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Abstract: For cloud environments, task scheduling focusing on the optimal completion time 

(makespan) is vital. Metaheuristic approaches can be used to produce efficient solutions that will 

provide important cost savings to both the cloud service provider and the clients. On the other 

hand, since there is a high probability of getting stuck in local minima in metaheuristic solutions 

due to the type of problem, it may not always be possible to quickly reach the optimal solution. 

This study, using a metaheuristic approach, proposes a solution based on the Cloneable Jellyfish 

Algorithm for optimal task distribution in cloud environments. The unique feature of the proposed 

algorithm is that it allows dynamic population growth to be carried out in a controlled manner in 

order not to get stuck in local minima during the exploration phase. In addition, this algorithm, 

which uses a different cloning mechanism so that similar candidates are not generated in the 

population growth, has made it possible to achieve the optimal solution in a shorter time. To 

observe the solution performance, cloud environment simulations created in the Cloudsim 

simulator have been used. In experiments, the success of the proposed solution compared to 

classical scheduling algorithms has been proven. 
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Öz: Bulut ortamlar için optimum tamamlanma süresi (makespan) çözümüne odaklanan görev 

planlamaları hayati öneme sahiptir. Hem bulut servis sağlayıcı hem de müşteriye ciddi maliyet 

kazancı sağlayacak çözümlerin üretilmesinde meta-sezgisel yaklaşımlar kullanılabilir. Öte yandan 

problem tipinden dolayı meta-sezgisel çözümlerde lokal minimumlara takılma olasılığı yüksek 

olduğundan optimum çözüme hızlıca ulaşmak her zaman mümkün olamayabilir. Meta-sezgisel bir 

yaklaşım kullanan bu çalışma, bulut ortamlarda optimum görev dağılımı için Klonlanabilir Deniz 

Anası Algoritması temelli bir çözüm önermektedir. Önerilen algoritmanın özgün özelliği, 

exploration aşamasında lokal minimumlara takılmamak için dinamik popülasyon artışının kontrollü 

bir şekilde yapılmasına olanak sağlamasıdır. Ayrıca popülasyon artışında benzer adayların 

üretilmemesi için farklı bir klonlama mekanizması kullanan bu algoritma, optimum çözüme daha 

kısa sürede ulaşmayı mümkün kılmıştır. Çözüm performansını gözlemlemek için Cloudsim 

simülatöründe oluşturulan bulut ortam simülasyonları kullanılmıştır. Farklı senaryolar için yapılan 

deneylerde, önerilen çözümün klasik scheduling algoritmalarına göre başarısı ispatlanmıştır. 

 

 

1. INTRODUCTION 

 

Cloud computing technology is the sum of virtualized 

and scalable resources that allow hosting a large amount 

of data on the Internet and provide users with a pay-per-

use model [1]. Many reasons, such as the development 

and acceleration of the Internet infrastructure, the spread 

of IoT (Internet of Things) technology, the rapid growth 

of big data, and advances in artificial intelligence 

studies, have led to the widespread use of cloud 

technology. Cloud computing allows the users to access 

various services and resources (CPU, RAM, storage) 

anytime and anywhere. A cloud system can provide 

three types of services related to infrastructure, platform, 

and software. The first service is IaaS (Infrastructure as a 

Service), which provides infrastructure services such as a 

storage system and computational resources. The second 

service is PaaS (Platform as a Service), which allows 

clients to create their applications on the provided 
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platform. The third service, on the other hand, is SaaS 

(Software as a Service), which allows users to use 

software directly from the cloud instead of on local 

machines [2]. Cloud service providers must offer 

resources and services to their clients in a way that does 

not violate the SLA (Service Level Agreement) and 

guarantees a certain QoS (Quality of Service). Optimal 

use of cloud system resources and maintaining 

performance at the highest level are vital for both service 

providers and users. Task scheduling is a factor that 

directly affects cloud system performance and optimal 

resource utilization. A task or resource scheduling that 

has not been designed well can lead to an SLA violation, 

serious loss of revenue, and performance degradation. 

 

One of the most important mechanisms of cloud 

computing is virtual machines (VMs). VMs are created 

from resources on the cloud system in accordance with 

the needs of clients. Depending on the volume of work, 

the number of clients’ VMs and their features may vary. 

Clients pay a certain fee to the cloud provider based on 

the characteristics of these VMs and the duration of their 

use. Incorrect scheduling of tasks that need to be run on 

VMs leads to an increase in task completion time 

(makespan) and, naturally, to an increase in costs for the 

client. This increase in makespan also indirectly 

negatively affects the energy consumption and 

maintenance and repair costs of the cloud provider. 

Therefore, the use of a good task scheduling algorithm 

on cloud systems is mandatory for both the customer and 

the cloud provider [4]. Task scheduling is an NP-hard 

problem [1]. The use of metaheuristic algorithms instead 

of deterministic solutions is often preferred in solving 

such problems in terms of performance [5]. But on the 

other hand, due to the type of problem, the probability of 

the fact that random search-based metaheuristic 

algorithms are stuck in local minima is also high. This 

probability can further increase as the number of tasks 

and VMs increases. Therefore, it is necessary that the 

used metaheuristic algorithms use mechanisms that will 

overcome this problem. For this problem, this study 

proposes a solution based on Jellyfish Search Optimizer 

(JSO) [8], which is an up-to-date metaheuristic algorithm 

that uses a different approach mechanism. The most 

unique aspect of the proposed method is that it gets rid 

of local minima more quickly and allows dynamic 

population growth with a different similarity control. In 

this way, a more efficient exploration process is realized 

in the search space. The performance of the proposed 

method was proven by trying comparatively for different 

scenarios in the CloudSim simulator. 

 

Other parts of this article are as follows; In Part II, task 

scheduling strategies in cloud computing systems and 

similar studies found in the literature are given. Part III 

contains the details of the used methodology and JSO 

algorithm. The experiments and comparative evaluations 

are given in Part IV, and the conclusion is presented in 

Part V. 

 

 

 

 

2. BACKGROUND AND RELATED WORKS 

 

In cloud systems, virtual machines (VMs) with different 

properties can be created on physical servers using 

virtualization techniques. VMs can collaborate to 

perform a specific task, as well as work independently of 

each other. Cloud service providers (CSPs) have broker 

services that conveniently distribute incoming tasks to 

VMs. Such services can also be developed by the client 

and run on a separate VM in the cloud. The Task 

Scheduling algorithm used in both cases is the most 

important factor that determines performance. Task 

scheduling has three main mechanisms: resource finding, 

resource determination, and task allocation [7]. The 

availability of resources requires that shareable resources 

can be questionable. Resource determination makes the 

selection of the most optimal resources depending on the 

characteristics of the tasks at the end of the resource 

query. Task allocation, on the other hand, sends the 

relevant tasks to the determined resources and performs 

their follow-up. The cloud system has a heterogeneous 

structure in terms of both resource and customer 

diversity. This naturally leads to the emergence of 

different goals in Task Scheduling optimization. Among 

these goals, the completion time (makespan), energy 

consumption, and cost stand out. Given this diversity, 

the strategy to be used in task scheduling should be 

chosen correctly. In the task scheduling proposed in the 

literature, strategies can be classified as shown in 

Figure.1 [11]. 

 

 
Figure.1 Task scheduling strategies 

 

In the task scheduling strategy by the goal, one of the 

goals such as makespan, cost, energy consumption, or 

more than one that contradicts each other can be taken 

into account. The cloud infrastructure and the incoming 

task type also determine whether the strategy to be used 

will be static or dynamic. Static scheduling can be 

performed in fixed source cloud systems where there is 

not much workload change. However, since today’s 

cloud technologies have a variable structure, dynamic 

strategies are usually preferred. This also applies to the 

heterogeneous structure of the CSP architecture. In terms 

of planning, heuristic techniques are often used for static 

scheduling. Metaheuristic algorithms that use heuristics 

and random search mechanisms together can achieve to 

create effective solutions for dynamic systems [6, 10, 

13]. In this study, the proposed metaheuristic solution 

was developed for a single objective purpose in a 

heterogeneous and dynamic CSP system. 

 

Because metaheuristic algorithms contain randomness, 

initial values are important. In [3], the authors presented 

a Discrete Symbiotic Organism Search (DSOS) 
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algorithm, which is a metaheuristic algorithm for the 

optimal scheduling of tasks in cloud resources. In [9], for 

the particle swarm optimization (PSO), which is a well-

known metaheuristic algorithm, the initial values were 

found using the heuristic LJFP and MCT algorithms. 

Thus, success was achieved in makespan and total 

energy consumption. In [6], makespan optimization 

conducted with the grey wolf optimizer (GWO) that used 

the hunting mechanism, CPU, memory, and resource 

bandwidth parameters were taken into account together. 

In another study conducted for the purpose of makespan 

[12], the authors used the Electromagnetism 

Metaheuristic Algorithm (EMA) and monitored their 

VM performance comparatively. In [18], the authors 

used a multi-purpose Task scheduling strategy. For this, 

they proposed the ICW method that used the 

metaheuristic whale optimization algorithm (WOA). In 

[13], transaction cost and makespan optimization were 

performed with the developed space-shared genetic 

algorithm, and the superiority of the proposed solution 

over competitive planning algorithms was proved. 

Solutions based on ant colony optimization (ACO), 

which is another well-known metaheuristic algorithm, 

have also been introduced in the literature. An ACO-

based solution taking into account the load balance and 

the purposes of the makespan was presented in [14]. In 

[15], a hybrid task scheduling method using the ACO 

and PSO algorithms was proposed. Another hybrid 

solution based on ACO was also introduced in [16]. In 

this study, the authors first ran the GA algorithm to 

determine the initial values of ACO; thus, they achieved 

a better execution time. A hybrid solution that performs 

more metaheuristic algorithm execution in it was 

proposed by [19]. In this study, GA, ACO, and PSO 

algorithms were run in the developed framework to 

obtain the optimum makespan value. In [21], the authors 

proposed a hyper-heuristic scheduling algorithm by 

integrating GA, ACO, and PSO into a single framework 

to reduce the makespan in the cloud. In [22], a minimum 

makespan task scheduling framework called MMSF and 

a minimum makespan task scheduling algorithm called 

MMA were proposed. 

 

In general, in the Metaheuristic Task Scheduling 

solutions proposed in the literature, it has not been 

focused on overcoming the emerging local minima 

problems in a shorter period of time. Unlike the 

examples in the literature, this study aimed to reach the 

existing solutions faster with the state-controlled 

dynamic population variability. 

 

3. MATERIAL AND METHOD 

  

In Task Scheduling, the task scheduler assigns the tasks 

waiting in the queue to the appropriate VMs according to 

the output of the JSO algorithm. The used algorithm 

makes these assignments based on the calculations it 

makes for certain objective or objectives. In this study, 

Task Scheduling was performed according to the 

makespan objective. Makespan is the completion time of 

a certain number of tasks on the VMs to which they are 

assigned. The goal of Makespan optimization is to 

reduce this time to a minimum. As an example, let’s 

assume that 7 different tasks are assigned to 3 different 

VMs as in Figure.2. In this case, the makespan value will 

be equal to the task completion time of the second VM. 

 

 
Figure.2 Makespan definition 

 

The JSO tries to reduce makespan to a minimum by 

trying different assignment variations. In the creation of 

these variations, calculations made based on the 

characteristics of tasks and VMs are taken into account. 

In these calculations, the number of commands of tasks 

is expressed as a Million Instructions (MI), and the 

calculation capabilities of VMs are expressed as the 

number of Million Instructions Per Second (MIPS). Let 

𝑇𝑚 = {𝑀𝐼0, 𝑀𝐼1, … ,𝑀𝐼𝐾}  be considered as the tasks 

assigned to the mth virtual machine. In this case, the 

execution time of the kth task on the mth virtual machine 

can be calculated using Eq.1. The total execution time 

for all tasks is found using Eq.2. 

 

𝐸𝑇𝑘𝑚 =
𝑀𝐼𝑘

𝑀𝐼𝑃𝑆𝑚
     (1) 

 

𝑇𝐸𝑇𝑚 = ∑  𝐸𝑇𝑘𝑚  𝐾
𝑘=0      (2) 

 

Considering all VMs, the maximum total execution time 

determined based on the calculation made with Eq.3 will 

also give the makespan value. The fitness function of the 

proposed method is to obtain the minimum makespan 

value, as expressed in Eq.3. 

 

𝑀𝑎𝑘𝑒𝑝𝑠𝑎𝑛 = 𝑚𝑎𝑥 {𝑇𝐸𝑇𝑚},𝑚 ∈ {𝑉𝑀1, 𝑉𝑀2, … } (3) 

 𝐹𝑜𝑏𝑗 = min  {𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛}        (4) 

 

3.1. Jellyfish Search Optimizer (JSO) 

 

In the proposed method, JSO, the current metaheuristic 

algorithm of recent years, was used to calculate the 

optimal Makespan value. JSO is a meta-heuristic 

optimization algorithm inspired by the movements of 

jellyfish in the ocean while satisfying their basic needs, 

such as finding food, and how they affect other 

individuals in the swarm [8]. In any case, a jellyfish 

wants to move to a place where the amount of food is 

more (  𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝐹𝑜𝑏𝑗 ). The amount of food in places 

visited by jellyfish can vary. In this case, the most 

favorable location in terms of food is found by 

comparing the amounts of food. Jellyfish perform two 

types of movements. These are the movement with the 

ocean current and the movement within the herd. The 

transition between these movements is controlled by a 
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time control mechanism. Since the ocean current 

contains a lot of nutrients, it always attracts jellyfish. In 

JSO, the ocean current ( 𝑂𝐶⃗⃗⃗⃗  ⃗ ) is found based on the 

average locations of all candidate solutions (Jellyfish) 

and the best fitness value. Eq.5 shows the mathematical 

model of the movement with the ocean current. Here, 

𝑛𝑝𝑜𝑝 is the total population and 𝑋∗ is the jellyfish with 

the best fitness value so far. In this equation, the random 

number (𝑟1) and the hyper-parameter (𝛽) also represent 

the 𝑒𝑐  attractiveness factor of the current ( 𝑒𝑐 = 𝛽 ×
𝑟1,    𝑟 ∈ [0,1]).  
 

𝑂𝐶⃗⃗⃗⃗  ⃗ =
1

𝑛𝑝𝑜𝑝
∑𝑂𝐶⃗⃗⃗⃗  ⃗

𝑖 = 
1

𝑛𝑝𝑜𝑝
∑(𝑋∗ − 𝑒𝑐𝑋𝑖) =  𝑋∗ − 𝛽 × 𝑟1 ×

∑𝑋𝑖

𝑛𝑝𝑜𝑝
       (5) 

 

In the case of movement relative to the ocean current, 

the next locations of jellyfish ( 𝑋𝑖(𝑡 + 1) ) are found by 

using Eq.6. where 𝑋𝑖(𝑡) represents the current state of 

the ith jellyfish and 𝑟2 represents the number of uniform 

random. 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟2 × 𝑂𝐶⃗⃗⃗⃗  ⃗   (6) 

 

Movements of jellyfish in the swarm are of two types: 

passive (Type A) and active (Type B) [17]. Initially, 

most jellyfish exhibit Type A movement while forming a 

swarm. Over time, Type B movement is exhibited more. 

In Type A, the jellyfish performs a random movement 

around its location. The model for this type of movement 

is given in Eq.7. where 𝛾  represents the movement 

coefficient, and 𝑈𝑏  and 𝐿𝑏  represent the upper-lower 

bounds of the search space, respectively. 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) +  𝛾 × 𝑟𝑎𝑛𝑑(0,1)  × (𝑈𝑏 − 𝐿𝑏)  (7) 

 

Type B movement occurs according to the state of the 

food resources of the ith jellyfish as well as jth jellyfish 

which is randomly selected in the swarm. The movement 

will be towards the jellyfish, where there is more food. 

The jellyfish performs a random movement in the 

designated direction. In Type B, the direction of 

movement and the new location of the jellyfish are 

calculated by Eq.8 and 9. where �⃗⃗�  is the direction of 

movement and 𝑟3 is the uniform random value. 

 

�⃗⃗� =  {
    𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)       𝑖𝑓      𝑓(𝑋𝑖) ≥ 𝑓(𝑋𝑗)

     𝑋𝑖(𝑡) − 𝑋𝑗(𝑡)        𝑖𝑓       𝑓(𝑋𝑖 < 𝑓(𝑋𝑗)
    (8) 

 

𝑋𝑖(𝑡 + 1) =  𝑋𝑖(𝑡) + 𝑟3 �⃗⃗�         (9) 

 

The movements of jellyfish in the swarm initially begin 

with type A, and over time they switch to type B. In 

addition, the movement of the ocean current is also 

taking place over time. In JSO, a time control 

mechanism is used for all movements of jellyfish. This 

control mechanism is modelled by Eq.10. In this model, t 

is the number of iterations, 𝑟4  is the uniform random 

coefficient, and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  is the maximum number of 

iterations. The result of the control mechanism is 

compared with a threshold value (usually 0.5). If the 

value of the control function is below the threshold 

value, movement occurs within the swarm, and if it is 

above the threshold value, movement occurs based on 

the ocean current. For the movement inside the swarm, 

the value of 1 − 𝑐(𝑡)  is taken into account. For this 

purpose, a random value is generated with a uniform 

generator and this value is compared with 1 − 𝑐(𝑡). If 

the generated random value is higher, the type A 

movement occurs, if not, the type B movement occurs. 

 

𝑐(𝑡) = |(1 −
𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) × (2 × 𝑟4 − 1)|               (10) 

 

In the fitness tests conducted to determine the 

coefficients used in the JSO, the effect of the ocean 

current and the effects of movement types on the results 

were also observed. As a result of these tests, it was 

found that the most optimal solutions were obtained for 

β = 3 and γ = 0.1 [8]. 

 

3.2. Cloneable JSO and The Proposed Task 

Scheduling  

 

Similar to other metaheuristic algorithms, the JSO 

algorithm also has the risk of getting stuck to the local 

minima in Task Scheduling problems. To overcome this 

risk, techniques such as increasing iteration or 

population number or using different random generator 

functions can be used. High population and iteration 

numbers are accompanied by time costs. The technique 

proposed in this study suggests that the optimum value 

can be reached in a shorter time by increasing the 

population growth heuristically and dynamically. 

Accordingly, if there is no change in the best value 

during a given number of iteration, the current 

population is increased at a certain rate at run-time. In 

fact, it was inspired by the biological characteristics of 

jellyfish for this feature. In nature, jellyfish are creatures 

that have the ability to clone themselves in a controlled 

way. However, the critical point here is the positional 

values of new population candidates (clones). Adding 

candidates similar to existing candidates to the 

population will reduce the likelihood of getting out of 

the local minimum. For a more effective exploration 

process, the fact that new individuals differ from existing 

ones is one of the main points of the proposed Cloneable 

JSO (C-JSO) algorithm [23]. The high computational 

cost of the function to be used for similarity checks of 

new candidates will also increase the time cost of the 

algorithm, especially in high populations. Therefore, it is 

necessary to use a fast and effective similarity check 

function. C-JSO uses a fast and effective similarity 

function to prevent the generation of similar candidates. 

Task Scheduling, which is used in doing this, benefits 

from the discrete nature of the problem solving. In the 

Task Scheduling algorithm, tasks and VMs are usually 

encoded with integers. Figure.3 shows an example 

encoding for two candidate solutions ( 𝑋𝑖  and 𝑋𝑗 ). 

Candidate attributes indicate a task. Each attribute value, 

on the other hand, is an integer code showing the current 

VMs. The similarity criterion in Task Scheduling is the 

number of times the same Tasks are assigned to the same 

VMs in the current and new candidate. C-JSO calculates 
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the similarity ratio by performing a match comparison 

for each task. In this calculation, the similarity is 

calculated by the ratio of the total number of zeros, 

obtained as a result of taking the differences in attributes 

of the two candidates, to the total number of Tasks. This 

calculation is expressed in Eq.11 and 12. Accordingly, 

the similarity ratio of the two candidates in Figure.3 is 

50%. 

 

 
Figure.3 A sample similarity control for task assignment [23] 

 

𝐷𝑓 =  𝑋𝑖 − 𝑋𝑗                 (11) 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜𝑒𝑠 𝑖𝑛 𝐷𝑓

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠
               (12) 

 

In C-JSO, population candidates (jellyfish) have a VM 

assignment vector as large as the total number of Tasks. 

Initially, random integer assignments representing VMs 

are made to these vectors for each candidate. Then the 

fitness value of each candidate is calculated by Eq.1-4. 

The candidate with the best fitness value will also 

represent the ocean current. Throughout the iterations, 

depending on the value of the time control function, each 

jellyfish determines its new location within the swarm or 

relative to the ocean current. In C-JSO, there is a binary 

variable (𝜑) that tracks the best value change. If there is 

no change in the best value in a predefined number (I) at 

the end of the iteration, this variable gets a value of true. 

In this case, the current population is increased by a rate 

of a predefined value ( 𝜃 ). When increasing the 

population, the similarity of new candidates is calculated 

by Eq.11-12. As a result of the calculation, candidates 

below the predefined similarity threshold (ε) are added 

to the population and the basic steps are repeated. C-

JSO's pseudo-code showing these steps is given in 

Algorithm-1. 
 

Algorithm 1. The pseudo code of C-JSO based task scheduling [23] 

Initialize the population 

Specify 𝛽, 𝛾, 𝜃, 𝜀, 𝐼 and 𝜑 → 0 

While (itr < max iteration) 

     Find the fitness values of all candidates by Eq.1-4 

     Run time control function by Eq.10 

     If c(t) < 0.5 then follow 𝑂𝐶⃗⃗⃗⃗  ⃗ 

     Else if 1- c(t) < rand (0,1) then make A-type move 

     Else make B-type movement 

     If there is no change in I iterations (𝜑 → 1 ) then increase the 

population by θ% considering Equation 11-12 

     Else 𝜑 → 0 

End while 

Return the best solution 

 

 

 

 

4. RESULTS AND DISCUSSION 

 

The success of the C-JSO-based Task Scheduling 

method was tested in the CloudSim simulator [20] for 

different Cloud scenarios. The success of the C-JSO was 

shown in comparison with the results of the default 

CloudSim Task Scheduling algorithm, the classic JSO, 

and the ACO algorithm. For simulations, a data center 

was created primarily in CloudSim. This data center has 

two main physical servers, each has 16 GB of ram, 10 

TB of Storage, 1 GB/s of bandwidth, and time-shared 

VM scheduling. All VMs are distributed equally on 

these physical servers. The first of these computers has 

4-core and the second has dual-core X86-architecture 

CPUs. The processing capacity of each processor core is 

10000 MIPS. There are Linux operating system and Xen 

VMM on computers. The VMs have 512 MB of ram, 10 

GB of Storage, 10 MB/s of bandwidth, and time-shared 

task scheduling configuration. The processing capacity 

of VMs ranges from 1000 to 5000 MIPS, and the 

command length of tasks ranges from 5000 to 20000 MI. 

The standard task planning method in CloudSim is 

“CloudletSchedulerSpaceShared”. The other parameters 

used in the experiments are given in Table 1. Statistical 

results were obtained by running each of the 

experiments, conducted with 100, 250, 500, and 750 task 

numbers, 10 times in order to observe the performance 

of different scenarios. 

 
Table 1. Experiment parameters 

PARAMETERS VALUES 

Population sizes 10, 20, 30, 50, 60, 80, 100 

Initial population size for C-JSO  10 

Maximum Iteration 500 

Task Sizes 100 - 750 

VM number 20 

Task MIs 5000 - 20000 

VM MIPSs 1000-5000 

Increasing Rate for C-JSO (𝜽) 13 % 

Similarity Rate (𝜺) 90 % 
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a) Traditional JSO makespan results 

 
b) Traditional JSO time results 

Figure4. The makespan and time results of traditional JSO with 

different population sizes for 100-task scheduling 

 

In the experiments, first, how population growth affects 

makespan was examined. For this purpose, classical 

JSO-based solutions with different population numbers 

and their durations have been analyzed in a fixed-size 

Task Scheduling problem. Figure.4a-b shows the results 

of these experiments. In these experiments, classical JSO 

algorithms with different population sizes were run for 

100 Tasks. As can be seen in Figure.4a, population 

growth leads to an improvement in the value of 

makespan. On the other hand, Fig.4b shows that this 

improvement has a negative effect on the solution time. 

The proposed method uses dynamic population growth 

to improve this disadvantage. Thus, at certain task sizes, 

the optimal result will be achieved in a shorter time with 

the appropriate number of populations. 

 

Later experiments were conducted for CloudSim 

scenarios. In these experiments, classical JSO, C-JSO, 

default Cloud Scheduling, and ACO-based methods 

were run, and their results were examined. The 

comparative and statistical results of these experiments 

are given in Figure.5a-b and Table-2, respectively. In 

simulation experiments, the worst makespan values were 

obtained by the default scheduling algorithm. 

Metaheuristic approaches achieved results that were 

close to each other in makespan values and about twice 

as successful results compared to the default scheduling 

algorithm. Among themselves, on the other hand, JSO 

and C-JSO were relatively more successful compared to 

ACO-based Scheduling. When examined in terms of 

duration, C-JSO was much more successful than other 

algorithms. While JSO had the highest values in terms of 

calculation time, C-JSO achieved the shortest time. 

 

 
a) C-JSO, Traditional JSO and Cloudsim makespan results 

 

 
b) C-JSO and Traditional JSO time results 

Figure.5.  Makespan and time comparison for the methods used 

 

According to statistical results, although the ACO 

algorithm approached the JSO and C-JSO values in 

terms of the minimum makespan values, the highest 

makespan values were also obtained by the ACO. 

Statistical results revealed that the performances of C-

JSO and JSO are close to each other. The main 

superiority of C-JSO manifested itself in the calculation 

time. 
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Table 2. Statistical results for the methods used 

 Method 100 

Task 

250 

Task 

500 

Task 

750 

Task 

Minimum 

JSO 

27.38 71.92 163.46 229.43 

Maximum 31.05 77.92 201.73 257.34 

Mean 29.33 73.81 179.72 244.08 

Median 29.64 75.76 177.28 244.68 

Std.  1.26 4.08 12.54 8.96 

Minimum 

C-JSO 
 

25.61 71.06 146.63 227.45 

Maximum 31.42 77.09 161.66 255.74 

Mean 27.96 73.64 154.86 242.86 

Median 27.88 74.07 154.72 242.46 

Std.  1.48 1.79 4.03 6.94 

Minimum 

ACO 

30.31 79.02 159.54 251.10 

Maximum 35.16 87.33 193.47 287.11 

Mean 34.53 83.18 171.11 267.01 

Median 32.14 84.06 177.76 263.74 

Std.  2.29 3.12 10.49 9.88 

Minimum CloudSim 55.51 124.43 304.13 390.08 

 

 
a) The average time results of C-JSO for different increase 

rates 

 
b) The average time results of C-JSO for different similarity 

rates 

Figure.6. Effect of increase and similarity rates in C-JSO on makespan  

 

Important hyper-parameters of C-JSO are the population 

growth rate and the similarity ratio used in the 

generation of new candidates. For this reason, parameter 

experiments were performed for different values, and the 

behaviour of C-JSO was examined. In the experiments, 

8%, 10%, 12%, and 13% values were selected for the 

increase rate. In experiments over 13%, there was no 

improvement in makespan values, and the calculation 

time approached JSO. Similarity ratios of 60%, 70%, 

80%, and 90% were selected. In the experiments, the 

best results were obtained at the 13% increase rate and 

90% similarity rate. The average time performances of 

these parameters for different scenarios are given in 

Figure 6a-b and their effects on makespan are given in 

Figure 7 and 8. 

 

 
Figure.7. Effect of increase rate in C-JSO on makespan  
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Figure.8. Effect of similarity rate in C-JSO on makespan 

 

4. CONCLUSION 

 

This study focused on the task scheduling process, which 

is one of the most important problems in cloud 

computing. To solve this problem, an adapted meta-

heuristic algorithm, the C-JSO, which is based on the 

Jellyfish Search Algorithm (JSO), was developed. C-JSO 

has functions that can make some mechanisms of 

traditional JSO more flexible, such as the population 

structure. The results obtained from the experiments 

were compared with the CloudSim default task scheduler 

and the ACO algorithm results. Both classic JSO and C-

JSO solutions managed to provide successful results in 

standard cloud task-sharing methods. It was observed 

that in Makespan and time comparisons, the C-JSO was 

more successful than the others. It is clear that cloud 

systems will remain a topic where different problems 

will arise for a long time. Therefore, the authors will 

focus on the solutions of different optimization problems 

emerging in cloud systems in their next studies.  
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