

35

Volume 11, Issue 3, Page 35-43, 2022 Cilt 11, Sayı 3, Sayfa 35-43, 2022

Araştırma Makalesi https://doi.org/10.46810/tdfd.1123962 Research Article

Cloneable Jellyfish Search Optimizer Based Task Scheduling in Cloud Environments

Mücahit BÜRKÜK1, Güngör YILDIRIM1*

1Firat University, Engineering Faculty, Department of Computer Engineering, Elazig, Türkiye

Mucahit BÜRKÜK ORCID No: 0000-0002-4974-0590

Güngör YILDIRIM ORCID No: 0000-0002-4096-4838

*Corresponding author: gungor.yildirim@firat.edu.tr

(Received: 31.05.2022, Accepted: 27.07.2022, Online Publication: 29.09.2022)

Keywords

Task scheduling,

Cloud

computing,

Metaheuristic,

Jellyfish

algorithm

Abstract: For cloud environments, task scheduling focusing on the optimal completion time

(makespan) is vital. Metaheuristic approaches can be used to produce efficient solutions that will

provide important cost savings to both the cloud service provider and the clients. On the other

hand, since there is a high probability of getting stuck in local minima in metaheuristic solutions

due to the type of problem, it may not always be possible to quickly reach the optimal solution.

This study, using a metaheuristic approach, proposes a solution based on the Cloneable Jellyfish

Algorithm for optimal task distribution in cloud environments. The unique feature of the proposed

algorithm is that it allows dynamic population growth to be carried out in a controlled manner in

order not to get stuck in local minima during the exploration phase. In addition, this algorithm,

which uses a different cloning mechanism so that similar candidates are not generated in the

population growth, has made it possible to achieve the optimal solution in a shorter time. To

observe the solution performance, cloud environment simulations created in the Cloudsim

simulator have been used. In experiments, the success of the proposed solution compared to

classical scheduling algorithms has been proven.

Bulut Sistemlerde Denizanası Arama Optimizasyonu Tabanlı Görev Çizelgeleme

Anahtar

Kelimeler

Görev

Çizelgeleme,

Bulut

Hesaplama,

Metasezgisel,

Denizanası

Algoritması

Öz: Bulut ortamlar için optimum tamamlanma süresi (makespan) çözümüne odaklanan görev

planlamaları hayati öneme sahiptir. Hem bulut servis sağlayıcı hem de müşteriye ciddi maliyet

kazancı sağlayacak çözümlerin üretilmesinde meta-sezgisel yaklaşımlar kullanılabilir. Öte yandan

problem tipinden dolayı meta-sezgisel çözümlerde lokal minimumlara takılma olasılığı yüksek

olduğundan optimum çözüme hızlıca ulaşmak her zaman mümkün olamayabilir. Meta-sezgisel bir

yaklaşım kullanan bu çalışma, bulut ortamlarda optimum görev dağılımı için Klonlanabilir Deniz

Anası Algoritması temelli bir çözüm önermektedir. Önerilen algoritmanın özgün özelliği,

exploration aşamasında lokal minimumlara takılmamak için dinamik popülasyon artışının kontrollü

bir şekilde yapılmasına olanak sağlamasıdır. Ayrıca popülasyon artışında benzer adayların

üretilmemesi için farklı bir klonlama mekanizması kullanan bu algoritma, optimum çözüme daha

kısa sürede ulaşmayı mümkün kılmıştır. Çözüm performansını gözlemlemek için Cloudsim

simülatöründe oluşturulan bulut ortam simülasyonları kullanılmıştır. Farklı senaryolar için yapılan

deneylerde, önerilen çözümün klasik scheduling algoritmalarına göre başarısı ispatlanmıştır.

1. INTRODUCTION

Cloud computing technology is the sum of virtualized

and scalable resources that allow hosting a large amount

of data on the Internet and provide users with a pay-per-

use model [1]. Many reasons, such as the development

and acceleration of the Internet infrastructure, the spread

of IoT (Internet of Things) technology, the rapid growth

of big data, and advances in artificial intelligence

studies, have led to the widespread use of cloud

technology. Cloud computing allows the users to access

various services and resources (CPU, RAM, storage)

anytime and anywhere. A cloud system can provide

three types of services related to infrastructure, platform,

and software. The first service is IaaS (Infrastructure as a

Service), which provides infrastructure services such as a

storage system and computational resources. The second

service is PaaS (Platform as a Service), which allows

clients to create their applications on the provided

www.dergipark.gov.tr/tdfd

http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 35-43, 2022 Tr. J. Nature Sci. Volume 11, Issue 3, Page 35-43, 2022

36

platform. The third service, on the other hand, is SaaS

(Software as a Service), which allows users to use

software directly from the cloud instead of on local

machines [2]. Cloud service providers must offer

resources and services to their clients in a way that does

not violate the SLA (Service Level Agreement) and

guarantees a certain QoS (Quality of Service). Optimal

use of cloud system resources and maintaining

performance at the highest level are vital for both service

providers and users. Task scheduling is a factor that

directly affects cloud system performance and optimal

resource utilization. A task or resource scheduling that

has not been designed well can lead to an SLA violation,

serious loss of revenue, and performance degradation.

One of the most important mechanisms of cloud

computing is virtual machines (VMs). VMs are created

from resources on the cloud system in accordance with

the needs of clients. Depending on the volume of work,

the number of clients’ VMs and their features may vary.

Clients pay a certain fee to the cloud provider based on

the characteristics of these VMs and the duration of their

use. Incorrect scheduling of tasks that need to be run on

VMs leads to an increase in task completion time

(makespan) and, naturally, to an increase in costs for the

client. This increase in makespan also indirectly

negatively affects the energy consumption and

maintenance and repair costs of the cloud provider.

Therefore, the use of a good task scheduling algorithm

on cloud systems is mandatory for both the customer and

the cloud provider [4]. Task scheduling is an NP-hard

problem [1]. The use of metaheuristic algorithms instead

of deterministic solutions is often preferred in solving

such problems in terms of performance [5]. But on the

other hand, due to the type of problem, the probability of

the fact that random search-based metaheuristic

algorithms are stuck in local minima is also high. This

probability can further increase as the number of tasks

and VMs increases. Therefore, it is necessary that the

used metaheuristic algorithms use mechanisms that will

overcome this problem. For this problem, this study

proposes a solution based on Jellyfish Search Optimizer

(JSO) [8], which is an up-to-date metaheuristic algorithm

that uses a different approach mechanism. The most

unique aspect of the proposed method is that it gets rid

of local minima more quickly and allows dynamic

population growth with a different similarity control. In

this way, a more efficient exploration process is realized

in the search space. The performance of the proposed

method was proven by trying comparatively for different

scenarios in the CloudSim simulator.

Other parts of this article are as follows; In Part II, task

scheduling strategies in cloud computing systems and

similar studies found in the literature are given. Part III

contains the details of the used methodology and JSO

algorithm. The experiments and comparative evaluations

are given in Part IV, and the conclusion is presented in

Part V.

2. BACKGROUND AND RELATED WORKS

In cloud systems, virtual machines (VMs) with different

properties can be created on physical servers using

virtualization techniques. VMs can collaborate to

perform a specific task, as well as work independently of

each other. Cloud service providers (CSPs) have broker

services that conveniently distribute incoming tasks to

VMs. Such services can also be developed by the client

and run on a separate VM in the cloud. The Task

Scheduling algorithm used in both cases is the most

important factor that determines performance. Task

scheduling has three main mechanisms: resource finding,

resource determination, and task allocation [7]. The

availability of resources requires that shareable resources

can be questionable. Resource determination makes the

selection of the most optimal resources depending on the

characteristics of the tasks at the end of the resource

query. Task allocation, on the other hand, sends the

relevant tasks to the determined resources and performs

their follow-up. The cloud system has a heterogeneous

structure in terms of both resource and customer

diversity. This naturally leads to the emergence of

different goals in Task Scheduling optimization. Among

these goals, the completion time (makespan), energy

consumption, and cost stand out. Given this diversity,

the strategy to be used in task scheduling should be

chosen correctly. In the task scheduling proposed in the

literature, strategies can be classified as shown in

Figure.1 [11].

Figure.1 Task scheduling strategies

In the task scheduling strategy by the goal, one of the

goals such as makespan, cost, energy consumption, or

more than one that contradicts each other can be taken

into account. The cloud infrastructure and the incoming

task type also determine whether the strategy to be used

will be static or dynamic. Static scheduling can be

performed in fixed source cloud systems where there is

not much workload change. However, since today’s

cloud technologies have a variable structure, dynamic

strategies are usually preferred. This also applies to the

heterogeneous structure of the CSP architecture. In terms

of planning, heuristic techniques are often used for static

scheduling. Metaheuristic algorithms that use heuristics

and random search mechanisms together can achieve to

create effective solutions for dynamic systems [6, 10,

13]. In this study, the proposed metaheuristic solution

was developed for a single objective purpose in a

heterogeneous and dynamic CSP system.

Because metaheuristic algorithms contain randomness,

initial values are important. In [3], the authors presented

a Discrete Symbiotic Organism Search (DSOS)

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 35-43, 2022 Tr. J. Nature Sci. Volume 11, Issue 3, Page 35-43, 2022

37

algorithm, which is a metaheuristic algorithm for the

optimal scheduling of tasks in cloud resources. In [9], for

the particle swarm optimization (PSO), which is a well-

known metaheuristic algorithm, the initial values were

found using the heuristic LJFP and MCT algorithms.

Thus, success was achieved in makespan and total

energy consumption. In [6], makespan optimization

conducted with the grey wolf optimizer (GWO) that used

the hunting mechanism, CPU, memory, and resource

bandwidth parameters were taken into account together.

In another study conducted for the purpose of makespan

[12], the authors used the Electromagnetism

Metaheuristic Algorithm (EMA) and monitored their

VM performance comparatively. In [18], the authors

used a multi-purpose Task scheduling strategy. For this,

they proposed the ICW method that used the

metaheuristic whale optimization algorithm (WOA). In

[13], transaction cost and makespan optimization were

performed with the developed space-shared genetic

algorithm, and the superiority of the proposed solution

over competitive planning algorithms was proved.

Solutions based on ant colony optimization (ACO),

which is another well-known metaheuristic algorithm,

have also been introduced in the literature. An ACO-

based solution taking into account the load balance and

the purposes of the makespan was presented in [14]. In

[15], a hybrid task scheduling method using the ACO

and PSO algorithms was proposed. Another hybrid

solution based on ACO was also introduced in [16]. In

this study, the authors first ran the GA algorithm to

determine the initial values of ACO; thus, they achieved

a better execution time. A hybrid solution that performs

more metaheuristic algorithm execution in it was

proposed by [19]. In this study, GA, ACO, and PSO

algorithms were run in the developed framework to

obtain the optimum makespan value. In [21], the authors

proposed a hyper-heuristic scheduling algorithm by

integrating GA, ACO, and PSO into a single framework

to reduce the makespan in the cloud. In [22], a minimum

makespan task scheduling framework called MMSF and

a minimum makespan task scheduling algorithm called

MMA were proposed.

In general, in the Metaheuristic Task Scheduling

solutions proposed in the literature, it has not been

focused on overcoming the emerging local minima

problems in a shorter period of time. Unlike the

examples in the literature, this study aimed to reach the

existing solutions faster with the state-controlled

dynamic population variability.

3. MATERIAL AND METHOD

In Task Scheduling, the task scheduler assigns the tasks

waiting in the queue to the appropriate VMs according to

the output of the JSO algorithm. The used algorithm

makes these assignments based on the calculations it

makes for certain objective or objectives. In this study,

Task Scheduling was performed according to the

makespan objective. Makespan is the completion time of

a certain number of tasks on the VMs to which they are

assigned. The goal of Makespan optimization is to

reduce this time to a minimum. As an example, let’s

assume that 7 different tasks are assigned to 3 different

VMs as in Figure.2. In this case, the makespan value will

be equal to the task completion time of the second VM.

Figure.2 Makespan definition

The JSO tries to reduce makespan to a minimum by

trying different assignment variations. In the creation of

these variations, calculations made based on the

characteristics of tasks and VMs are taken into account.

In these calculations, the number of commands of tasks

is expressed as a Million Instructions (MI), and the

calculation capabilities of VMs are expressed as the

number of Million Instructions Per Second (MIPS). Let

𝑇𝑚 = {𝑀𝐼0, 𝑀𝐼1, … ,𝑀𝐼𝐾} be considered as the tasks

assigned to the mth virtual machine. In this case, the

execution time of the kth task on the mth virtual machine

can be calculated using Eq.1. The total execution time

for all tasks is found using Eq.2.

𝐸𝑇𝑘𝑚 =
𝑀𝐼𝑘

𝑀𝐼𝑃𝑆𝑚
 (1)

𝑇𝐸𝑇𝑚 = ∑ 𝐸𝑇𝑘𝑚 𝐾
𝑘=0 (2)

Considering all VMs, the maximum total execution time

determined based on the calculation made with Eq.3 will

also give the makespan value. The fitness function of the

proposed method is to obtain the minimum makespan

value, as expressed in Eq.3.

𝑀𝑎𝑘𝑒𝑝𝑠𝑎𝑛 = 𝑚𝑎𝑥 {𝑇𝐸𝑇𝑚},𝑚 ∈ {𝑉𝑀1, 𝑉𝑀2, … } (3)

 𝐹𝑜𝑏𝑗 = min {𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛} (4)

3.1. Jellyfish Search Optimizer (JSO)

In the proposed method, JSO, the current metaheuristic

algorithm of recent years, was used to calculate the

optimal Makespan value. JSO is a meta-heuristic

optimization algorithm inspired by the movements of

jellyfish in the ocean while satisfying their basic needs,

such as finding food, and how they affect other

individuals in the swarm [8]. In any case, a jellyfish

wants to move to a place where the amount of food is

more (𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝐹𝑜𝑏𝑗). The amount of food in places

visited by jellyfish can vary. In this case, the most

favorable location in terms of food is found by

comparing the amounts of food. Jellyfish perform two

types of movements. These are the movement with the

ocean current and the movement within the herd. The

transition between these movements is controlled by a

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 35-43, 2022 Tr. J. Nature Sci. Volume 11, Issue 3, Page 35-43, 2022

38

time control mechanism. Since the ocean current

contains a lot of nutrients, it always attracts jellyfish. In

JSO, the ocean current (𝑂𝐶⃗⃗⃗⃗ ⃗) is found based on the

average locations of all candidate solutions (Jellyfish)

and the best fitness value. Eq.5 shows the mathematical

model of the movement with the ocean current. Here,

𝑛𝑝𝑜𝑝 is the total population and 𝑋∗ is the jellyfish with

the best fitness value so far. In this equation, the random

number (𝑟1) and the hyper-parameter (𝛽) also represent

the 𝑒𝑐 attractiveness factor of the current (𝑒𝑐 = 𝛽 ×
𝑟1, 𝑟 ∈ [0,1]).

𝑂𝐶⃗⃗⃗⃗ ⃗ =
1

𝑛𝑝𝑜𝑝
∑𝑂𝐶⃗⃗⃗⃗ ⃗

𝑖 =
1

𝑛𝑝𝑜𝑝
∑(𝑋∗ − 𝑒𝑐𝑋𝑖) = 𝑋∗ − 𝛽 × 𝑟1 ×

∑𝑋𝑖

𝑛𝑝𝑜𝑝
 (5)

In the case of movement relative to the ocean current,

the next locations of jellyfish (𝑋𝑖(𝑡 + 1)) are found by

using Eq.6. where 𝑋𝑖(𝑡) represents the current state of

the ith jellyfish and 𝑟2 represents the number of uniform

random.

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟2 × 𝑂𝐶⃗⃗⃗⃗ ⃗ (6)

Movements of jellyfish in the swarm are of two types:

passive (Type A) and active (Type B) [17]. Initially,

most jellyfish exhibit Type A movement while forming a

swarm. Over time, Type B movement is exhibited more.

In Type A, the jellyfish performs a random movement

around its location. The model for this type of movement

is given in Eq.7. where 𝛾 represents the movement

coefficient, and 𝑈𝑏 and 𝐿𝑏 represent the upper-lower

bounds of the search space, respectively.

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝛾 × 𝑟𝑎𝑛𝑑(0,1) × (𝑈𝑏 − 𝐿𝑏) (7)

Type B movement occurs according to the state of the

food resources of the ith jellyfish as well as jth jellyfish

which is randomly selected in the swarm. The movement

will be towards the jellyfish, where there is more food.

The jellyfish performs a random movement in the

designated direction. In Type B, the direction of

movement and the new location of the jellyfish are

calculated by Eq.8 and 9. where �⃗⃗� is the direction of

movement and 𝑟3 is the uniform random value.

�⃗⃗� = {
 𝑋𝑗(𝑡) − 𝑋𝑖(𝑡) 𝑖𝑓 𝑓(𝑋𝑖) ≥ 𝑓(𝑋𝑗)

 𝑋𝑖(𝑡) − 𝑋𝑗(𝑡) 𝑖𝑓 𝑓(𝑋𝑖 < 𝑓(𝑋𝑗)
 (8)

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟3 �⃗⃗� (9)

The movements of jellyfish in the swarm initially begin

with type A, and over time they switch to type B. In

addition, the movement of the ocean current is also

taking place over time. In JSO, a time control

mechanism is used for all movements of jellyfish. This

control mechanism is modelled by Eq.10. In this model, t

is the number of iterations, 𝑟4 is the uniform random

coefficient, and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the maximum number of

iterations. The result of the control mechanism is

compared with a threshold value (usually 0.5). If the

value of the control function is below the threshold

value, movement occurs within the swarm, and if it is

above the threshold value, movement occurs based on

the ocean current. For the movement inside the swarm,

the value of 1 − 𝑐(𝑡) is taken into account. For this

purpose, a random value is generated with a uniform

generator and this value is compared with 1 − 𝑐(𝑡). If

the generated random value is higher, the type A

movement occurs, if not, the type B movement occurs.

𝑐(𝑡) = |(1 −
𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) × (2 × 𝑟4 − 1)| (10)

In the fitness tests conducted to determine the

coefficients used in the JSO, the effect of the ocean

current and the effects of movement types on the results

were also observed. As a result of these tests, it was

found that the most optimal solutions were obtained for

β = 3 and γ = 0.1 [8].

3.2. Cloneable JSO and The Proposed Task

Scheduling

Similar to other metaheuristic algorithms, the JSO

algorithm also has the risk of getting stuck to the local

minima in Task Scheduling problems. To overcome this

risk, techniques such as increasing iteration or

population number or using different random generator

functions can be used. High population and iteration

numbers are accompanied by time costs. The technique

proposed in this study suggests that the optimum value

can be reached in a shorter time by increasing the

population growth heuristically and dynamically.

Accordingly, if there is no change in the best value

during a given number of iteration, the current

population is increased at a certain rate at run-time. In

fact, it was inspired by the biological characteristics of

jellyfish for this feature. In nature, jellyfish are creatures

that have the ability to clone themselves in a controlled

way. However, the critical point here is the positional

values of new population candidates (clones). Adding

candidates similar to existing candidates to the

population will reduce the likelihood of getting out of

the local minimum. For a more effective exploration

process, the fact that new individuals differ from existing

ones is one of the main points of the proposed Cloneable

JSO (C-JSO) algorithm [23]. The high computational

cost of the function to be used for similarity checks of

new candidates will also increase the time cost of the

algorithm, especially in high populations. Therefore, it is

necessary to use a fast and effective similarity check

function. C-JSO uses a fast and effective similarity

function to prevent the generation of similar candidates.

Task Scheduling, which is used in doing this, benefits

from the discrete nature of the problem solving. In the

Task Scheduling algorithm, tasks and VMs are usually

encoded with integers. Figure.3 shows an example

encoding for two candidate solutions (𝑋𝑖 and 𝑋𝑗).

Candidate attributes indicate a task. Each attribute value,

on the other hand, is an integer code showing the current

VMs. The similarity criterion in Task Scheduling is the

number of times the same Tasks are assigned to the same

VMs in the current and new candidate. C-JSO calculates

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 35-43, 2022 Tr. J. Nature Sci. Volume 11, Issue 3, Page 35-43, 2022

39

the similarity ratio by performing a match comparison

for each task. In this calculation, the similarity is

calculated by the ratio of the total number of zeros,

obtained as a result of taking the differences in attributes

of the two candidates, to the total number of Tasks. This

calculation is expressed in Eq.11 and 12. Accordingly,

the similarity ratio of the two candidates in Figure.3 is

50%.

Figure.3 A sample similarity control for task assignment [23]

𝐷𝑓 = 𝑋𝑖 − 𝑋𝑗 (11)

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜𝑒𝑠 𝑖𝑛 𝐷𝑓

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠
 (12)

In C-JSO, population candidates (jellyfish) have a VM

assignment vector as large as the total number of Tasks.

Initially, random integer assignments representing VMs

are made to these vectors for each candidate. Then the

fitness value of each candidate is calculated by Eq.1-4.

The candidate with the best fitness value will also

represent the ocean current. Throughout the iterations,

depending on the value of the time control function, each

jellyfish determines its new location within the swarm or

relative to the ocean current. In C-JSO, there is a binary

variable (𝜑) that tracks the best value change. If there is

no change in the best value in a predefined number (I) at

the end of the iteration, this variable gets a value of true.

In this case, the current population is increased by a rate

of a predefined value (𝜃). When increasing the

population, the similarity of new candidates is calculated

by Eq.11-12. As a result of the calculation, candidates

below the predefined similarity threshold (ε) are added

to the population and the basic steps are repeated. C-

JSO's pseudo-code showing these steps is given in

Algorithm-1.

Algorithm 1. The pseudo code of C-JSO based task scheduling [23]

Initialize the population

Specify 𝛽, 𝛾, 𝜃, 𝜀, 𝐼 and 𝜑 → 0

While (itr < max iteration)

 Find the fitness values of all candidates by Eq.1-4

 Run time control function by Eq.10

 If c(t) < 0.5 then follow 𝑂𝐶⃗⃗⃗⃗ ⃗

 Else if 1- c(t) < rand (0,1) then make A-type move

 Else make B-type movement

 If there is no change in I iterations (𝜑 → 1) then increase the

population by θ% considering Equation 11-12

 Else 𝜑 → 0

End while

Return the best solution

4. RESULTS AND DISCUSSION

The success of the C-JSO-based Task Scheduling

method was tested in the CloudSim simulator [20] for

different Cloud scenarios. The success of the C-JSO was

shown in comparison with the results of the default

CloudSim Task Scheduling algorithm, the classic JSO,

and the ACO algorithm. For simulations, a data center

was created primarily in CloudSim. This data center has

two main physical servers, each has 16 GB of ram, 10

TB of Storage, 1 GB/s of bandwidth, and time-shared

VM scheduling. All VMs are distributed equally on

these physical servers. The first of these computers has

4-core and the second has dual-core X86-architecture

CPUs. The processing capacity of each processor core is

10000 MIPS. There are Linux operating system and Xen

VMM on computers. The VMs have 512 MB of ram, 10

GB of Storage, 10 MB/s of bandwidth, and time-shared

task scheduling configuration. The processing capacity

of VMs ranges from 1000 to 5000 MIPS, and the

command length of tasks ranges from 5000 to 20000 MI.

The standard task planning method in CloudSim is

“CloudletSchedulerSpaceShared”. The other parameters

used in the experiments are given in Table 1. Statistical

results were obtained by running each of the

experiments, conducted with 100, 250, 500, and 750 task

numbers, 10 times in order to observe the performance

of different scenarios.

Table 1. Experiment parameters

PARAMETERS VALUES

Population sizes 10, 20, 30, 50, 60, 80, 100

Initial population size for C-JSO 10

Maximum Iteration 500

Task Sizes 100 - 750

VM number 20

Task MIs 5000 - 20000

VM MIPSs 1000-5000

Increasing Rate for C-JSO (𝜽) 13 %

Similarity Rate (𝜺) 90 %

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 35-43, 2022 Tr. J. Nature Sci. Volume 11, Issue 3, Page 35-43, 2022

40

a) Traditional JSO makespan results

b) Traditional JSO time results

Figure4. The makespan and time results of traditional JSO with

different population sizes for 100-task scheduling

In the experiments, first, how population growth affects

makespan was examined. For this purpose, classical

JSO-based solutions with different population numbers

and their durations have been analyzed in a fixed-size

Task Scheduling problem. Figure.4a-b shows the results

of these experiments. In these experiments, classical JSO

algorithms with different population sizes were run for

100 Tasks. As can be seen in Figure.4a, population

growth leads to an improvement in the value of

makespan. On the other hand, Fig.4b shows that this

improvement has a negative effect on the solution time.

The proposed method uses dynamic population growth

to improve this disadvantage. Thus, at certain task sizes,

the optimal result will be achieved in a shorter time with

the appropriate number of populations.

Later experiments were conducted for CloudSim

scenarios. In these experiments, classical JSO, C-JSO,

default Cloud Scheduling, and ACO-based methods

were run, and their results were examined. The

comparative and statistical results of these experiments

are given in Figure.5a-b and Table-2, respectively. In

simulation experiments, the worst makespan values were

obtained by the default scheduling algorithm.

Metaheuristic approaches achieved results that were

close to each other in makespan values and about twice

as successful results compared to the default scheduling

algorithm. Among themselves, on the other hand, JSO

and C-JSO were relatively more successful compared to

ACO-based Scheduling. When examined in terms of

duration, C-JSO was much more successful than other

algorithms. While JSO had the highest values in terms of

calculation time, C-JSO achieved the shortest time.

a) C-JSO, Traditional JSO and Cloudsim makespan results

b) C-JSO and Traditional JSO time results

Figure.5. Makespan and time comparison for the methods used

According to statistical results, although the ACO

algorithm approached the JSO and C-JSO values in

terms of the minimum makespan values, the highest

makespan values were also obtained by the ACO.

Statistical results revealed that the performances of C-

JSO and JSO are close to each other. The main

superiority of C-JSO manifested itself in the calculation

time.

30

31

32

33

34

35

36

37

38

39

20 40 60 80 100

M
ak

es
p

an

Population Sizes

0

50

100

150

200

250

300

350

400

10 20 40 60 80 100

ti
m

e(
s)

Population Sizes

0

50

100

150

200

250

300

350

400

TASK 100 TASK 250 TASK 500 TASK 750
m

ak
es

p
an

C-JSO Traditional JSO Default ACO

0

50

100

150

200

250

300

350

TASK 100 TASK 250 TASK 500 TASK 750

ti
m

e(
s)

C-JSO Traditional JSO ACO

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 35-43, 2022 Tr. J. Nature Sci. Volume 11, Issue 3, Page 35-43, 2022

41

Table 2. Statistical results for the methods used

 Method 100

Task

250

Task

500

Task

750

Task

Minimum

JSO

27.38 71.92 163.46 229.43

Maximum 31.05 77.92 201.73 257.34

Mean 29.33 73.81 179.72 244.08

Median 29.64 75.76 177.28 244.68

Std. 1.26 4.08 12.54 8.96

Minimum

C-JSO

25.61 71.06 146.63 227.45

Maximum 31.42 77.09 161.66 255.74

Mean 27.96 73.64 154.86 242.86

Median 27.88 74.07 154.72 242.46

Std. 1.48 1.79 4.03 6.94

Minimum

ACO

30.31 79.02 159.54 251.10

Maximum 35.16 87.33 193.47 287.11

Mean 34.53 83.18 171.11 267.01

Median 32.14 84.06 177.76 263.74

Std. 2.29 3.12 10.49 9.88

Minimum CloudSim 55.51 124.43 304.13 390.08

a) The average time results of C-JSO for different increase

rates

b) The average time results of C-JSO for different similarity

rates

Figure.6. Effect of increase and similarity rates in C-JSO on makespan

Important hyper-parameters of C-JSO are the population

growth rate and the similarity ratio used in the

generation of new candidates. For this reason, parameter

experiments were performed for different values, and the

behaviour of C-JSO was examined. In the experiments,

8%, 10%, 12%, and 13% values were selected for the

increase rate. In experiments over 13%, there was no

improvement in makespan values, and the calculation

time approached JSO. Similarity ratios of 60%, 70%,

80%, and 90% were selected. In the experiments, the

best results were obtained at the 13% increase rate and

90% similarity rate. The average time performances of

these parameters for different scenarios are given in

Figure 6a-b and their effects on makespan are given in

Figure 7 and 8.

Figure.7. Effect of increase rate in C-JSO on makespan

0

20

40

60

80

100

120

140

160

TASK 100 TASK 250 TASK 500 TASK 750

ti
m

e(
s)

Increase rates

8% 10% 12% 13%

0

20

40

60

80

100

120

140

160

TASK 100 TASK 250 TASK 500 TASK 750

ti
m

e(
s)

Similarity rates

60% 70% 80% 90%

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 35-43, 2022 Tr. J. Nature Sci. Volume 11, Issue 3, Page 35-43, 2022

42

Figure.8. Effect of similarity rate in C-JSO on makespan

4. CONCLUSION

This study focused on the task scheduling process, which

is one of the most important problems in cloud

computing. To solve this problem, an adapted meta-

heuristic algorithm, the C-JSO, which is based on the

Jellyfish Search Algorithm (JSO), was developed. C-JSO

has functions that can make some mechanisms of

traditional JSO more flexible, such as the population

structure. The results obtained from the experiments

were compared with the CloudSim default task scheduler

and the ACO algorithm results. Both classic JSO and C-

JSO solutions managed to provide successful results in

standard cloud task-sharing methods. It was observed

that in Makespan and time comparisons, the C-JSO was

more successful than the others. It is clear that cloud

systems will remain a topic where different problems

will arise for a long time. Therefore, the authors will

focus on the solutions of different optimization problems

emerging in cloud systems in their next studies.

Acknowledgement

This article is derived from Mucahit BURKUK’s

master's thesis titled Developing a Metaheuristic

Solution Model to Task Scheduling Problems in Cloud

Systems.

REFERENCES

[1] Strumberger I., Tuba E., Bacanin N., and Tuba, M.

Dynamic tree growth algorithm for load scheduling

in cloud environments. In 2019 IEEE Congress on

Evolutionary Computation. 2019; p. 65-72.

[2] Avram MG. Advantages and challenges of adopting

cloud computing from an enterprise perspective.

Procedia Technology.2014; 12, 529-534.

[3] Abdullahi M., Ngadi MA. Symbiotic organism

search optimization-based task scheduling in cloud

computing environment. Future Generation

Computer Systems. 2016; 56, 640-650.

[4] Houssein EH., Gad AG., Wazery YM., Suganthan

PN. Task scheduling in cloud computing based on

meta-heuristics: review, taxonomy, open challenges,

and future trends. Swarm and Evolutionary

Computation. 2021; 62, 100841.

[5] Mohamed AB. , Laila AF, Arun KS. Computational

Intelligence for Multimedia Big Data on the Cloud

with Engineering Applications; 2018.

[6] Yildirim G., Alatas B. New adaptive intelligent grey

wolf optimizer based multi-objective quantitative

classification rules mining approaches. Journal of

Ambient Intelligence and Humanized Computing.

2021; 12, 9611–9635.

https://doi.org/10.1007/s12652-020-02701-9

[7] Pradhan A., Bisoy SK., Das A. A survey on pso

based meta-heuristic scheduling mechanism in cloud

computing environment. Journal of King Saud

University-Computer and Information Sciences;

2021.

[8] Chou JS., Truong TN. A novel metaheuristic

optimizer inspired by behavior of jellyfish in ocean,

Applied Mathematics and Computation.2021; 389,

125535.

[9] Alsaidy SA., Abbood AD., Sahib MA. Heuristic

initialization of PSO task scheduling algorithm in

cloud computing. Journal of King Saud University-

Computer and Information Sciences; 2020.

[10] Yıldırım S., Yıldırım G., Alatas B."Anlaşılabilir

Sınıflandırma Kurallarının Ayçiçeği Optimizasyon

Algoritması ile Otomatik Keşfi", Türk Doğa ve Fen

Dergisi. 2021; vol. 10, no. 2, pp. 233-241,

doi:10.46810/tdfd.976397

[11] Saurav SK., Benedict S. A Taxonomy and Survey

on Energy-Aware Scientific Workflows Scheduling

in Large-Scale Heterogeneous Architecture. In

2021 6th International Conference on Inventive

Computation Technologies (ICICT). 2021; (pp.

820-826). IEEE.

[12] Belgacem A., Beghdad-Bey K., Nacer H. Task

scheduling optimization in cloud based on

electromagnetism metaheuristic algorithm. In 2018

3rd International Conference on Pattern Analysis

and Intelligent Systems (PAIS) 2018; (pp. 1-7).

IEEE.

[13] Yildirim G., Hallac İR., Aydin G., Tatar Y.

"Running genetic algorithms on Hadoop for solving

high dimensional optimization problems," 2015 9th

International Conference on Application of

Information and Communication Technologies

https://www.sciencedirect.com/science/article/pii/B9780128133149000104#!
https://www.sciencedirect.com/science/article/pii/B9780128133149000104#!

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 35-43, 2022 Tr. J. Nature Sci. Volume 11, Issue 3, Page 35-43, 2022

43

(AICT). 2015; pp. 12-16, doi:

10.1109/ICAICT.2015.7338506

[14] Li K., Xu G., Zhao G., Dong Y., Wang D. Cloud

task scheduling based on load balancing ant colony

optimization. In 2011 sixth annual ChinaGrid

conference. 2011; (pp. 3-9). IEEE.

[15] Liu CY., Zou CM., Wu P. A task scheduling

algorithm based on genetic algorithm and ant

colony optimization in cloud computing. In 2014

13th International Symposium on Distributed

Computing and Applications to Business,

Engineering and Science 2014; (pp. 68-72). IEEE.

[16] Chen X., Çeng U., Liu K., Liu Q., Liu J., Ying

Mao, Murphy J. A WOA-Based Optimization

Approach for Task Scheduling in Cloud Computing

Systems. 2020; Volume: 14, Issue: 3, 3117 – 3128.

IEEE.

[17] Zavodnik D. Spatial aggregations of the swarming

jellyfish Pelagia noctiluca (Scyphozoa), Mar. Biol.

1987; 94, 265–269.

[18] Kıran, MS., Fındık O. A directed artificial bee

colony algorithm, Appl. Soft Comput. 2015; 26,

454–462.

[19] Kıran M.S., Gündüz M., Baykan ÖK. A novel

hybrid algorithm based on particle swarm and ant

colony optimization for finding the global

minimum, Appl. Math. Comput, 2012; C. 219,

1515–1521.

[20] Calheiros RN., Ranjan R., Beloglazov A., De Rose

CA., Buyya R. CloudSim: a toolkit for modeling

and simulation of cloud computing environments

and evaluation of resource provisioning algorithms.

Software: Practice and experience, 2011; 41(1), 23-

50.

[21] Tsai CW., Huang WC., Chiang MH., Chiang MC.,

Yang CS. A hyper-heuristic scheduling algorithm

for cloud. IEEE Transactions on Cloud Computing,

2014; 2, 236-250.

[22] Sasikaladevi N. Minimum makespan task

scheduling algorithm in cloud computing,

International Journal of Advances in Intelligent

Informatics ISSN: 2442-6571, 2016; pp. 123-130.
[23] Burkuk M., Developing a Metaheuristic Solution

Model to Task Scheduling Problems in Cloud

Systems, Master Thesis, Graduate School of

Natural and Applied Sciences, Firat University,

2022

https://ieeexplore.ieee.org/author/37086884256
https://ieeexplore.ieee.org/author/37085391040
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=9185112

