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Abstract. In this paper, we present a new type of set called ΨΓ − C set by using the operator ΨΓ. We investigate
the relationships of these sets with some special sets which were studied in the literature. For instance θ-open set,
semi θ-open set, θ-semiopen set, regular θ-closed set. In particular, we show that ΨΓ − C set is weaker than θ-open
set. Furthermore, we prove that the collection of ΨΓ − C set is closed under arbitrary union. Finally, we obtain the
conclusion that the collection of ΨΓ −C set forms a supratopology.
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1. Introduction

After the concepts of ideal and local function were presented by Kuratowski in [8], many authors have studied
about these concepts in the literature. Among these studies, Natkaniec presented the set operator Ψ [14] in 1986. Then,
Ψ-set [3], Ψ − C set [13], ∗Ψ-set [6] and Ψ∗-set [12] were studied by using Ψ operator. Furthermore, in [1] Al-Omari
and Noiri studied the local closure function and the operator ΨΓ in ideal topological spaces. They also obtained new
topologies by using the operator ΨΓ in [1]. Moreover, Islam and Modak defined the concept of semi-closure local
function [7] and they obtained a new topology via this function.

On the other hand, Pavlović showed that under what conditions local function and local closure function are coincide
in [16]. Then, Tunç and Özen Yıldırım presented the IΓ-dense, Γ-dense-in-itself and IΓ-perfect sets by using local
closure function in [18].

In this study, we present the concept of ΨΓ −C set by using the operator ΨΓ. We research the relationships of these
sets with LΓ-perfect [18], RΓ-perfect [18], IΓ-perfect and some other sets which were studied before in the literature
[1, 2, 4, 5, 13, 15, 18, 19]. We also research some properties of such sets and we obtain new results.
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2. Preliminaries

In this paper, (X, τ) (shortly X) represents a topological space. In a topological space (X, τ), the closure and the
interior of a subset A of X are denoted by cl(A) and int(A), respectively. P(X) represents the family of all subsets of X.

An ideal I [8] on a topological space (X, τ) is a nonempty collection of subsets of X satisfying the following condi-
tions:

(i) if A ∈ I and B ⊆ A, then B ∈ I (heredity),
(ii) if A ∈ I and B ∈ I, then A ∪ B ∈ I (finite additivity).
An ideal topological space (X, τ, I) is a topological space (X, τ) with an ideal I on X. For a subset A of X, A∗(I, τ) =

{x ∈ X | U ∩ A < I for each U ∈ τ(x)} is called the local function [8] of A with respect to τ and I, where τ(x) = {U ∈
τ | x ∈ U}. We use A∗ instead of A∗(I, τ). For a subset A of X, Γ(A)(I, τ) = {x ∈ X | A ∩ cl(U) < I for every U ∈ τ(x)}
is called the local closure function [1] of A with respect to I and τ. It is shortly denoted by Γ(A) instead of Γ(A)(I, τ).
An operator Ψ is defined as Ψ(A) = X \ (X \ A)∗ by using the ()∗-operator in [14]. Another operator ΨΓ : P(X) 7→ τ is
defined as ΨΓ(A) = X \ Γ(X \ A) for each A ∈ P(X) in [1].

A subset A of X is called IΓ-perfect [18] (resp. Γ-dense-in-itself [18], LΓ-perfect [18], RΓ-perfect [18], IΓ-dense [18])
if A = Γ(A) (resp. A ⊆ Γ(A), A \ Γ(A) ∈ I, Γ(A) \ A ∈ I, Γ(A) = X). A subset A of X is called Ψ − C set [13] if
A ⊆ cl(Ψ(A)).

Theorem 2.1 ( [17]). In an ideal topological space (X, τ, I), ΨΓ(A) ⊆ Γ(A) for each subset A of X and ΨΓ(A) = ∅ for
A ∈ I such that cl(τ) ∩ I = {∅} where cl(τ) = {cl(G) : G ∈ τ}.

For a topological space (X, τ) and a subset A of X, clθ(A) = {x ∈ X : cl(U) ∩ A , ∅ for each U ∈ τ(x)} is called the
θ-closure of A [19]. The θ-interior of A [19], denoted intθ(A), consists of those points x of A such that U ⊆ cl(U) ⊆ A
for some open set U containing x. A subset A is called θ-closed [19] if A = clθ(A). The complement of a θ-closed set is
called θ-open. The family of all θ-open sets in (X, τ) is denoted by τθ. Moreover, τθ is a topology on X. Al-Omari and
Noiri defined the topologies on X in [1] as follows: σ = {A ⊆ X : A ⊆ ΨΓ(A)} and σ0 = {A ⊆ X : A ⊆ int(cl(ΨΓ(A)))}
and τθ ⊆ σ ⊆ σ0. A subset A of X is called σ-open [1] (resp. σ0-open [1]) set, if A ∈ σ (resp. A ∈ σ0). A subset A
of X is called θI-closed [15] if Γ(A) ⊆ A. A subset A of X is called regular θ-closed [2] if A = clθ(intθ(A)). A subset
A of X is called semi θ-open [2] if A ⊆ clθ(intθ(A)). A subset A of X is called θ-semiopen [4] if there exists a θ-open
set U of X such that U ⊆ A ⊆ cl(U). S Oθs(X, τ) represents the collection of all θ-semiopen sets in a topological space
(X, τ) [4]. A subset A of X is called an M∗-open set [5] if A ⊆ int(cl(intθ(A))). A subset A of X is called preopen [10]
if A ⊆ int(cl(A)). The complement of a preopen set is called a preclosed [10] set. A subset A of X is called generalized
closed (briefly, g-closed) [9] if cl(A) ⊆ U, whenever A ⊆ U and U is open.

Definition 2.2 ( [11]). Let Y be a nonempty set and τ′ be a collection of subsets of Y . If Y ∈ τ′ and τ′ is closed under
arbitrary union, then τ′ is called a supratopology on Y . (Y, τ′) is called a supratopological space (or supraspace).

3. ΨΓ −C Sets and Their Relationships

Definition 3.1. Let (X, τ, I) be an ideal topological space and A ⊆ X. A set A is said to be a ΨΓ−C set if A ⊆ cl(ΨΓ(A)).
The collection of all ΨΓ −C sets in (X, τ, I) is denoted by ΨΓ(X, τ, I).

Theorem 3.2. In an ideal topological space (X, τ, I), intθ(A) ⊆ ΨΓ(A) for each subset A of X.

Proof. Let A be a subset of X in an ideal topological space (X, τ, I). Assume that an element x of X is not in ΨΓ(A).
Then, x < X \ Γ(X \ A) and so x ∈ Γ(X \ A). It implies that cl(U) ∩ (X \ A) < I for each U ∈ τ(x). Therefore,
cl(U)∩ (X \A) , ∅ and then cl(U) * A for each U ∈ τ(x). In this case, x < intθ(A). Consequently, intθ(A) ⊆ ΨΓ(A). �

Theorem 3.3. Let (X, τ, I) be an ideal topological space. If A ∈ τθ, then A ∈ ΨΓ(X, τ, I).

Proof. If A ∈ τθ, then A ⊆ ΨΓ(A) by the Corollary 4.3 in [1]. Since ΨΓ(A) ⊆ cl(ΨΓ(A)), we have A ⊆ cl(ΨΓ(A)).
Consequently, A is a ΨΓ −C set. �

Remark 3.4. In an ideal topological space, an open set may not be a ΨΓ −C set.

Example 3.5. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅, {a}}. If A = {a}, then cl(ΨΓ(A)) =

∅. So, A is an open set but it is not a ΨΓ −C set.
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Remark 3.6. In an ideal topological space, ΨΓ −C set may not be θ-open and open.

Example 3.7. Let X = {a, b, c, d}, τ = {∅, {d}, {a, c}, {a, c, d}, X} and I = {∅, {b}, {c}, {b, c}}. If A = {a}, then ΨΓ(A) =

{a, c} and so cl(ΨΓ(A)) = {a, b, c}. Therefore, A is a ΨΓ −C set but it is neither θ-open nor open.

Remark 3.8. In an ideal topological space, θ-closed (closed, θI − closed) sets may not be ΨΓ −C set.

Example 3.9. In the ideal topological space (R, τD, I f ), where I f is the ideal of finite subsets of R (the set of all real
numbers) and τD is the usual topology on R. A subset A = [0, 1] ∪ {2} is a θ-closed set and so it is both closed and
θI − closed. But, A is not a ΨΓ −C set.

Theorem 3.10. Let (X, τ, I) be an ideal topological space and A ⊆ X. If X \ A is θI − closed, then A is a ΨΓ −C set.

Proof. In an ideal topological space (X, τ, I), let X \ A be a θI − closed set for A ⊆ X. Then Γ(X \ A) ⊆ X \ A and so
A ⊆ X \ Γ(X \ A) = ΨΓ(A) ⊆ cl(ΨΓ(A)). Consequently, A is a ΨΓ −C set. �

Remark 3.11. The reverse of the above theorem may not be true in general.

Example 3.12. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅}. Take A = {c, d}. Although the
set A is a ΨΓ −C set, X \ A is not θI − closed.

Theorem 3.13. Let (X, τ, I) be an ideal topological space and A ⊆ X. If A is a ΨΓ − C set and ΨΓ(A) is closed, then
X \ A is θI-closed.

Proof. Let (X, τ, I) be an ideal topological space and A ⊆ X. Assume that A is a ΨΓ −C set and ΨΓ(A) is closed. Then
A ⊆ cl(ΨΓ(A)) = ΨΓ(A) = X \ Γ(X \ A). It implies that Γ(X \ A) ⊆ X \ A and so X \ A is θI-closed. �

Theorem 3.14. Let (X, τ, I) be an ideal topological space and A ⊆ X. If X \ A is a ΨΓ −C set and Γ(A) is an open set,
then A is θI-closed.

Proof. Let (X, τ, I) be an ideal topological space and A ⊆ X. Assume that X \ A is a ΨΓ −C set and Γ(A) is an open set.
Then X \ A ⊆ cl(ΨΓ(X \ A)) = cl(X \ Γ(A)) = X \ Γ(A). It implies that Γ(A) ⊆ A and so A is a θI-closed set. �

Corollary 3.15. Let (X, τ, I) be an ideal topological space and A ⊆ X. If X \ A is a ΨΓ −C set and Γ(A) is an open set,
then A is an RΓ-perfect set.

Proof. The proof is obvious by the Theorem 2.17 in [18]. �

Remark 3.16. In an ideal topological space, an IΓ-perfect set may not be a ΨΓ − C set. Similarly, a ΨΓ − C set may
not be an IΓ-perfect set.

Example 3.17. In the ideal topological space (R, τD, I = {∅}), the subset A = [0, 1] ∪ {2} is an IΓ-perfect set, but it is
not a ΨΓ −C set. The set B = (0, 1) is a ΨΓ −C set, but B is not an IΓ-perfect set.

Theorem 3.18. Let (X, τ, I) be an ideal topological space and A ⊆ X. If X \ A is IΓ-perfect, then A is a ΨΓ −C set.

Proof. Let X \ A be an IΓ-perfect subset of X in an ideal topological space (X, τ, I). Then Γ(X \ A) = X \ A and
A = X \ Γ(X \ A) = ΨΓ(A) ⊆ cl(ΨΓ(A)). As a result, A is a ΨΓ −C set. �

Remark 3.19. The reverse of the above theorem may not be true in general.

Example 3.20. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅, {a}}. In the ideal topological
space (X, τ, I), the set A = {c, d} is a ΨΓ −C set, but X \ A is not IΓ-perfect.

Theorem 3.21. Let (X, τ, I) be an ideal topological space and A ⊆ X. X \ A is IΓ-dense iff ΨΓ(A) = ∅.

Proof. Let (X, τ, I) be an ideal topological space and A ⊆ X. ΨΓ(A) = ∅⇔ X \ Γ(X \ A) = ∅⇔ Γ(X \ A) = X⇔ X \ A
is IΓ-dense. �

Remark 3.22. In an ideal topological space, an IΓ-dense set may not be a ΨΓ −C set. Similarly, a ΨΓ −C set may not
be an IΓ-dense set.

Example 3.23. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅}. In the ideal topological space
(X, τ, I), an empty set is a ΨΓ −C set, but it is not an IΓ-dense set. The set {c} is IΓ-dense, but it is not a ΨΓ −C set.
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Theorem 3.24. Let (X, τ, I) be an ideal topological space and cl(τ)∩ I = {∅}. The empty set is the only one ΨΓ −C set
in the ideal.

Proof. Let (X, τ, I) be an ideal topological space and cl(τ) ∩ I = {∅}. Assume that A ∈ I. Since cl(τ) ∩ I = {∅},
ΨΓ(A) = ∅ by the Theorem 2.1 and so cl(ΨΓ(A)) = ∅. If A is a ΨΓ −C set, A must be an empty set. �

Corollary 3.25. Let (X, τ, I) be an ideal topological space where cl(τ) ∩ I = {∅}. If A ∈ I or X \ A is IΓ-dense, then
∅ , A < ΨΓ(X, τ, I).

Proof. Let (X, τ, I) be an ideal topological space where cl(τ) ∩ I = {∅}. If A ∈ I, we know that ∅ , A < ΨΓ(X, τ, I) by
the above theorem. If X \ A is IΓ-dense, then ΨΓ(A) = ∅ and so cl(ΨΓ(A)) = ∅. In this situation, an empty set is the
only one ΨΓ −C set. �

Remark 3.26. In an ideal topological space, a Γ-dense in itself set may not be a ΨΓ − C set. Similarly, a ΨΓ − C set
may not be Γ-dense in itself.

Example 3.27. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = P(X). The set A = {a} is a ΨΓ − C
set, but it is not Γ-dense in itself.

Example 3.28. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅, {a}}. In the ideal topological
space (X, τ, I), the set A = {c} is Γ-dense in itself, but it is not a ΨΓ −C set.

Theorem 3.29. Let (X, τ, I) be an ideal topological space and cl(τ) ∩ I = {∅}. Then, every ΨΓ − C set is Γ-dense in
itself.

Proof. Let (X, τ, I) be an ideal topological space where cl(τ) ∩ I = {∅} and A ⊆ X. If A is a ΨΓ − C set, then
A ⊆ cl(ΨΓ(A)). Since cl(τ) ∩ I = {∅}, ΨΓ(A) ⊆ Γ(A) by the Theorem 2.1 and so A ⊆ cl(ΨΓ(A)) ⊆ cl(Γ(A)). We know
that Γ(A) is closed by the Theorem 2.6 in [1]. Therefore, A ⊆ Γ(A) and A is Γ-dense in itself. �

Remark 3.30. In an ideal topological space, ΨΓ −C sets may not be LΓ-perfect.

Example 3.31. In the ideal topological space (R, P(X), I f ), R is not LΓ-perfect, but it is a ΨΓ −C set.

Corollary 3.32. Let (X, τ, I) be an ideal topological space where cl(τ)∩ I = {∅}. Then, every ΨΓ −C set is LΓ-perfect.

Proof. Let (X, τ, I) be an ideal topological space where cl(τ) ∩ I = {∅}. By the above theorem, every ΨΓ − C set is
Γ-dense in itself. By the Theorem 2.20 in [18] every Γ-dense in itself set is LΓ-perfect. Consequently, every ΨΓ −C set
is LΓ-perfect. �

Theorem 3.33. Let (X, τ, I) be an ideal topological space and A ⊆ X. If A is a σ0-open set, then A is a ΨΓ −C set.

Proof. Let (X, τ, I) be an ideal topological space and A be a σ0-open subset of X. Then, A ⊆ int(cl(ΨΓ(A))) and so
A ⊆ cl(ΨΓ(A)). Consequently, A is a ΨΓ −C set. �

Corollary 3.34. In an ideal topological space (X, τ, I), every σ-open set is a σ0-open set [1]. By the above theorem,
we can say that every σ-open set is a ΨΓ −C set.

Remark 3.35. In an ideal topological space (X, τ, I), a ΨΓ −C set may not be a σ-open set and a σ0-open set.

Example 3.36. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅}. In the ideal topological space
(X, τ, I), the set A = {c, d} is a ΨΓ −C set, but A is neither a σ-open set nor a σ0-open set.

Theorem 3.37. Let (X, τ, I) be an ideal topological space and A ⊆ X. If A is a ΨΓ −C set, then A is a Ψ −C set.

Proof. Let (X, τ, I) be an ideal topological space and A ⊆ X. Assume that A is a ΨΓ−C set. Then, A ⊆ cl(ΨΓ(A)). Since
A∗ ⊆ Γ(A) by the Lemma 2.2 in [1], ΨΓ(A) ⊆ Ψ(A) and thus cl(ΨΓ(A)) ⊆ cl(Ψ(A)). Therefore, we have A ⊆ cl(Ψ(A)).
As a result, A is a Ψ −C set. �

Remark 3.38. In an ideal topological space, the inverse of the above theorem may not be true.

Example 3.39. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅, {a}}. In the ideal topological
space (X, τ, I), the set A = {a} is a Ψ −C set, but it is not a ΨΓ −C set.
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Family of closed-discrete subsets Icd, family of relatively compact subsets Ik, family of nowhere dense subsets In

and family of meager subsets Im are an ideal on X for a topological space (X, τ).

Theorem 3.40 ( [16]). In an ideal topological space (X, τ, I), each of the following conditions implies, the local
function and the local closure function are equivalent.

(1) τ has a clopen base β.
(2) τ is T3.
(3) I = Icd.
(4) I = Ik.
(5) In ⊆ I.
(6) I = Im.

Theorem 3.41 ( [17]). In an ideal topological space (X, τ, I), each of the following conditions implies, the local
function and the local closure function are equivalent.

(1) τ has a clopen base β.
(2) τ is T3.
(3) I = Icd.
(4) I = Ik.
(5) In ⊆ I.
(6) I = Im.
(7) Every open set is a preclosed set in (X, τ).
(8) Every open set is a closed set in (X, τ).
(9) Every open set is a g-closed set in (X, τ).
(10) Every preopen set is a closed set in (X, τ).

Corollary 3.42. By the above theorem, each of the above conditions (1)-(10) implies A is a ΨΓ −C set iff A is a Ψ −C
set for A ⊆ X.

Theorem 3.43. Let (X, τ, I) be an ideal topological space and A ⊆ X. If A is a regular θ-closed set, then A is a ΨΓ −C
set.

Proof. Let A be a regular θ-closed subset of X in an ideal topological space (X, τ, I). Then, A is equivalent to
clθ(intθ(A)). Let an element x of X be not in cl(ΨΓ(A)). Then, there exists U ∈ τ(x) with U ∩ ΨΓ(A) = ∅. Namely,
U ∩ (X \ Γ(X \ A)) = ∅. Therefore, x ∈ U ⊆ Γ(X \ A). Since Γ(X \ A) is closed, x ∈ cl(U) ⊆ cl(Γ(X \ A)) = Γ(X \ A) ⊆
clθ(X \ A) by the Theorem 2.6 in [1]. Thus, x ∈ intθ(clθ(X \ A)) and x < X \ intθ(clθ(X \ A)) = clθ(intθ(A)) = A.
Consequently, A ⊆ cl(ΨΓ(A)) and so A is a ΨΓ −C set. �

Remark 3.44. The inverse of the above theorem may not be true in general.

Example 3.45. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅, {a}}. In the ideal topological
space (X, τ, I), the set A = {b, c} is a ΨΓ −C set, but it is not regular θ-closed.

Theorem 3.46. Let (X, τ, I) be an ideal topological space and A ⊆ X. If A is semi θ-open, then A is a ΨΓ −C set.

Proof. Let A be a semi θ-open subset of X in an ideal topological space (X, τ, I). Then, A ⊆ clθ(intθ(A)). Suppose
that an element x of X is not in cl(ΨΓ(A)). Then, there exists U ∈ τ(x) such that U ∩ ΨΓ(A) = ∅. Therefore,
x ∈ U ⊆ X \ΨΓ(A) = Γ(X \A). Since Γ(X \A) is closed, we can say that x ∈ cl(U) ⊆ Γ(X \A) and so x ∈ intθ(Γ(X \A)).
As Γ(X \ A) ⊆ clθ(X \ A), x ∈ intθ(Γ(X \ A)) ⊆ intθ(clθ(X \ A)). Thus, x < X \ intθ(clθ(X \ A)) = clθ(intθ(A)). Since A is
semi θ-open, x < A and so A ⊆ cl(ΨΓ(A)). Consequently, A is a ΨΓ −C set. �

Remark 3.47. In an ideal topological space, a ΨΓ −C set may not be a semi θ-open set.

Example 3.48. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅, {a}}. In the ideal topological
space (X, τ, I), the set A = {b, c} is a ΨΓ −C set, but it is not semi θ-open.

Theorem 3.49. Let (X, τ, I) be an ideal topological space and A ⊆ X. If A is a θ-semiopen set, then A is a semi θ-open
set.
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Proof. Let A be a θ-semiopen subset of X. Then, A ⊆ cl(intθ(A)) by the Lemma 1.1 in [4]. Since cl(intθ(A)) ⊆
clθ(intθ(A)), we have A ⊆ clθ(intθ(A)). Thus, A is a semi θ-open set. �

Corollary 3.50. Let (X, τ, I) be an ideal topological space and A ⊆ X. If A is a θ-semiopen set, then A is a ΨΓ −C set.

Remark 3.51. In an ideal topological space (X, τ, I), a ΨΓ −C set may not be a θ-semiopen set.

Example 3.52. Let X = {a, b, c, d}, τ = {∅, {d}, {a, c}, {a, c, d}, X} and I = {∅, {c}, {b}, {b, c}}. If A = {a}, then A is a
ΨΓ −C set, but it is not a θ-semiopen set.

Corollary 3.53. The following diagram is obtained from Theorem 3.33, Theorem 3.37, Theorem 3.43, Theorem 3.46,
Theorem 3.49, Proposition 2.5 in [2], Theorem 4.2 in [1] and Corollary 4.3 in [1].

θ-semiopen // semi θ-open

��
θ-open // σ-open // σ0-open // ΨΓ −C set

��

regular θ-closedoo

hh

Ψ −C set

Corollary 3.54. In an ideal topological space (X, τ, I) where cl(τ) ∩ I = {∅}, τθ ⊆ S Oθs(X, τ) ⊆ ΨΓ(X, τ, I).

Proof. It is obvious by the Remark 1.1 in [4] and Corollary 3.50. �

4. Further Properties

Remark 4.1. In an ideal topological space, subsets of ΨΓ −C sets may not be a ΨΓ −C set.

Example 4.2. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅}. If A = {c, d}, then A is a ΨΓ−C
set but B = {c} is not a ΨΓ −C set.

Theorem 4.3. Let (X, τ, I) be an ideal topological space and A ∈ I. If a set A is a ΨΓ −C set, every subset of A is also
a ΨΓ −C set.

Proof. Let A ∈ I in an ideal topological space (X, τ, I). Assume that A is a ΨΓ−C set and B ⊆ A. By the heredity, B ∈ I.
Then, we can say that Γ(X) = Γ(X\B) = Γ(X\A) from the Corollary 2.10 in [1]. Therefore, cl(ΨΓ(A)) = cl(ΨΓ(B)).
Since a set A is ΨΓ −C set, B ⊆ A ⊆ cl(ΨΓ(A)) = cl(ΨΓ(B)). Consequently, B is a ΨΓ −C set. �

Remark 4.4. In an ideal topological space, an element of ideal may not be a ΨΓ −C set.

Example 4.5. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅, {a}}. In the ideal topological
space (X, τ, I), the set A = {a} is not a ΨΓ −C set.

Theorem 4.6. Let {Aα : α ∈ 4} be a collection of nonempty ΨΓ − C sets in an ideal topological space (X, τ, I). Then,
∪Aα ∈ ΨΓ(X, τ, I).

Proof. Let {Aα : α ∈ 4} be a collection of nonempty ΨΓ − C sets in an ideal topological space (X, τ, I). Then,
Aα ⊆ cl(ΨΓ(Aα)) and so Aα ⊆ cl(ΨΓ(Aα)) ⊆ cl(ΨΓ(∪Aα)) for each α ∈ 4 by the Theorem 4.2 in [1]. It implies that
∪Aα ⊆ cl(ΨΓ(∪Aα)). This means that ∪Aα is a ΨΓ −C set and then ∪Aα ∈ ΨΓ(X, τ, I). �

Remark 4.7. In an ideal topological space, the intersection of two ΨΓ −C sets may not be a ΨΓ −C set.

Example 4.8. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅, {a}}. Let A = {b, c} and
B = {c, d}. Then, A and B are ΨΓ −C sets. But their intersection {c} is not a ΨΓ −C set.

Proposition 4.9. Let (X, τ) be a topological space. If I = {∅}, in an ideal topological space (X, τ, I), Γ(A) = clθ(A) for
each A ⊆ X. Then, cl(ΨΓ(A)) = cl(X \ Γ(X \ A)) = cl(X \ clθ(X \ A)) = cl(intθ(A)). Therefore, A is a ΨΓ − C set iff
A ⊆ cl(intθ(A)). If I = P(X), then Γ(A) = ∅ for each A ⊆ X. Therefore, cl(ΨΓ(A)) = cl(X \ Γ(X \ A)) = cl(X \ ∅) =

cl(X) = X and A ⊆ cl(ΨΓ(A)) for each A ⊆ X. Consequently, every subset A of X is a ΨΓ −C set.
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Theorem 4.10. Let (X, τ, I) be an ideal topological space and A be a nonempty subset of X. If there exists U ∈ τ(x)
with cl(U) \ A ∈ I for each x ∈ A, then A is a ΨΓ −C set.

Proof. Let (X, τ, I) be an ideal topological space and A be a nonempty subset of X. Assume that there exists U ∈ τ(x)
with cl(U) \ A ∈ I for each x ∈ A. Then, cl(U)∩ (X \ A) ∈ I and so x < Γ(X \ A). Therefore, x ∈ X \ Γ(X \ A). It implies
that A ⊆ X \ Γ(X \ A) ⊆ cl(X \ Γ(X \ A)) = cl(ΨΓ(A)). Finally, A is a ΨΓ −C set. �

Remark 4.11. The inverse of the above theorem is not true.

Example 4.12. Let X = {a, b, c, d}, τ = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, d}, X} and I = {∅}. In the ideal topological space
(X, τ, I), the set A = {c, d} is a ΨΓ−C set, but for the set X which is the only one set in τ(c), cl(X)\A = X\A = {a, b} < I.

Corollary 4.13. Let (X, τ, I) be an ideal topological space. Every subset of X is a ΨΓ − C set if there exists U ∈ τ(x)
such that cl(U) \ {x} ∈ I for each x ∈ X.

Proof. Let (X, τ, I) be an ideal topological space. Assume that there exists U ∈ τ(x) such that cl(U) \ {x} ∈ I for each
x ∈ X. Also assume that A ⊆ X is nonempty. Therefore, there exists U ∈ τ(x) such that cl(U) \ {x} ∈ I for each x ∈ A.
Since cl(U) \ A ⊆ cl(U) \ {x}, cl(U) \ A ∈ I by the heredity. As a result, there exists U ∈ τ(x) such that cl(U) \ A ∈ I
for each x ∈ A. Finally, A is a ΨΓ −C set by the Theorem 4.10. �

Remark 4.14. In an ideal topological space (X, τ, I), ∅ and X are ΨΓ −C sets.

Corollary 4.15. In an ideal topological space (X, τ, I), ΨΓ(X, τ, I) forms a supratopology on X.

Proof. It is obvious from the Theorem 4.6 and the Remark 4.14. �

Theorem 4.16. Let (X, τ, I) be an ideal topological space and A be a ΨΓ − C set. If B is a M?-open set, then
A ∩ B ∈ ΨΓ(X, τ, I).

Proof. Let (X, τ, I) be an ideal topological space and A, B ⊆ X. Assume that A is a ΨΓ − C set and B is an M?-open
set. Then, A ∩ B ⊆ cl(ΨΓ(A)) ∩ B ⊆ cl(ΨΓ(A)) ∩ int(cl(intθ(B))) ⊆ cl(ΨΓ(A) ∩ int(cl(intθ(B)))) = cl(int(ΨΓ(A)) ∩
int(cl(intθ(B)))) = cl(int(ΨΓ(A) ∩ cl(intθ(B)))) ⊆ cl(int(ΨΓ(A) ∩ cl(ΨΓ(B)))) by the Theorem 3.2. Then, cl(int(ΨΓ(A) ∩
cl(ΨΓ(B)))) ⊆ cl(ΨΓ(A) ∩ cl(ΨΓ(B))) ⊆ cl(cl(ΨΓ(A) ∩ ΨΓ(B))) = cl(ΨΓ(A) ∩ ΨΓ(B)) = cl(ΨΓ(A ∩ B)) by the Theorem
4.2 in [1]. As a result, A ∩ B is a ΨΓ −C set. �

Corollary 4.17. Let (X, τ, I) be an ideal topological space and A, B ⊆ X. If A is a ΨΓ − C set and B is a θ-open set,
then A ∩ B is a ΨΓ −C set.

Proof. It is obvious from that every θ-open set is an M?-open set by the Lemma 2.2 in [5] and by the above theorem. �
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