

International Journal of Multidisciplinary Studies and Innovative

Technologies

e-ISSN: 2602-4888

dergipark.org.tr/en/pub/ijmsit

Research Article

2022, 6 (1), 38-44

DOI: DOI: 10.36287/ijmsit.6.1.38

Received: April 25, 2022; Accepted: June 20, 2022

38

Efficient Hardware Optimization for CNN

Seda GUZEL AYDIN1* and Hasan Sakir BILGE 2

1*Electrical and Electronics Engineering, Bingol University, Bingol, Turkey (sgaydin@bingol.edu.tr) (ORCID: 0000-0001-8875-9705)
2 Electrical and Electronics Engineering, Gazi University, Ankara, Turkey (bilge@gazi.edu.tr) (ORCID: 0000-0002-4945-0884)

Abstract – Convolutional Neural Networks (CNN) architectures have been increasingly well-known for image processing
applications such as object detection, and remote sensing. Some applications like these systems need to adopt CNN methods for
real-time implementation. Embedded devices like Field Programmable Gate Arrays (FPGA) technologies are a favorable
alternative to implementing CNN-based algorithms. However, FPGA has some drawbacks such as limited resources and
bottlenecks, it is difficult and so crucial to map the whole CNN that has a high number of layers, on FPGA without any
optimization. Therefore, hardware optimization techniques are compulsory. In this study, an FPGA-based CNN architecture
using high-level synthesis (HLS) is demonstrated, and a synthesis report is created for Xilinx Zynq-7000 xc7z020-clg484-1
target FPGAs. By implementing the CNN architecture on an FPGA platform, the implemented architecture has been fastened.
To improve the throughput, the proposed design is optimized for convolutional layers. The most important contribution of this
study is to perform optimization on the convolution layer by unrolling kernels and input feature maps and examine the effects
on throughput, latency, and hardware resources. In this study, throughput is 15.6 GOP/s for the first convolution layer. With the
proposed method in the study, approximately x2.6 acceleration in terms of latency and throughput was achieved compared to
the baseline design.

Keywords – FPGA, Deep learning, Convolutional neural networks, Hardware optimization, HLS

Citation: Guzel Aydin, S. and Bilge, H. Ş. (2022). Efficient Hardware Optimization for CNN, International Journal of

Multidisciplinary Studies and Innovative Technologies, 6(1): 38-44.

I. INTRODUCTION

Because CNN-based methods have presented successful
results over traditional methods, these networks consider a
powerful tool in many areas, especially in image processing
applications. They are just adapted to address numerous
problems. Starting with the 7-layer Lenet-5 [1], the deep
learning (DL) approaches now continue with more than a
hundred layers. In the early days of deep learning networks,
researchers aimed to design deeper and wider networks to
increase the accuracy of the network [2,3]. By increasing the
number of layers and establishing larger networks, it was
possible to design networks with high accuracy. However,
increasing the number of layers and designing larger networks
has increased the workload of the platform used to run the
network. In addition, the number of parameters in the used
network has increased, which has increased the training and
inference stages. This, in addition to the success of CNN's in
solving problems, caused an increase in the workload of the
undesirable platforms and caused the general-purpose
platforms to be insufficient to operate such deep networks. As
a consequence of the large number of parameters and the
computational burden of CNNs, researchers began to explore
ways to design sparse and smaller networks using more
compact and fewer parameters [4].

For some applications such as vehicle tracking systems,
mobile applications, and object tracking, networks designed
for real-time operation are required. CNN-based networks
require a high volume of parameters and lots of calculation
processes. However, central processing units (CPU) are not

much preferred for real-time applications. To address these
challenges, new solutions for efficient hardware
implementations have been researched recently. To meet this
requirement, numerous research tries to CNN to adopt high-
performance devices such as Graphics Processing Unit (GPU),
and FPGA [5-7]. It is so hard to reveal the parallelism feature
in CNN for real-time applications in the CPU. In recent years,
DL-based algorithms have been implemented and accelerated
on GPU platforms so that notable parallel computing
capability and high memory bandwidth. Nevertheless, studies
on GPU show that GPU usually consumes more power than
FPGA which makes it inefficient and difficult to use in battery-
powered devices. In conclusion, it can be said that the
computing performance of GPU is noticeable but on the other
hand power consumption is high [7]. Therefore, FPGA could
be addressed as a potential solution approach for optimizing
and accelerating CNNs.

In recent years, significant research has investigated the
utilization of accelerated CNN employment on FPGA. The
FPGA implementation for CNNs has concerned much
regarded a consequence of its reconfigurability, high
performance, and energy efficiency. However, CNNs
networks are computation-intensive and memory-intensive
algorithms so, these features have brought many challenges to
CNN implementations on hardware. FPGA has some
disadvantages such as limited resources and limited
bandwidth. Therefore, implementing complex structures like
DL algorithms on FPGA is so challenge problem. To address

International Journal of Multidisciplinary Studies and Innovative Technologies, 2022, 6(1): 38 – 44

39

these problems, hardware optimization methods can be applied
to network design on the platforms.

In the last few years, researchers have been investigating
different optimization methods for the development of
efficient acceleration of CNN systems on FPGAs. Studies are
generally carried out for increasing parallelism, reducing
power consumption, and reducing the number of resources
used. The majority of the CNN application accelerators are
intended on optimizing computation processing engines.
Researchers in [8] used implemented YOLO2 on FPGA for
optical remote sensing. They used a uniform module to
implement multiple types of convolutions for the network.
Researchers in [9] proposed a Roofline model to improve
throughput for CNN. The Roofline model tries to determine
the maximum performance the hardware can achieve for
implemented algorithm according to two bounds. They
investigate architecture for throughput and required memory
bandwidth using unrolling and tilling techniques for
optimizing design. They implement an accelerator using
Vivado HLS with uniform loop unroll factors for different
convolutional layers. The architecture purposed by [10]
implemented a deep convolutional neural network accelerator
on FPGA to run in real-time. Their platform consists of
programmable logic and a programmable system. Both
platforms shared the same memory (DDR3). They stated that
the FPGA-based accelerator system they designed allows ~25x
faster execution faster than the CPU-based implemented
architecture. They focused on computation engine
optimization; they were not optimized memory access
problems. More recently, researchers in [11] used the
operation chaining between the layer for data processing
architecture for implementing CNN on De2i-150 board that
received x18.04 acceleration rate than the baseline design.
DSE was explored by different parameters such as processing
time, and power consumption. In [12], researchers have
employed loop optimization techniques for speeding up
convolution operation to design CNN accelerator. They
present the quantitative analysis for many design variables to
optimize the design. In [13], researchers optimized their design
by implementing multiple convolutional layer processors
(CLP) to meet different conv layers for better resource
utilization. In [14], researchers recommend two types of
dedicated hardware structures. The first structure is suitable for
the small-size CNN implementation that is designed with
specific hardware for each layer. The second structure is one
hardware model for each layer that is used multiple times for
different layers. This approach uses low resource
consumption; however, the throughput is low. There is a
control block determining to use which operation. They
reported that this structure can be modified for large networks
because many layers use the same resources. In [15],
researchers recommended an end-to-end CNN accelerator
implementation based on FPGA. Their architecture maps the
whole layer on one chip. In these model different layers can
work concurrently in a pipelined structure therefore
throughput can be increased. Streaming design architecture
could reach the best throughput through a high parallelism
strategy for each layer however this approach uses high
resource-consuming In [16], researchers used the tilling
technique to accelerate their deep neural network. The tilling
technique is employed for reducing the memory bandwidth
requirement at the inference state. Their proposed approaches
reduce the memory bandwidth by 46.7% at the inference state.

FPGA-based CNN accelerator designs have some
limitations that cause considerable challenges in performance
and flexibility. The first of them is the limited number of
resources such as Look up tables (LUTs), flip flops (FFs),
Block Random Access Memory (BRAM), and Digital signal
processing (DSP). CNNs have several computations that need
a great number of hardware resources. Another challenge is the
bandwidth. Limited bandwidth will cause a bottleneck during
data exchange between off-chip memory and FPGA,
preventing the system from operating at high performance.
These challenges motivate researchers to design more optimal
systems through a series of hardware optimization approaches
considering accelerated CNN on FPGA for designing the high-
performance inference phase of CNN. The main contribution
of this paper is to perform optimization on the convolution
layer by unrolling kernels and input feature maps and examine
the effects on throughput, latency, and hardware resources. In
this study, throughput is 15.6 GOP/s for the first convolution
layer. With the proposed method in the study, approximately
x2.6 acceleration in terms of latency and throughput was
achieved compared to the baseline design. The rest of this
paper is organized as follows. In section 2, brief information
about CNN is given. Parallelism methods that can be used for
hardware designs are explained in section 3. Section 4 shows
the details of the methods used in the study, the hardware
implementation, and the results. Section 5 deals with the
conclusions.

II. BACKGROUND

In this section, a typical CNN architecture is briefly
described.
A. The architecture of Convolutional Neural Networks
 A classical CNN is a multi-layer pattern that contains the
convolutional layer (Conv layer), activation layer, pooling
layer (PL), and fully connected (FC) layer.

1) Convolutional layer
 Conv layer is the layer where the convolution process takes

place, so this layer is the most important layer of the CNN. The
convolution operation performed on the image takes different
kernel filters, shifts them on the input feature maps (IFM) and
creates an output feature map (OFM). OFM data resulting
from the operations performed in this layer form IFMs for the
next layer.

Fig. 1. Pseudo-code of convolution operation for CNN

The filter values used here are determined during the training.
Fig. 1 shows the pseudo-code of convolution operation for

International Journal of Multidisciplinary Studies and Innovative Technologies, 2022, 6(1): 38 – 44

40

CNN. Fig. 2 is demonstrated convolution operation with
multiple channel input and multiple kernels. The number of
convolution filters is denoted by �, equivalent to the number
of output feature maps. The size of the kernels is demonstrated
by ���. The number of channels, height, and width for IFM
are denoted by �, �, ��� � respectively. The height and
width for OFM are denoted by �, ��� � respectively.

Fig. 2. Convolution operation with multiple channel input

Stride operation enables a dimension reduction of the
convolution result by avoiding filters implemented in the
whole of the IFMs. Stride (�) parameter defined how many
steps are moved in each step-in convolution operation. The
padding (�) operation allows remaining the same dimension
of the resulting image through the process of adding zeros to
the input matrix. The following OFM dimension can be
calculated in (1):

����,� =
�,��(� � �)��

�
+ 1 (1)

The computational complexity (��) can be denoted by #OP

for each convolutional layer of the network could be measured
based (2).

#OP� = ����������������� (2)

2) Activation layer
 After the convolution process is finished, the results

obtained are passed through the activation function. In the
convolution layer, the inputs are multiplied by the weights, and
then added together with the bias values. The output signal
generated as a result of this process is a simple linear function.
This result is converted into a non-linear structure by applying
the activation function. Usually, nonlinear and differentiable
activation functions are preferred, such as step function,
sigmoid, hyperbolic tangent (Tanh), Rectified Linear Unit
(ReLU), Softmax etc. The sigmoid function is one of the most
commonly used activation functions. It is differentiable.
However, due to the gradient vanish problem, the maximum
performance of the network using this function could not be
achieved so, an alternative activation function was sought to
find a solution to this problem. The Tanh converts the input
value to the hyperbolic tangent of the angle it. The interval of
this function, which has a very similar structure to the sigmoid
function, is defined as (-1,+1). However, since the problem of
gradients dying at the ends of this function continues, different
functions are preferred as an alternative solution. In addition,
since the constant Euler’s number (e) is used in these two
functions, it causes computational complexity in hardware
designs and this is a problem in hardware implementations.
The ReLU is the most used activation function in accelerating

hardware. It rectifies the linear unit, and activating some
neurons. The computational load is less than the sigmoid and
hyperbolic tangent functions, making it more preferred in
multilayer networks.

3) Pooling layer
Usually used after the convolution layer, the purpose of this

layer is to reduce the input size for the next convolution layer
to reduce the complexity of further layers. The depth (channel)
of the input data does not affect the pooling process. The
pooling operation occurs as follows: The input feature map is
partitioned into smaller rectangles and transformed the defined
function value inside that small rectangle [23]. Frequently,
max-pooling and average pooling methods are used for
pooling operations. Max-pooling returns the max value of the
sub-region, and average pooling returns the average of values
in the sub-region.

4) Fully connected layer
 Like the layers in classical neural networks, each neuron in

the FC layer is connected to all the neurons after it. Therefore,
these layers are also referred to as densely connected layers.
Since there are too many parameters in these layers, they are
the layers that consume the most memory for storing these
parameters [24].

III. ACCELERATION METHODS FOR CNN

A. Different parallelism structures
CNN architecture has streaming structures. That is,

architecture consists of interconnected layers that work one
after the other. Therefore, different parallelism methods can be
applied to these architectures. [18-20] have exploited several
levels of parallelism methods that can be applied to CNN
architecture. These are task-level parallelism (batch
parallelism), layer-level parallelism, and loop-level
parallelism. Task-level parallelism can be defined as the
simultaneous execution of two or more inference prediction
tasks during the inference phase of the designed model by
using efficiently on-chip memory. Layer-level parallelism
(Inter-layer) can be achieved depending on the pipeline
strategy. In the inference phase, each layer receives data from
the previous layer as input. Because the layers are data-
dependent on each other, the layers can't run completely in
parallel. The model can be accelerated by using the pipeline
structure instead of parallelism through launching layer (�)
before ending the execution of (� − 1). Loop-level parallelism
can be defined as kernel-level parallelism. To implement
convolution operation MxN kernels are employed. Each of the
kernels operate can be executed in parallel ways theoretically
because all the convolutions’ operations are independent.
However, practically, limited computation resources and
memory bandwidth does not allow all processes to be
performed in parallel on FPGA. On account of this, loop-level
parallelism can be implemented in many different ways
according to different loop unrolling strategies. Loop-level
parallelism is explored in detail in the next section.

The implementation of convolution operation enables
numerous techniques for parallelism. However, due to the
FPGA resource limitation, exploiting a full parallelism pattern
for overall CNN is impossible. In some cases, even just one
convolution layer can't run completely in parallel. Therefore,
partial parallelism is employed by using the unrolling factor
and tilling factor.

Due to the fact that convolution operations take occur in the
convolution layer, most operations, about 90% of all

International Journal of Multidisciplinary Studies and Innovative Technologies, 2022, 6(1): 38 – 44

41

operations are performed in the convolutional layers.
Convolution operation involves multiple multiplies and
accumulates (MAC) operations with six nested loops.
Therefore, an effective convolution acceleration optimization
approaches considerably affects the performance of a
hardware-based CNN accelerator. Nested loop optimization
techniques, e.g. loop unrolling, tiling, and interchange, or only
tune some of the design variables after the accelerator
architecture and dataflow are already fixed. Without fully
studying the convolution loop optimization before the
hardware design phase, the resulting accelerator can hardly
exploit the data reuse and manage data movement efficiently.

IV. IMPLEMENTATION OF ACCELERATED CNN

In this study, optimization in the Conv layer is done by
unrolling kernel and IFM to decrease latency and increase
throughput. Baseline design is used to compare the result of
the suggested design in RTL syntheses. Comparison is made
by means of latency, throughput, and resource utilization.

The framework of created accelerator system (AC) is shown
in Fig. 3. AC system consists of two parts that are Input layer
and Conv layer. The input layer is the layer responsible for
storing data in BRAM units. The conv layer is the unit where
the calculations are made. The Conv layer consists of
Processing Elements (PEs) units, buffers, and OFMs. PE is the
basic computation unit to perform convolution operations. The
number of PE can be determined by unrolling factor N.
Unrolling kernels determine the multiplication and adder units.

Fig. 3. Proposed accelerator framework

The convolution operation for a three-dimensional image
consists of six nested for loops. All of these loops can be
unrolled individually or together. Unrolling separately or
together causes different parallelism operations. Loop-level
parallelism can be implemented in many ways according to
different loop unrolling strategies. In this section, the unroll
operation performed in different ways for the convolution
operation and the hardware equivalent of these operations are
examined.

A. Data cache structure
During the inference state of a CNN, it is often necessary to
read a large amount of data. The limitation of bandwidth and
on-chip memory capacity makes it hard to obtain all data
simultaneously. Modern FPGA provides large amounts of on-
chip memory which of it is implemented as block RAM
(BRAM) where embedded within the fabric. For the inference
stage, CNN required memory required for parameters and data
which are input data, bias, weight data, and the output of

intermediate layers data. The required memory (RM) for the
input data can be calculated

��_��� = ����������_���_���ℎ�
��_��� = ����������_���_���ℎ�
��_� = ������������_���_���ℎ�

The block RAM in Xilinx Zynq-7000 target FPGAs store
up to 36 Kbits of data and each 36 Kb block RAM can be
constructed as a 64K x 1 (when cascaded with an adjacent 36
Kb block RAM), 32K x 1, 16K x 2, 8K x 4, 4K x 9, 2K x 18,
1K x 36, or 512 x 72 in simple dual-port mode.

Data access time is one of the main challenges in FPGA
implementation, therefore, data access pattern is crucial. The
data feeding the parallel processing units should also come to
these units in parallel. BRAM partitioning method is used for
the parallel reception of data on BRAM [22,23]. In order to
cache required data in parallel, the BRAMs must be
completely partitioned and all data must be recorded in
registers. By means of partitioning BRAM completely, the
data can be fed to the computation unit in parallel and at the
same time the use of BRAM will be reduced, but there may
not be enough resources to save this much data to the registers.
Therefore, using this method is not suitable for large networks.
Using a temporal memory storage controller provides using
low resource and low latency. In this study, the data are given
to the computational units in parallel using the buffer structure.
Data cache structure consists of three units as shown in Fig. 4.
The first is the BRAMs where all acquired data are stored on.
The second unit is the line buffer (LB) unit. The last is the
window buffer (WB) unit. This unit is used to temporarily
store data needed for convolution operation in the PE units or
computation units. PE units access the same data multiple
times because the convolution operation is the iterative
algorithm. To avoid reading the same data multiple times the
WB could shift all data and replaces the used data which are
not required anymore with new data [21]. WB has a kxk
register for kernel data and kxk register for the IFM data. It
stores the data coming from the LB. LBs are temporary
memory storage buffers that can cache rows or columns of
IFM data. LB units are created based on shift register logic
which shifts all data via WB.

Fig. 4. Data cache structure

B. Baseline design
In the baseline design loops are rolled. That means that one

copy of the loop body is synthesized for iterations and re-used
for each iteration. This causes all operations to occur in a
sequential manner. Sequencing of processes will ensure that
the number of resources used is less than designs with parallel
processing that are made by unrolling loops. However, latency
will be very high than in unrolled loop architecture because the
operations are done sequentially. Through the unrolling nested
loops, new hardware resources will be assigned for all
operations that can be done in parallel, so that operations can
be performed faster and in parallel.

International Journal of Multidisciplinary Studies and Innovative Technologies, 2022, 6(1): 38 – 44

42

Table 1. Parameters for first conv layer

N M R C kxk
3 6 25 25 5x5

The baseline design process and hardware structure

corresponding to baseline design are shown in Fig. 5 and Fig.
6 respectively. In the study, the baseline model represents the
situation in which no optimization has been made yet. Table 1
shows the parameters for implemented convolution layer.
Only one module is used, and this module is used sequentially
for all MAC operations to be made. In this design, the latency
is very high, but the number of resources used is very low.

Trip count (TC) is used to define a minimum number of
times a loop executes.

Fig. 5. Baseline design process

Fig. 6. Corresponding hardware architecture for the baseline design

Fig. 7. A part of the synthesis report for the baseline design

In the baseline model, operations are performed
sequentially. There is only one multiplication that can perform
this structure therefore, it processes by taking one pixel from
IFM set and one data from kernel sets at a time. It takes Nxkxk
trip count to generate one pixel of one OFM. It takes NxRxkxk
TC to generate one row of one OFM and NxRxCxkxk TC to
generate one OFM. To generate all OFM it takes
MxNxRxCxkxk TC.

#PE=1, #multipliers=1, #adders=1

�ℎ����ℎ��� =
�����������

�������

The latency for baseline design is 47.683 ms. The baseline
design uses 25 BRAMs and 5 DSP resources. Throughput is
calculated 5.9GOP/s for baseline design. Fig. 7 shows the part
of the synthesis report for baseline design.

C. Proposed Design: Unrolling kernels and IFM channels

In this case, operations are performed partially parallel to
result in one pixel of OFM sets. The proposed design process
and hardware structure corresponding to it are shown in Fig.
8 and Fig. 9 respectively.

Fig. 8. Proposed design process

Fig. 9. Corresponding hardware architecture for the proposed design

In the proposed method, input data channels and kernels are
unrolled. As a result of this process, N PE units are created for
hardware implementation. In each PE unit, kxk multiplication
is performed. Fig. 10 shows the part of the synthesis report for
the proposed design.

International Journal of Multidisciplinary Studies and Innovative Technologies, 2022, 6(1): 38 – 44

43

Fig. 10. A part of the synthesis report for the proposed design

There are Nxkxk multiplication can perform this structure
therefore, it processes by taking Nxkxk pixel from IFM set and
Nxkxk data from kernel sets at a time. It takes 1 TC to generate
one pixel of one OFM. It takes R TC to generate one row of
one OFM and RxC TC to generate one OFM. To generate all
OFM it takes MxRxC TC.
#PE=N=3, #multipliers=kxkxN#adders=(kxk-1)xN

The latency for the proposed design is 18 ms. Proposed
design use 26 BRAMs and 8 DSP resources. Throughput is
calculated 15.6 GOP/s for the first convolution layer in
proposed design.

V. CONCLUSION

FPGA technologies are a favorable alternative to
implementing CNN-based algorithms due to their
reconfigurability, high performance, and low energy usage
characteristics. However, it is difficult to implement the whole
CNN architecture on FPGA without any optimization because
of limitations in terms of resources and bottlenecks. In this
paper, an FPGA-based CNN architecture using high-level
synthesis (HLS) is demonstrated and the implemented
architecture has been fastened. To improve the throughput, the
proposed design is optimized for convolutional layers by
unrolling the kernel and IFM channel. The most important
contribution of this study is to perform optimization on the
convolution layer by unrolling kernels and input feature maps
and examine the effects on throughput, latency, and hardware
resources.

ACKNOWLEDGMENT

This research was supported by a grant from (121E393)
TUBITAK (Türkiye Bilimsel ve Teknolojik Araştirma
Kurumu). We thank the TUBITAK for their support of our
research.

Authors’ Contributions

The authors' contributions to the paper are equal.

Statement of Conflicts of Interest

There is no conflict of interest between the authors.

Statement of Research and Publication Ethics

The authors declare that this study complies with Research and

Publication Ethics

REFERENCES

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based

learning applied to document recognition," Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv.org, 2014, doi:
10.48550/arXiv.1409.1556.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386.

[4] M. Mikaeili and H. S. Bilge, “Estimating Rotation Angle and
Transformation Matrix Between Consecutive Ultrasound Images Using
Deep Learning,” 2020 Medical Technologies Congress (TIPTEKNO),
Nov. 2020, doi: 10.1109/tiptekno50054.2020.9299237.

[5] C. Huang, S. Ni and G. Chen, "A layer-based structured design of CNN
on FPGA," 2017 IEEE 12th International Conference on ASIC
(ASICON), 2017, pp. 1037-1040, doi:
10.1109/ASICON.2017.8252656.

[6] W. A. Haque, S. Arefin, A. S. M. Shihavuddin, and M. A. Hasan,
“DeepThin: A novel lightweight CNN architecture for traffic sign
recognition without GPU requirements,” Expert Systems with
Applications, vol. 168, p. 114481, Apr. 2021, doi:
10.1016/j.eswa.2020.114481.

[7] Y. Hu, Y. Liu, and Z. Liu, “A Survey on Convolutional Neural Network
Accelerators: GPU, FPGA and ASIC,” 2022 14th International
Conference on Computer Research and Development (ICCRD), Jan.
2022, doi: 10.1109/iccrd54409.2022.9730377.

[8] N. Zhang, X. Wei, H. Chen, and W. Liu, “FPGA Implementation for
CNN-Based Optical Remote Sensing Object Detection,” Electronics,
vol. 10, no. 3, p. 282, Jan. 2021, doi: 10.3390/electronics10030282.

[9] C, Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, “Optimizing fpga-
based accelerator design for deep convolutional neural networks.” In
Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24
February 2015; pp. 161–170.

[10] A. Dundar, J. Jin, V. Gokhale, B. Krishnamurthy, A. Canziani, B.
Martini, & E. Culurciello,” Accelerating deep neural networks on
mobile processor with embedded programmable logic.” In Neural
information processing systems conference (NIPS). 2013

[11] M. Arredondo-Velázquez, J. Diaz-Carmona, C. Torres-Huitzil, A.
Padilla-Medina, and J. Prado-Olivarez, “A streaming architecture for
Convolutional Neural Networks based on layer operations chaining,”
Journal of Real-Time Image Processing, vol. 17, no. 5, pp. 1715–1733,
Jan. 2020, doi: 10.1007/s11554-019-00938-y.

[12] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, “Optimizing the Convolution
Operation to Accelerate Deep Neural Networks on FPGA,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 7, pp. 1354–1367, Jul. 2018, doi: 10.1109/tvlsi.2018.2815603.

[13] Y. Shen, M. Ferdman and P. Milder, "Maximizing CNN accelerator
efficiency through resource partitioning," 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA),
2017, pp. 535-547, doi: 10.1145/3079856.3080221.

[14] S. Ghaffari and S. Sharifian, "FPGA-based convolutional neural
network accelerator design using high level synthesize," 2016 2nd
International Conference of Signal Processing and Intelligent Systems
(ICSPIS), 2016, pp. 1-6, doi: 10.1109/ICSPIS.2016.7869873.

[15] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou and Lingli
Wang, "A high performance FPGA-based accelerator for large-scale
convolutional neural networks," 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), 2016, pp. 1-9,
doi: 10.1109/FPL.2016.7577308.

[16] Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, Y. Zhou, Y. Xu, “Throughput-
optimized fpga accelerator for deep convolutional neural networks.”
ACM Trans. Reconfgurable Technol. Syst. (TRETS) 10(3), 17, 2017

[17] Y. Zhou, J. Jiang, “ An FPGA-based accelerator implementation for
deep convolutional neural networks.” In Proceedings of the 2015 4th
International Conference on Computer Science and Network
Technology, ICCSNT 2015, Harbin, China, 19–20 December2015;
Volume 1, pp. 829–832.

[18] K. Abdelouahab, M. Pelcat, J. Serot, & F. Berry, “Accelerating CNN
inference on FPGAs: A survey.” arXiv preprint arXiv:1806.01683.
2018.

[19] K. Guo, S. Zeng, J. Yu, Y. Wang, & H. Yang” [DL] A survey of FPGA-
based neural network inference accelerators.” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 12(1), 1-26.2019.

[20] R. Ayachi, Y. Said, & A. Abdelali, “Optimizing Neural Networks for
Efficient FPGA Implementation: A Survey.” Archives of
Computational Methods in Engineering, 28(7), 4537–4547. 2021.

[21] G. Muhsin “A Comparative Study between RTL and HLS for Image
Processing Applications with FPGAs” thesis, University of California,
San Diego, Master of Science.

International Journal of Multidisciplinary Studies and Innovative Technologies, 2022, 6(1): 38 – 44

44

[22] Vivado Design Suite User Guide High-Level Synthesis Documentation
Portal. (2022). Retrieved May 17, 2022, from Xilinx.com website:
https://docs.xilinx.com/v/u/2018.3-English/ug902-vivado-high-level-
synthesis

[23] S. Guzel Aydin and H. S. Bilge, "FPGA -Based Implementation of
Convolutional Layer Accelerator Part for CNN," 2021 Innovations in
Intelligent Systems and Applications Conference (ASYU), 2021, pp. 1-
6, doi: 10.1109/ASYU52992.2021.9599029.

[24] F. Uysal, F. Hardalaç, O. Peker, T. Tolunay, and N. Tokgöz,
“Classification of Shoulder X-ray Images with Deep Learning
Ensemble Models,” Applied Sciences, vol. 11, no. 6, p. 2723, Mar.
2021, doi: 10.3390/app11062723.

