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Abstract – Convolutional Neural Networks (CNN) architectures have been increasingly well-known for image processing 
applications such as object detection, and remote sensing.  Some applications like these systems need to adopt CNN methods for 
real-time implementation. Embedded devices like Field Programmable Gate Arrays (FPGA) technologies are a favorable 
alternative to implementing CNN-based algorithms. However, FPGA has some drawbacks such as limited resources and 
bottlenecks, it is difficult and so crucial to map the whole CNN that has a high number of layers, on FPGA without any 
optimization. Therefore, hardware optimization techniques are compulsory. In this study, an FPGA-based CNN architecture 
using high-level synthesis (HLS) is demonstrated, and a synthesis report is created for Xilinx Zynq-7000 xc7z020-clg484-1 
target FPGAs. By implementing the CNN architecture on an FPGA platform, the implemented architecture has been fastened. 
To improve the throughput, the proposed design is optimized for convolutional layers. The most important contribution of this 
study is to perform optimization on the convolution layer by unrolling kernels and input feature maps and examine the effects 
on throughput, latency, and hardware resources. In this study, throughput is 15.6 GOP/s for the first convolution layer. With the 
proposed method in the study, approximately x2.6 acceleration in terms of latency and throughput was achieved compared to 
the baseline design.   
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I. INTRODUCTION 

Because CNN-based methods have presented successful 
results over traditional methods, these networks consider a 
powerful tool in many areas, especially in image processing 
applications. They are just adapted to address numerous 
problems. Starting with the 7-layer Lenet-5 [1], the deep 
learning (DL) approaches now continue with more than a 
hundred layers. In the early days of deep learning networks, 
researchers aimed to design deeper and wider networks to 
increase the accuracy of the network [2,3]. By increasing the 
number of layers and establishing larger networks, it was 
possible to design networks with high accuracy. However, 
increasing the number of layers and designing larger networks 
has increased the workload of the platform used to run the 
network. In addition, the number of parameters in the used 
network has increased, which has increased the training and 
inference stages. This, in addition to the success of CNN's in 
solving problems, caused an increase in the workload of the 
undesirable platforms and caused the general-purpose 
platforms to be insufficient to operate such deep networks. As 
a consequence of the large number of parameters and the 
computational burden of CNNs, researchers began to explore 
ways to design sparse and smaller networks using more 
compact and fewer parameters [4].  

For some applications such as vehicle tracking systems, 
mobile applications, and object tracking, networks designed 
for real-time operation are required. CNN-based networks 
require a high volume of parameters and lots of calculation 
processes. However, central processing units (CPU) are not 

much preferred for real-time applications. To address these 
challenges, new solutions for efficient hardware 
implementations have been researched recently. To meet this 
requirement, numerous research tries to CNN to adopt high-
performance devices such as Graphics Processing Unit (GPU), 
and FPGA [5-7]. It is so hard to reveal the parallelism feature 
in CNN for real-time applications in the CPU. In recent years, 
DL-based algorithms have been implemented and accelerated 
on GPU platforms so that notable parallel computing 
capability and high memory bandwidth. Nevertheless, studies 
on GPU show that GPU usually consumes more power than 
FPGA which makes it inefficient and difficult to use in battery-
powered devices. In conclusion, it can be said that the 
computing performance of GPU is noticeable but on the other 
hand power consumption is high [7]. Therefore, FPGA could 
be addressed as a potential solution approach for optimizing 
and accelerating CNNs. 

In recent years, significant research has investigated the 
utilization of accelerated CNN employment on FPGA.  The 
FPGA implementation for CNNs has concerned much 
regarded a consequence of its reconfigurability, high 
performance, and energy efficiency. However, CNNs 
networks are computation-intensive and memory-intensive 
algorithms so, these features have brought many challenges to 
CNN implementations on hardware.  FPGA has some 
disadvantages such as limited resources and limited 
bandwidth. Therefore, implementing complex structures like 
DL algorithms on FPGA is so challenge problem. To address 
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these problems, hardware optimization methods can be applied 
to network design on the platforms. 

In the last few years, researchers have been investigating 
different optimization methods for the development of 
efficient acceleration of CNN systems on FPGAs. Studies are 
generally carried out for increasing parallelism, reducing 
power consumption, and reducing the number of resources 
used.  The majority of the CNN application accelerators are 
intended on optimizing computation processing engines.  
Researchers in [8] used implemented YOLO2 on FPGA for 
optical remote sensing. They used a uniform module to 
implement multiple types of convolutions for the network. 
Researchers in [9] proposed a Roofline model to improve 
throughput for CNN. The Roofline model tries to determine 
the maximum performance the hardware can achieve for 
implemented algorithm according to two bounds. They 
investigate architecture for throughput and required memory 
bandwidth using unrolling and tilling techniques for 
optimizing design. They implement an accelerator using 
Vivado HLS with uniform loop unroll factors for different 
convolutional layers. The architecture purposed by [10] 
implemented a deep convolutional neural network accelerator 
on FPGA to run in real-time. Their platform consists of 
programmable logic and a programmable system. Both 
platforms shared the same memory (DDR3). They stated that 
the FPGA-based accelerator system they designed allows ~25x 
faster execution faster than the CPU-based implemented 
architecture. They focused on computation engine 
optimization; they were not optimized memory access 
problems.  More recently, researchers in [11] used the 
operation chaining between the layer for data processing 
architecture for implementing CNN on De2i-150 board that 
received x18.04 acceleration rate than the baseline design. 
DSE was explored by different parameters such as processing 
time, and power consumption. In [12], researchers have 
employed loop optimization techniques for speeding up 
convolution operation to design CNN accelerator. They 
present the quantitative analysis for many design variables to 
optimize the design. In [13], researchers optimized their design 
by implementing multiple convolutional layer processors 
(CLP) to meet different conv layers for better resource 
utilization. In [14], researchers recommend two types of 
dedicated hardware structures. The first structure is suitable for 
the small-size CNN implementation that is designed with 
specific hardware for each layer. The second structure is one 
hardware model for each layer that is used multiple times for 
different layers. This approach uses low resource 
consumption; however, the throughput is low. There is a 
control block determining to use which operation. They 
reported that this structure can be modified for large networks 
because many layers use the same resources. In [15], 
researchers recommended an end-to-end CNN accelerator 
implementation based on FPGA. Their architecture maps the 
whole layer on one chip. In these model different layers can 
work concurrently in a pipelined structure therefore 
throughput can be increased. Streaming design architecture 
could reach the best throughput through a high parallelism 
strategy for each layer however this approach uses high 
resource-consuming In [16], researchers used the tilling 
technique to accelerate their deep neural network. The tilling 
technique is employed for reducing the memory bandwidth 
requirement at the inference state. Their proposed approaches 
reduce the memory bandwidth by 46.7% at the inference state.  

FPGA-based CNN accelerator designs have some 
limitations that cause considerable challenges in performance 
and flexibility. The first of them is the limited number of 
resources such as Look up tables (LUTs), flip flops (FFs), 
Block Random Access Memory (BRAM), and Digital signal 
processing (DSP). CNNs have several computations that need 
a great number of hardware resources. Another challenge is the 
bandwidth. Limited bandwidth will cause a bottleneck during 
data exchange between off-chip memory and FPGA, 
preventing the system from operating at high performance. 
These challenges motivate researchers to design more optimal 
systems through a series of hardware optimization approaches 
considering accelerated CNN on FPGA for designing the high-
performance inference phase of CNN. The main contribution 
of this paper is to perform optimization on the convolution 
layer by unrolling kernels and input feature maps and examine 
the effects on throughput, latency, and hardware resources. In 
this study, throughput is 15.6 GOP/s for the first convolution 
layer. With the proposed method in the study, approximately 
x2.6 acceleration in terms of latency and throughput was 
achieved compared to the baseline design.  The rest of this 
paper is organized as follows. In section 2, brief information 
about CNN is given. Parallelism methods that can be used for 
hardware designs are explained in section 3. Section 4 shows 
the details of the methods used in the study, the hardware 
implementation, and the results. Section 5 deals with the 
conclusions. 

II. BACKGROUND 

In this section, a typical CNN architecture is briefly 
described.  
A. The architecture of Convolutional Neural Networks 
 A classical CNN is a multi-layer pattern that contains the 
convolutional layer (Conv layer), activation layer, pooling 
layer (PL), and fully connected (FC) layer.  

1) Convolutional layer 
 Conv layer is the layer where the convolution process takes 

place, so this layer is the most important layer of the CNN. The 
convolution operation performed on the image takes different 
kernel filters, shifts them on the input feature maps (IFM) and 
creates an output feature map (OFM). OFM data resulting 
from the operations performed in this layer form IFMs for the 
next layer. 

 

Fig. 1. Pseudo-code of convolution operation for CNN 

The filter values used here are determined during the training. 
Fig. 1 shows the pseudo-code of convolution operation for 
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CNN. Fig. 2 is demonstrated convolution operation with 
multiple channel input and multiple kernels. The number of 
convolution filters is denoted by �, equivalent to the number 
of output feature maps. The size of the kernels is demonstrated 
by ���. The number of channels, height, and width for IFM 
are denoted by �, �, ��� � respectively. The height and 
width for OFM are denoted by �, ��� � respectively. 

 

Fig. 2. Convolution operation with multiple channel input 

Stride operation enables a dimension reduction of the 
convolution result by avoiding filters implemented in the 
whole of the IFMs. Stride (�) parameter defined how many 
steps are moved in each step-in convolution operation. The 
padding (�) operation allows remaining the same dimension 
of the resulting image through the process of adding zeros to 
the input matrix. The following OFM dimension can be 
calculated in (1): 

 

����,� =
�,��(� � �)��

�
+ 1                                           (1) 

 
The computational complexity (��) can be denoted by #OP 

for each convolutional layer of the network could be measured 
based (2).  

#OP� = �����������������                                       (2) 
 
2) Activation layer 
 After the convolution process is finished, the results 

obtained are passed through the activation function. In the 
convolution layer, the inputs are multiplied by the weights, and 
then added together with the bias values. The output signal 
generated as a result of this process is a simple linear function. 
This result is converted into a non-linear structure by applying 
the activation function. Usually, nonlinear and differentiable 
activation functions are preferred, such as step function, 
sigmoid, hyperbolic tangent (Tanh), Rectified Linear Unit 
(ReLU), Softmax etc. The sigmoid function is one of the most 
commonly used activation functions. It is differentiable. 
However, due to the gradient vanish problem, the maximum 
performance of the network using this function could not be 
achieved so, an alternative activation function was sought to 
find a solution to this problem. The Tanh converts the input 
value to the hyperbolic tangent of the angle it. The interval of 
this function, which has a very similar structure to the sigmoid 
function, is defined as (-1,+1). However, since the problem of 
gradients dying at the ends of this function continues, different 
functions are preferred as an alternative solution. In addition, 
since the constant Euler’s number (e) is used in these two 
functions, it causes computational complexity in hardware 
designs and this is a problem in hardware implementations. 
The ReLU is the most used activation function in accelerating 

hardware. It rectifies the linear unit, and activating some 
neurons. The computational load is less than the sigmoid and 
hyperbolic tangent functions, making it more preferred in 
multilayer networks.  

3) Pooling layer  
Usually used after the convolution layer, the purpose of this 

layer is to reduce the input size for the next convolution layer 
to reduce the complexity of further layers. The depth (channel) 
of the input data does not affect the pooling process. The 
pooling operation occurs as follows: The input feature map is 
partitioned into smaller rectangles and transformed the defined 
function value inside that small rectangle [23]. Frequently, 
max-pooling and average pooling methods are used for 
pooling operations. Max-pooling returns the max value of the 
sub-region, and average pooling returns the average of values 
in the sub-region.  

4) Fully connected layer 
 Like the layers in classical neural networks, each neuron in 

the FC layer is connected to all the neurons after it. Therefore, 
these layers are also referred to as densely connected layers. 
Since there are too many parameters in these layers, they are 
the layers that consume the most memory for storing these 
parameters [24]. 

III. ACCELERATION METHODS FOR CNN  

A. Different parallelism structures 
CNN architecture has streaming structures. That is, 

architecture consists of interconnected layers that work one 
after the other. Therefore, different parallelism methods can be 
applied to these architectures. [18-20] have exploited several 
levels of parallelism methods that can be applied to CNN 
architecture. These are task-level parallelism (batch 
parallelism), layer-level parallelism, and loop-level 
parallelism. Task-level parallelism can be defined as the 
simultaneous execution of two or more inference prediction 
tasks during the inference phase of the designed model by 
using efficiently on-chip memory. Layer-level parallelism 
(Inter-layer) can be achieved depending on the pipeline 
strategy. In the inference phase, each layer receives data from 
the previous layer as input. Because the layers are data-
dependent on each other, the layers can't run completely in 
parallel. The model can be accelerated by using the pipeline 
structure instead of parallelism through launching layer (�) 
before ending the execution of (� − 1). Loop-level parallelism 
can be defined as kernel-level parallelism. To implement 
convolution operation MxN kernels are employed. Each of the 
kernels operate can be executed in parallel ways theoretically 
because all the convolutions’ operations are independent. 
However, practically, limited computation resources and 
memory bandwidth does not allow all processes to be 
performed in parallel on FPGA. On account of this, loop-level 
parallelism can be implemented in many different ways 
according to different loop unrolling strategies. Loop-level 
parallelism is explored in detail in the next section. 

The implementation of convolution operation enables 
numerous techniques for parallelism. However, due to the 
FPGA resource limitation, exploiting a full parallelism pattern 
for overall CNN is impossible. In some cases, even just one 
convolution layer can't run completely in parallel. Therefore, 
partial parallelism is employed by using the unrolling factor 
and tilling factor. 

Due to the fact that convolution operations take occur in the 
convolution layer, most operations, about 90% of all 
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operations are performed in the convolutional layers.  
Convolution operation involves multiple multiplies and 
accumulates (MAC) operations with six nested loops. 
Therefore, an effective convolution acceleration optimization 
approaches considerably affects the performance of a 
hardware-based CNN accelerator.  Nested loop optimization 
techniques, e.g. loop unrolling, tiling, and interchange, or only 
tune some of the design variables after the accelerator 
architecture and dataflow are already fixed. Without fully 
studying the convolution loop optimization before the 
hardware design phase, the resulting accelerator can hardly 
exploit the data reuse and manage data movement efficiently.  

IV. IMPLEMENTATION OF ACCELERATED CNN 

In this study, optimization in the Conv layer is done by 
unrolling kernel and IFM to decrease latency and increase 
throughput. Baseline design is used to compare the result of 
the suggested design in RTL syntheses. Comparison is made 
by means of latency, throughput, and resource utilization. 

The framework of created accelerator system (AC) is shown 
in Fig. 3.  AC system consists of two parts that are Input layer 
and Conv layer. The input layer is the layer responsible for 
storing data in BRAM units. The conv layer is the unit where 
the calculations are made. The Conv layer consists of 
Processing Elements (PEs) units, buffers, and OFMs. PE is the 
basic computation unit to perform convolution operations. The 
number of PE can be determined by unrolling factor N. 
Unrolling kernels determine the multiplication and adder units.  

 

 

Fig. 3. Proposed accelerator framework 

The convolution operation for a three-dimensional image 
consists of six nested for loops. All of these loops can be 
unrolled individually or together. Unrolling separately or 
together causes different parallelism operations. Loop-level 
parallelism can be implemented in many ways according to 
different loop unrolling strategies. In this section, the unroll 
operation performed in different ways for the convolution 
operation and the hardware equivalent of these operations are 
examined.  
 
A. Data cache structure 
During the inference state of a CNN, it is often necessary to 
read a large amount of data. The limitation of bandwidth and 
on-chip memory capacity makes it hard to obtain all data 
simultaneously. Modern FPGA provides large amounts of on-
chip memory which of it is implemented as block RAM 
(BRAM) where embedded within the fabric. For the inference 
stage, CNN required memory required for parameters and data 
which are input data, bias, weight data, and the output of 

intermediate layers data. The required memory (RM) for the 
input data can be calculated  

��_��� = ����������_���_���ℎ� 
��_��� = ����������_���_���ℎ� 
��_� = ������������_���_���ℎ� 

The block RAM in Xilinx Zynq-7000 target FPGAs store 
up to 36 Kbits of data and each 36 Kb block RAM can be 
constructed as a 64K x 1 (when cascaded with an adjacent 36 
Kb block RAM), 32K x 1, 16K x 2, 8K x 4, 4K x 9, 2K x 18, 
1K x 36, or 512 x 72 in simple dual-port mode. 

Data access time is one of the main challenges in FPGA 
implementation, therefore, data access pattern is crucial. The 
data feeding the parallel processing units should also come to 
these units in parallel. BRAM partitioning method is used for 
the parallel reception of data on BRAM [22,23]. In order to 
cache required data in parallel, the BRAMs must be 
completely partitioned and all data must be recorded in 
registers. By means of partitioning BRAM completely, the 
data can be fed to the computation unit in parallel and at the 
same time the use of BRAM will be reduced, but there may 
not be enough resources to save this much data to the registers. 
Therefore, using this method is not suitable for large networks. 
Using a temporal memory storage controller provides using 
low resource and low latency. In this study, the data are given 
to the computational units in parallel using the buffer structure. 
Data cache structure consists of three units as shown in Fig. 4. 
The first is the BRAMs where all acquired data are stored on. 
The second unit is the line buffer (LB) unit. The last is the 
window buffer (WB) unit. This unit is used to temporarily 
store data needed for convolution operation in the PE units or 
computation units. PE units access the same data multiple 
times because the convolution operation is the iterative 
algorithm. To avoid reading the same data multiple times the 
WB could shift all data and replaces the used data which are 
not required anymore with new data [21]. WB has a kxk 
register for kernel data and kxk register for the IFM data. It 
stores the data coming from the LB. LBs are temporary 
memory storage buffers that can cache rows or columns of 
IFM data. LB units are created based on shift register logic 
which shifts all data via WB.  

 

Fig. 4. Data cache structure 

B. Baseline design  
In the baseline design loops are rolled. That means that one 

copy of the loop body is synthesized for iterations and re-used 
for each iteration. This causes all operations to occur in a 
sequential manner. Sequencing of processes will ensure that 
the number of resources used is less than designs with parallel 
processing that are made by unrolling loops. However, latency 
will be very high than in unrolled loop architecture because the 
operations are done sequentially. Through the unrolling nested 
loops, new hardware resources will be assigned for all 
operations that can be done in parallel, so that operations can 
be performed faster and in parallel.  
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Table 1. Parameters for first conv layer 

N M R C kxk 
3 6 25 25 5x5 

 
The baseline design process and hardware structure 

corresponding to baseline design are shown in Fig. 5 and Fig. 
6 respectively. In the study, the baseline model represents the 
situation in which no optimization has been made yet. Table 1 
shows the parameters for implemented convolution layer. 
Only one module is used, and this module is used sequentially 
for all MAC operations to be made. In this design, the latency 
is very high, but the number of resources used is very low. 

Trip count (TC) is used to define a minimum number of 
times a loop executes.  

 

 

Fig. 5. Baseline design process 

 

Fig. 6. Corresponding hardware architecture for the baseline design 

 

Fig. 7. A part of the synthesis report for the baseline design 

In the baseline model, operations are performed 
sequentially. There is only one multiplication that can perform 
this structure therefore, it processes by taking one pixel from 
IFM set and one data from kernel sets at a time. It takes Nxkxk 
trip count to generate one pixel of one OFM. It takes NxRxkxk 
TC to generate one row of one OFM and NxRxCxkxk TC to 
generate one OFM. To generate all OFM it takes 
MxNxRxCxkxk TC.  

#PE=1, #multipliers=1, #adders=1 

�ℎ����ℎ��� =
����������� 

�������
 

The latency for baseline design is 47.683 ms. The baseline 
design uses 25 BRAMs and 5 DSP resources. Throughput is 
calculated 5.9GOP/s for baseline design. Fig. 7 shows the part 
of the synthesis report for baseline design. 

 
C. Proposed Design: Unrolling kernels and IFM channels 

In this case, operations are performed partially parallel to 
result in one pixel of OFM sets.  The proposed design process 
and hardware structure corresponding to it are shown in Fig. 
8 and Fig. 9 respectively. 

 

Fig. 8. Proposed design process 

 

Fig. 9. Corresponding hardware architecture for the proposed design 

In the proposed method, input data channels and kernels are 
unrolled. As a result of this process, N PE units are created for 
hardware implementation. In each PE unit, kxk multiplication 
is performed. Fig. 10 shows the part of the synthesis report for 
the proposed design. 

 



International Journal of Multidisciplinary Studies and Innovative Technologies, 2022, 6(1): 38 – 44 

43 

 

Fig. 10. A part of the synthesis report for the proposed design 

There are Nxkxk multiplication can perform this structure 
therefore, it processes by taking Nxkxk pixel from IFM set and 
Nxkxk data from kernel sets at a time. It takes 1 TC to generate 
one pixel of one OFM. It takes R TC to generate one row of 
one OFM and RxC TC to generate one OFM. To generate all 
OFM it takes MxRxC TC.  
#PE=N=3, #multipliers=kxkxN#adders=(kxk-1)xN 

The latency for the proposed design is 18 ms. Proposed 
design use 26 BRAMs and 8 DSP resources. Throughput is 
calculated 15.6 GOP/s for the first convolution layer in 
proposed design.  

V. CONCLUSION 

FPGA technologies are a favorable alternative to 
implementing CNN-based algorithms due to their 
reconfigurability, high performance, and low energy usage 
characteristics. However, it is difficult to implement the whole 
CNN architecture on FPGA without any optimization because 
of limitations in terms of resources and bottlenecks.  In this 
paper, an FPGA-based CNN architecture using high-level 
synthesis (HLS) is demonstrated and the implemented 
architecture has been fastened. To improve the throughput, the 
proposed design is optimized for convolutional layers by 
unrolling the kernel and IFM channel.  The most important 
contribution of this study is to perform optimization on the 
convolution layer by unrolling kernels and input feature maps 
and examine the effects on throughput, latency, and hardware 
resources.  
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