were detected in the microstructure. The hardness of the 

composite increased with the addition of reinforcement and reached a maximum value (72.5 HB) of 1% of CNF, and after this CNF 

ratio, a very small decrease in the hardness value occurred. Compared to the undoped copper sample, the hardness value of the Cu-

8B4C-6Cr-1CNF hybrid composite increased by approximately 54%. 
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Öz: Bu çalışmada toz metalürjisi ile üretilen Cu-Cr-B4C-CNF hibrit kompozitlerin mikroyapı özellikleri araştırılmıştır. Mikroyapı 

özellikleri optik, SEM-EDS ve XRD analizleri ile incelenirken, mekanik özelliklerin tespiti için sertlik testi yapılmıştır. Mikroyapı 

sonuçları, özellikle EDS-MAP analizi takviye elemanlarının bakır matrisi içerisinde nispeten homojen dağıldığını göstermiştir. Karbon 

nanofiber nano boyuta sahip olduğu için daha büyük büyütmeli SEM fotoğraflarında tespit edilmiştir. Mikroyapıda Cu, CrB2, Cr2B3 

ve C fazları tespit edilmiştir. Kompozitin sertlikleri takviye ilavesiyle artış göstermiş ve CNF’nin % 1 oranında maksimum değere 

(72.5 HB) ulaşmış, bu CNF oranından sonra sertlik değerinde çok az miktarda azalma meydana gelmiştir. Katkısız bakır numuneye 

göre Cu-8B4C-6Cr-1CNF hibrit kompozitin sertlik değerinde yaklaşık %54 artış meydana gelmiştir. 

Anahtar Kelimeler: Hibrit kompozit, Bakır, CNF, B4C, Sentez 

1. Introduction 

Pure copper is widely utilized in various electrical applications due to its high electrical and thermal conductivities [1]. 

Copper also has a range of other useful properties, such as high corrosion resistance, low cost, and ease of manufacture. 

Owing to its distinctive properties, copper is described as a significant engineering material and will continue to be 

relevant to future technological advances [2,3]. Copper and its alloys are widely used for various applications, such as 

automobile radiators, heat exchangers, home heating systems, and solar panels [4]. 

Even though copper has many excellent properties, its ductility makes it vulnerable to mechanical stresses [5]. Therefore, 

there are a great number of studies on copper alloys and copper matrix composite materials. Precipitation hardening 

improves the strength of copper alloys by adding different alloying elements into copper. Azimi and Akbari [6] used a 

mechanical alloying method to produce Cu-Zr alloys for use in the welding industry. While samples mechanically alloyed 

for 48 hours reached their maximum hardness, hardness declined after that period. Islamgaliev et al. [7] examined the 

effect of nanostructure formation by high-pressure torsion on strength and electrical conductivity in Cu-Cr alloy. Dynamic 

precipitation was observed to improve strength and electrical conductivity. However, these precipitates decompose in 

high-temperature applications, resulting in a decline in strength [8]. Copper matrix composite materials have gained 

significance in order to overcome this problem. Reinforcements such as carbide [9], oxide [10], nitride [11], carbon 

nanotubes [12], graphene [13], and diamond [14] have been added into copper in the literature. On a macro-scale, metal 

matrix composite materials are made up of a metal or alloy matrix and mostly particulate reinforcement material; on a 

micro-scale, hybrid composites are made up of more than one reinforcing element with distinct properties added to the 

matrix [15]. 

In this study, a powder metallurgy (PM) method was used to produce hybrid composites by adding Cr, B4C, and CNF 

into copper. The microstructure properties of the hybrid composites so produced were then thoroughly examined. 
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2. Material and Method 

Material 

In this study, Cu was used as the matrix (-325 mesh grain size and 99.99% purity) and B4C (-325 mesh grain size and 

99.99% purity), Cr (-325 mesh grain size and 99.99% purity), and CNF (DxL 100 nm×20–200 μm size, 98% purity) were 

used as reinforcements. Cu, Cr, and B4C powders were obtained from Nanography and CNF from Sigma-Aldrich. Figure 

1 shows scanning electron microscopy (SEM) images of the powders used in the present study. The Cu powder had a 

wormlike morphology, while Cr and B4C were sharp edged and CNF was fibrous. Different rates of Cr, B4C, and CNF 

were added to Cu. Table 1 shows the powder mixture ratios. 

  

  

Figure 1. SEM images of the powders: (a) Cu, (b) Cr, (c) B4C, and (d) CNF 

Table 1. Powder mixture ratios (% by volume) 

No Cu B4C Cr CNF 

1 100 0 0 0 

2 92 8 0 0 

3 90 8 2 0 

4 88 8 4 0 

5 86 8 6 0 

6 85 8 6 1 

7 84 8 6 2 

8 83 8 6 3 

The powders were mixed at the appropriate mixture ratios for 2 hours at 400 rpm using a Retsch PM 100 model 

mechanical alloying device. 10mm diameter 100Cr6 balls were utilized in the mixture process, with the powder-ball ratio 

set at 1:5. In order to prevent cold welding and burning of the powders, 2% zinc stearate was added to the powder mixtures 

before mixing. Mechanically alloyed powder mixtures were pressed in a Specac GS15011 model hydraulic press under 

400 MPa pressure, producing samples with a diameter of 20 mm and a height of 10 mm. The green pellet samples were 

sintered in a Protherm high-temperature tube furnace at 900 ºC for two hours at a heating/cooling rate of 10 ºC/min under 

an argon atmosphere. 

For microstructure analysis, the samples were sanded using 320-2400 mesh sandpaper and polished using a 1-micron 

diamond solution. The polished samples were etched in a solution containing 100 mL distilled water + 25 mL hydrochloric 
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acid + 8 g iron (III) chloride. X-ray diffraction (XRD) analysis was performed using the Rigaku Ultra IV XRD. The Carl 

Zeiss Ultra PLus Gemini FE-SEM was used for SEM and energy dispersive spectrometry (EDS) analyses. Optical 

microscope examinations of the samples were performed using a Nikon brand inverted metallurgical microscope. Sintered 

densities were measured using an AND GR-200 balance with a density measuring kit at 10-4 precision in accordance with 

the Archimedes’ principle established in the ASTM B 962-17 standard [16]. The hardness of the samples was measured 

with a Qness Q250 M hardness device under 62.5 kgf load and using 2.5 mm balls as Brinell according to TS EN ISO 

6506-1 standard [17]. The work flow chart of the experimental work stages is shown in Figure 2. 

 

Figure 2. Work flow chart of experimental work stages 

3. Result and Discussion 

Figure 3 shows optical images of hybrid composites with different reinforcing types and quantities produced by PM. The 

matrix and reinforcing elements were located in microstructures of different colours. The Cu matrix was reddish, B4C 

was dark grey, and Cr was light grey. The optical images show that the B4C grains were homogeneously dispersed in the 

Cu matrix; Cr, on the other hand, was relatively homogeneously dispersed, and with increased Cr rates, it was observed 

to be dispersed in the form of agglomerations in some parts of the samples. SEM examination was performed at high 

magnification for Sample 6 in order to detect CNFs. Figure 4 shows SEM images of Sample 6. Although CNFs were 

originally longer, mechanical alloying caused them to be embedded in the copper matrix in a shortened form. 

 

Figure 3. Optical images: (a) Pure Cu, (b) Cu-8B4C, (c) Cu-8B4C-2Cr, (d) Cu-8B4C-4Cr, (e) Cu-8B4C-6Cr, (f) Cu-

8B4C-6Cr-1CNF, (g) Cu-8B4C-6Cr-2CNF, and (f) Cu-8B4C-6Cr-3CNF 
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Figure 5 depicts a MAP-EDS analysis of the samples to provide information on the distribution of reinforcements in the 

Cu matrix. The pattern of distribution here broadly corresponds to the optical images. The mechanical and physical 

properties of the sample are improved by the homogenous distribution of the reinforcing elements in the matrix [18,19]. 

No crack formation was observed in the microstructure. However, pores formed in all samples. 

 

Figure 4. SEM images of Sample 6 (Cu-8B4C-6Cr-1CNF) 

  
(a)                                                                      (b) 

  
(c)                                                                     (d) 

Figure 5. MAP-EDS analysis of: (a) Pure Cu, (b) Cu-8B4C, (c) Cu-8B4C-6Cr, and (d) Cu-8B4C-6Cr-1CNF 

Figure 6 shows the EDS analysis of Cu-8B4C-6Cr-1CNF sample. Area 1 represents the Cu matrix. Small amounts of B, 

C and Cr also existed. Area 2 represents the B4C grain. Small amounts of Cr and Cu contaminate particles of B4C. Area 

3 represents Cr in general, while small amounts of B, C, and Cu were identified in EDS analysis. The coexistence of B, 

C, Cr, and Cu in all three EDS analysis areas might be caused by mechanical bonding during the mechanical alloying. 

According to the EDS results, no oxide formation was detected in the microstructure. This result may suggest that no 

oxidation took place during the sintering process. Jha et al. [20] argued in their study on the friction and wear behaviours 

of Cu–4 wt.% Ni–TiC composites that there was no oxidation during sintering. 
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Figure 6. The EDS analysis of the Cu-8B4C-6Cr-1CNF sample 

Figure 7 shows the graphs generated following the XRD analysis performed to determine the phase of the samples. The 

pure Cu sample had the phase Cu (PDF card Cu 00-001-1241) with crystal planes (111), (200), (220), and (311). At 2-

theta angles of 43.47°, 50.37°, 74.00°, and 89.93°, respectively, the Cu phase formed. CrB2 (PDF card CrB2 03-065-1883) 

and Cr2B3 (PDF card Cr2B3 00-37-1447) phases formed in addition to the Cu phase when the Cu matrix was reinforced 

with Cr, B4C, and CNF. These phases had crystal planes (001) and (131), respectively. Also, the CrB2 phase formed at a 

2-theta angle of 29.10°, whereas the Cr2B3 phase formed at a 2-theta angle of 45.42°. In their study, Sun et al. [21] detected 

the Cr2B3 phase. Wang et al. [22] reported that they obtained the CrB2 phase in their study on the sintering of B4C and 

Cr2O3. 

  

  

Figure 7. XRD graphs of samples of: (a) Pure Cu, (b) Cu-8B4C, (c) Cu-8B4C-6Cr, and (d) Cu-8B4C-6Cr-1CNF 

 

10 20 30 40 50 60 70 80 90

0

1000

2000

3000

4000

5000

6000

7000

C
u

 (
3

1
1

)

C
u

 (
2

2
0

)

C
u

 (
2

0
0

)

In
te

n
s
it
y
 (

c
p

s
)

2-theta (deg)

(a)
Cu (111)

10 20 30 40 50 60 70 80 90

0

1000

2000

3000

4000

5000

6000

7000

C
u

 (
3

1
1

)

C
u

 (
2

2
0

)

C
u

 (
2

0
0

)

In
te

n
s
it
y
 (

c
p

s
)

2-theta (deg)

(b) Cu (111)

10 20 30 40 50 60 70 80 90

0

1000

2000

3000

4000

C
r 2

B
3

 (1
3

1
)

C
rB

2
 (0

0
1

)

C
u

 (
3

1
1

)

C
u

 (
2

2
0

)

C
u

 (
2

0
0

)

In
te

n
s
it
y
 (

c
p

s
)

2-theta (deg)

(c)
Cu (111)

10 20 30 40 50 60 70 80 90

0

1000

2000

3000

4000

5000

6000

C
u

 (
3

1
1

)

C
u

 (
2

2
0

)

C
u

 (
2

0
0

)

Cu (111)

C
rB

2
 (
0

0
1

)

C
r 2

B
3

 (
1

3
1

)In
te

n
s
it
y
 (

c
p

s
)

2-theta (deg)

(d)



Kriewah and Islak           KUJES, 8(2):90-97, 2022 

95 

 

The graph in Figure 8 shows the experimental and relative densities of hybrid composites. In general, both the 

experimental and relative densities declined, depending on the increasing rate and type of reinforcing elements. The 

decline in experimental densities is due to the fact that the natural densities of chromium (7.19 g/cm3), boron carbide 

(2.52 g/cm3), and carbon nanofiber (1.9 g/cm3) reinforcing elements are less than the density of copper (8.96 g/cm3). The 

decline in relative densities stopped at Sample 3, peaked at Sample 6, and then resumed its decline. CNFs displayed the 

impact of filling the pores in Sample 6; on the other hand, in Samples 7 and 8, there was a decline in relative densities, 

partially due to aggregation of CNFs. The overall decline in relative densities can also be associated with the fact that the 

increased reinforcement rate had a negative impact on compressibility. Yet another reason is that the substantial difference 

in melting temperatures between the matrix and the reinforcing elements was a factor that prevented the particles' 

movements during sintering [23,24]. 
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Figure 8. Experimental and relative densities of the samples 

Figure 9 shows the hardness values of the samples. Hardness increased towards Sample 6 (maximum of 72.5 HB) among 

the Samples 1-6; on the other hand, the hardness of Samples 7 and 8 declined. The decline can be associated with the 

heterogeneous distribution of CNFs in Samples 7 and 8. In comparison to the pure Cu sample (Sample 1), there was an 

increase of approximately 54%. Here, B4C, CNF, CrB2, and Cr2B3 phases increased hardness by blocking movement of 

dislocations. In their study, Lim et al. reported that CNFs increased hardness by blocking movement of dislocations [25]. 

Islak et al. reported that the hardness of the samples produced by adding CNF to the bronze increased depending on the 

increasing amount of CNF [26]. 
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4. Conclusions 

The microstructure properties of Cu-Cr-B4C-CNF hybrid composites produced by PM were thoroughly examined, and 

the following results were achieved: 

1. PM was used to successfully produce Cu-Cr-B4C-CNF hybrid composites. No cracks or discontinuities were noted in 

the samples. 

2. Optical microscope images demonstrated that Cr and B4C were partially homogeneously dispersed in the Cu matrix. 

CNFs could not be viewed with an optical microscope. Therefore, SEM images were captured at high magnifications, 

and clearly showed CNFs. Intermetallic phases, such as CrB2 and Cr2B3, formed between the element B forming as a 

result of the degradation of B4C and the Cr added to the matrix. 

3. While the relative and experimental densities of the samples decreased with increasing reinforcement, there was an 

increase in hardness values up to Sample 6 and subsequently a partial decrease. Sample 6 had the maximum hardness 

observed in any sample (72.5 HB). 
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