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Abstract
The aim of this study is to present normal-like curves with respect to the special case of the ED-frame in
Euclidean 4-space. Furthermore, the relationship between geodesic torsion and curvature is given so that a
curve lying on an oriented surface M in 4-dimensional Euclidean space is congruent to a normal-like curve
according to the special case of the ED-frame. Finally, an example of the study is presented.
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1. Introduction
Some special curves in differential geometry are quite remarkable for researchers. One of them is normal curve. After Chen [1]
defined the rectifying curve in Euclidean space, Ilarslan and Nesovic [2] defined the osculating, rectifying and normal curve as
a curve in Euclidean 4-space according to the definition of the rectifying curve in Euclidean 3-space, [3]. This definition given
for the normal curve has been used in some studies in Minkowski space [4–6]. In addition, the generalization of normal curves
to n-dimensional space was made by Bektaş [7].

Frame fields are very useful for defining curves and examining properties. One of these frame fields is the Frenet frame
fields. The Frenet frame along a curve is a moving (right-handed) coordinate system determined by the tangent line and
curvature [8, 9]. Another important frame field is known as Darboux frame [10]. In addition to these frame fields, a new frame
fields has been introduced to the literature. This frame fields was defined by Düldül et al. and named as extended Darboux
frame field (ED-frame field) [11]. In this study, we define normal-like curves with respect to the special case of the ED-frame
in Euclidean 4-space and an example of the study is presented.

2. Preliminaries
Definition 1. Let x = ∑

4
i=1 xiei, y = ∑

4
i=1 yiei, z = ∑

4
i=1 ziei be vectors in Euclidean 4-space E4, where {ei}, 1 ≤ i ≤ 4 is the

standart basis vectors of E4. The vector product of three vectors is given by [12]

x⊗ y⊗ z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ .
Let M be an orientable hypersurface and the curve γ lies on M . On the other hand, if the unit tangent vector field of the

curve is T , the unit normal vector field of the hypersurface restricted to the curve γ is N and the unit normal field vector of M
is N , then T is given as T = γ ′(s) and N(s) = N (γ (s)) [11].
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Case 1. Let {N,T,γ ′′} be linearly independent. In this case, the orthonormal set {N,T,E} with

E =
γ
′′ −
〈

γ
′′
,N
〉

N∥∥γ
′′ −
〈
γ
′′
,N
〉

N
∥∥ ,

is obtained [11].

Case 2. Let {N,T,γ ′′} be linearly dependent. In this case, the orthonormal set {N,T,E} with

E =
γ
′′ −
〈

γ
′′
,N
〉

N −
〈

γ
′′′
,T
〉

T∥∥γ
′′ −
〈
γ
′′
,N
〉

N −
〈
γ
′′′
,T
〉

T
∥∥ ,

is obtained [11]. If D = N ⊗T ⊗E, then we obtain orthonormal frame field {T,E,D,N} along the curve γ [11].
One can easily see that the vector fields E and D are tangent to M . Also, {T,E,D} spans the tangent hyperplane of the

hypersurface at the point γ (s) [11].
Let κn be the normal curvature of the hypersurface in the direction of the tangent vector T , κ i

g and τ i
g be the geodesic

curvature and the geodesic torsion of order i (i=1,2), respectively, [11]. The derivative equations for Case 1 and Case 2
T ′

E ′

D′

N′

=


0 κ1

g 0 κn

−κ1
g 0 κ2

g τ1
g

0 −κ2
g 0 τ2

g
−κn −τ1

g −τ2
g 0




T
E
D
N

 , (1)

and 
T ′

E ′

D′

N′

=


0 0 0 κn
0 0 κ2

g τ1
g

0 −κ2
g 0 0

−κn −τ1
g 0 0




T
E
D
N

 . (2)

On the other hand, for Case 1 and Case 2 the following statements hold, respectively [11]:〈
T

′
,D
〉
=
〈

D
′
,T
〉
= 0,

〈
T

′
,E
〉
= κ

1
g ,
〈

T
′
,N
〉
= κn,

〈
E

′
,T
〉
=−κ

1
g ,
〈

E
′
,D
〉
= κ

2
g ,
〈

E
′
,N
〉
= τ

1
g ,
〈

D
′
,N
〉
= τ

2
g ,

〈
N

′
,T
〉
=−κn,

〈
N

′
,E
〉
= τ

1
g ,
〈

N
′
,D
〉
=−τ

2
g , (3)

〈
T

′
,E
〉
=
〈

T
′
,D
〉
=
〈

E
′
,T
〉
=
〈

D
′
,T
〉
=
〈

D
′
,N
〉
=
〈

N
′
,D
〉
= 0,

〈
T

′
,N
〉
= κn,

〈
E

′
,N
〉
= τ

1
g ,
〈

E
′
,D
〉
= κ

2
g ,
〈

D
′
,E
〉
=−κ

2
g ,
〈

N
′
,T
〉
=−κn,

〈
N

′
,E
〉
=−τ

1
g . (4)

3. Normal-like curves with respect to the special case of the ED-frame in Euclidean
4-space

In this section, we define the normal curves according to the Case 2 ED-frame in Euclidean 4-space. And then, we find the
relationship between the curvatures for any unit speed curve which lies on the orientable hypersurface M to be congruent to
this normal curves in E4.
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Definition 2. Let α : I ⊂R→M be a unit speed curve on an oriented hypersurface M in Euclidean 4-space and {T,E,D,N}
denote the ED-frame field of α(s). Then we define the normal curve according to the ED-frame in the Euclidean space E4 as a
curve whose position vector always lies in the orthogonal complement T⊥ of tangent vector field T, and we express it with

α (s) = λ (s)E (s)+µ1 (s)D(s)+µ2 (s)N (s) (5)

for some differentiable functions λ (s) ,µ1 (s) and µ2 (s) of s ∈ I ⊂ R.

Theorem 3. Let α : I ⊂ R→ M be a unit speed curve on an oriented hypersurface M in Euclidean 4-space and {T,E,D,N}
denote the Case 2 ED-frame field of α(s). Then α(s) is congruent to a normal curve if and only if 1

κ2
g (s)

τ1
g (s)

κn(s)
+

(
1

τ1
g (s)

(
1

κn(s)

)′)′
′

+
κ2

g (s)
τ1

g (s)

(
1

κn(s)

)′

= 0

where κn,κ
1
g,κ

2
g and τ1

g ̸= 0.

Proof. Let α : I ⊂R→ M be a unit speed curve on an oriented hypersurface M in Euclidean 4-space and {T,E,D,N} denote
the ED-frame field of α(s). If the derivative of both sides of equation (5) with respect to s is taken and the derivative equation
(2) is applied, the following expression for Case 2 is obtained that

α
′
(s) = (−µ2 (s)κn(s))T (s)+

(
λ

′
(s)−µ1 (s)κ

2
g (s)−µ2 (s)τ

1
g (s)

)
E (s)

+
(

µ
′
1 (s)+λ (s)κ

2
g (s)

)
D(s)+

(
µ

′
2 (s)+λ (s)τ

1
g (s)

)
N (s) .

We know that α
′
(s) = T (s) . So, using the equality of both sides, we get the following expressions for the coefficients of T (s),

E (s), D(s) and N (s)

Case 2

−µ2 (s)κn(s) = 1, (6)

λ
′
(s)−µ1 (s)κ

2
g (s)−µ2 (s)τ

1
g (s) = 0, (7)

µ
′
1 (s)+λ (s)κ

2
g (s) = 0, (8)

µ
′
2 (s)+λ (s)τ

1
g (s) = 0. (9)

From (6), we can find the following coefficient function:

µ2 (s) =− 1
κn(s)

. (10)

When the coefficient function (10) is used in equation (9), the other coefficient function is as follows:

λ (s) =
1

τ1
g (s)

(
1

κn(s)

)′

. (11)

The coefficient function µ1 (s) is given similarly with the help of the related coefficient functions

µ1 (s) =
1

κ2
g (s)

τ1
g (s)

κn(s)
+

(
1

τ1
g (s)

(
1

κn(s)

)′)′ . (12)

22 Vol. 4, No. 1, 20-24, 2022



Substituting (11) and (12) into (8), we get the following relations: 1
κ2

g (s)

τ1
g (s)

κn(s)
+

(
1

τ1
g (s)

(
1

κn(s)

)′)′
′

+
κ2

g (s)
τ1

g (s)

(
1

κn(s)

)′

= 0 (13)

where κn,κ
1
g,κ

2
g and τ1

g ̸= 0.
Conversely, consider an arbitrary unit speed curve on an oriented hypersurface M in Euclidean 4-space for which the

curvature functions satisfy the relations (13) and (11). Then, we consider the vector X ∈ E4 defined by

X (s) = α (s)− 1
τ1

g (s)

(
1

κn (s)

)′

E (s)− 1
κ2

g (s)

 τ1
g (s)

κn (s)
+

(
1

τ1
g (s)

(
1

κn (s)

)′)′D(s)+
1

κn (s)
N (s) .

It can be seen that X (s) = 0 through the relations (2), (13). Thus, X is a constant vector. This implies that α is congruent to an
normal curve. ■

Theorem 4. Let α : I ⊂ R→ M be a unit speed curve on an oriented hypersurface M in Euclidean 4-space and {T,E,D,N}
denote the Case 2 ED-frame field of α(s). Then α is a normal curve if and only if

⟨α (s) ,E (s)⟩= 1
τ1

g (s)

(
1

κn (s)

)′

,⟨α (s) ,N (s)⟩=− 1
κn (s)

,τ1
g (s) ,κn (s) ̸= 0. (14)

Proof. Let α : I ⊂R→ M be a unit speed curve on an oriented hypersurface M in Euclidean 4-space and {T,E,D,N} denote
the Case 2 ED-frame field of α (s). Substituting (10), (11) and (12) into (5), we get

α (s) =
1

τ1
g (s)

(
1

κn (s)

)′

E (s)+
1

κ2
g (s)

+
τ1

g (s)
κn (s)

+

(
1

τ1
g (s)

(
1

κn (s)

)′)′

D(s)− 1
κn (s)

N (s) .

When the inner product of both sides of the equation with respect to E (s) and N (s), respectively, is taken, the expressions

⟨α (s) ,E (s)⟩= 1
τ1

g (s)

(
1

κn(s)

)′

and ⟨α (s) ,N (s)⟩=− 1
κn(s)

, τ1
g (s), κn (s) ̸= 0 are found.

Conversely the statement (14) holds. Differentiating equation ⟨α (s) ,N (s)⟩=− 1
κn(s)

with respect to s and by applying (2),
we find ⟨α (s) ,T (s)⟩ = 0 which means that α is a normal curve. ■

Example 5. Let α (s) =
(

2s√
11
,sin

(√
2
11 s
)
,
√

5
11 s,−cos

(√
2
11 s
))

be a unit speed curve on an hypersurface

M . . . x2
2+ x2

4 = 1 in Euclidean 4-space. The unit normal vector of M along α is N(s) = (0,x2,0,x4). If we calculate the unit
tangent vector field we can find as follows:

T (s) =

(
2√
11

,

√
2

11
cos

(√
2
11

s

)
,

√
5

11
,

√
2
11

sin

(√
2
11

s

))
.

The derivative of T (s) is given by

T
′
(s) = α

′′
(s) =

(
0,− 2

11
sin

(√
2
11

s

)
,0,

2
11

cos

(√
2

11
s

))
.

Considering T
′
(s) and N (s) =N (α (s)) = (0,sin

(√
2
11 s
)
,0,−cos

(√
2
11 s
)
), (T

′
(s) =− 2

11 N (s)) they appear to be linearly

dependent. Therefore, Case 2 applies. Thus, we get

E (s) =

(
4

3
√

22
,
−3√

11
cos

(√
2

11
s

)
,

2
√

5
3
√

22
,

−3√
11

sin

(√
2
11

s

))
,
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and

D(s) =

(
−
√

5
3

,0,
2
3
,0

)
.

If we use the equation (4) we get〈
T

′
,N
〉
= κn =− 2

11
,
〈

E
′
,N
〉
= τ

1
g =

3
√

2
11

,
〈

E
′
,D
〉
= κ

2
g = 0.

According to the results obtained from here, it is concluded that the given unit speed curve cannot be congruent to a normal
curve, since κ2

g = 0.
On the other hand, the normal like curve is obtained as follows:

α (s) = λ (s)

(
4

3
√

22
,
−3√

11
cos

(√
2
11

s

)
,

2
√

5
3
√

22
,

−3√
11

sin

(√
2

11
s

))
+µ1 (s)

(
−
√

5
3

,0,
2
3
,0

)

+µ2 (s)

(
0,sin

(√
2

11
s

)
,0,−cos

(√
2

11
s

))
or

α (s) =

(
4

3
√

22
λ (s)−

√
5

3
µ1 (s) ,−

3
11

λ (s)cos

(√
2
11

s

)
,

2
√

5
3
√

22
λ (s)+

2
3

µ1 (s) ,
−3√

11
sin

(√
2
11

s

)
λ (s)−µ1 (s)cos

(√
2
11

s

))
for some differentiable functions λ (s) ,µ1 (s) and µ2 (s) of s ∈ I ⊂ R.
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