Normal-like Curves with Respect to the Special Case of the ED-frame in Euclidean 4-space

Özcan BEKTAŞ

Abstract

The aim of this study is to present normal-like curves with respect to the special case of the ED-frame in Euclidean 4-space. Furthermore, the relationship between geodesic torsion and curvature is given so that a curve lying on an oriented surface M in 4-dimensional Euclidean space is congruent to a normal-like curve according to the special case of the ED-frame. Finally, an example of the study is presented.

Keywords and 2020 Mathematics Subject Classification
Keywords: Normal-like curve - extended Darboux frame - geodesic curvature - geodesic torsion. MSC: 53A04, 53A07
Recep Tayyip Erdogan University, Faculty of Arts and Sciences, Department of Mathematics, Rize, Turkey.
凶ozcan.bektas@erdogan.edu.tr
Corresponding author: Özcan BEKTAŞ
Article History: Received 06 June 2022; Accepted 18 July 2022

1. Introduction

Some special curves in differential geometry are quite remarkable for researchers. One of them is normal curve. After Chen [1] defined the rectifying curve in Euclidean space, Ilarslan and Nesovic [2] defined the osculating, rectifying and normal curve as a curve in Euclidean 4 -space according to the definition of the rectifying curve in Euclidean 3-space, [3]. This definition given for the normal curve has been used in some studies in Minkowski space [4-6]. In addition, the generalization of normal curves to n-dimensional space was made by Bektaş [7].

Frame fields are very useful for defining curves and examining properties. One of these frame fields is the Frenet frame fields. The Frenet frame along a curve is a moving (right-handed) coordinate system determined by the tangent line and curvature [8,9]. Another important frame field is known as Darboux frame [10]. In addition to these frame fields, a new frame fields has been introduced to the literature. This frame fields was defined by Düldül et al. and named as extended Darboux frame field (ED-frame field) [11]. In this study, we define normal-like curves with respect to the special case of the ED-frame in Euclidean 4 -space and an example of the study is presented.

2. Preliminaries

Definition 1. Let $x=\sum_{i=1}^{4} x_{i} e_{i}, y=\sum_{i=1}^{4} y_{i} e_{i}, z=\sum_{i=1}^{4} z_{i} e_{i}$ be vectors in Euclidean 4 -space \mathbb{E}^{4}, where $\left\{e_{i}\right\}, 1 \leq i \leq 4$ is the standart basis vectors of \mathbb{E}^{4}. The vector product of three vectors is given by [12]

$$
x \otimes y \otimes z=\left|\begin{array}{llll}
e_{1} & e_{2} & e_{3} & e_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right|
$$

Let \mathscr{M} be an orientable hypersurface and the curve γ lies on \mathscr{M}. On the other hand, if the unit tangent vector field of the curve is T, the unit normal vector field of the hypersurface restricted to the curve γ is N and the unit normal field vector of \mathscr{M} is \mathscr{N}, then T is given as $T=\gamma^{\prime}(s)$ and $N(s)=\mathscr{N}(\gamma(s))$ [11].

Case 1. Let $\left\{N, T, \gamma^{\prime \prime}\right\}$ be linearly independent. In this case, the orthonormal set $\{N, T, E\}$ with

$$
E=\frac{\gamma^{\prime \prime}-\left\langle\gamma^{\prime \prime}, N\right\rangle N}{\left\|\gamma^{\prime \prime}-\left\langle\gamma^{\prime \prime}, N\right\rangle N\right\|},
$$

is obtained [11].
Case 2. Let $\left\{N, T, \gamma^{\prime \prime}\right\}$ be linearly dependent. In this case, the orthonormal set $\{N, T, E\}$ with

$$
E=\frac{\gamma^{\prime \prime}-\left\langle\gamma^{\prime \prime}, N\right\rangle N-\left\langle\gamma^{\prime \prime \prime}, T\right\rangle T}{\left\|\gamma^{\prime \prime}-\left\langle\gamma^{\prime \prime}, N\right\rangle N-\left\langle\gamma^{\prime \prime \prime}, T\right\rangle T\right\|}
$$

is obtained [11]. If $D=N \otimes T \otimes E$, then we obtain orthonormal frame field $\{T, E, D, N\}$ along the curve $\gamma[11]$.
One can easily see that the vector fields E and D are tangent to \mathscr{M}. Also, $\{T, E, D\}$ spans the tangent hyperplane of the hypersurface at the point $\gamma(\mathrm{s})$ [11].

Let κ_{n} be the normal curvature of the hypersurface in the direction of the tangent vector T, κ_{g}^{i} and τ_{g}^{i} be the geodesic curvature and the geodesic torsion of order $\mathrm{i}(\mathrm{i}=1,2)$, respectively, [11]. The derivative equations for Case 1 and Case 2

$$
\left[\begin{array}{c}
T^{\prime} \tag{1}\\
E^{\prime} \\
D^{\prime} \\
N^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \kappa_{g}^{1} & 0 & \kappa_{n} \\
-\kappa_{g}^{1} & 0 & \kappa_{g}^{2} & \tau_{g}^{1} \\
0 & -\kappa_{g}^{2} & 0 & \tau_{g}^{2} \\
-\kappa_{n} & -\tau_{g}^{1} & -\tau_{g}^{2} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
E \\
D \\
N
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
T^{\prime} \tag{2}\\
E^{\prime} \\
D^{\prime} \\
N^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & \kappa_{n} \\
0 & 0 & \kappa_{g}^{2} & \tau_{g}^{1} \\
0 & -\kappa_{g}^{2} & 0 & 0 \\
-\kappa_{n} & -\tau_{g}^{1} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T \\
E \\
D \\
N
\end{array}\right]
$$

On the other hand, for Case 1 and Case 2 the following statements hold, respectively [11]:

$$
\begin{align*}
& \left\langle T^{\prime}, D\right\rangle=\left\langle D^{\prime}, T\right\rangle=0 \\
& \left\langle T^{\prime}, E\right\rangle=\kappa_{g}^{1},\left\langle T^{\prime}, N\right\rangle=\kappa_{n},\left\langle E^{\prime}, T\right\rangle=-\kappa_{g}^{1},\left\langle E^{\prime}, D\right\rangle=\kappa_{g}^{2},\left\langle E^{\prime}, N\right\rangle=\tau_{g}^{1},\left\langle D^{\prime}, N\right\rangle=\tau_{g}^{2} \\
& \left\langle N^{\prime}, T\right\rangle=-\kappa_{n},\left\langle N^{\prime}, E\right\rangle=\tau_{g}^{1},\left\langle N^{\prime}, D\right\rangle=-\tau_{g}^{2} \\
& \left\langle T^{\prime}, E\right\rangle=\left\langle T^{\prime}, D\right\rangle=\left\langle E^{\prime}, T\right\rangle=\left\langle D^{\prime}, T\right\rangle=\left\langle D^{\prime}, N\right\rangle=\left\langle N^{\prime}, D\right\rangle=0, \\
& \left\langle T^{\prime}, N\right\rangle=\kappa_{n},\left\langle E^{\prime}, N\right\rangle=\tau_{g}^{1},\left\langle E^{\prime}, D\right\rangle=\kappa_{g}^{2},\left\langle D^{\prime}, E\right\rangle=-\kappa_{g}^{2},\left\langle N^{\prime}, T\right\rangle=-\kappa_{n},\left\langle N^{\prime}, E\right\rangle=-\tau_{g}^{1} . \tag{4}
\end{align*}
$$

3. Normal-like curves with respect to the special case of the ED-frame in Euclidean 4-space

In this section, we define the normal curves according to the Case 2 ED-frame in Euclidean 4 -space. And then, we find the relationship between the curvatures for any unit speed curve which lies on the orientable hypersurface \mathscr{M} to be congruent to this normal curves in \mathbb{E}^{4}.

Definition 2. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathscr{M}$ be a unit speed curve on an oriented hypersurface \mathscr{M} in Euclidean 4-space and $\{T, E, D, N\}$ denote the ED-frame field of $\alpha(s)$. Then we define the normal curve according to the ED-frame in the Euclidean space \mathbb{E}^{4} as a curve whose position vector always lies in the orthogonal complement T^{\perp} of tangent vector field T, and we express it with

$$
\begin{equation*}
\alpha(s)=\lambda(s) E(s)+\mu_{1}(s) D(s)+\mu_{2}(s) N(s) \tag{5}
\end{equation*}
$$

for some differentiable functions $\lambda(s), \mu_{1}(s)$ and $\mu_{2}(s)$ of $s \in I \subset \mathbb{R}$.
Theorem 3. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathscr{M}$ be a unit speed curve on an oriented hypersurface \mathscr{M} in Euclidean 4 -space and $\{T, E, D, N\}$ denote the Case 2 ED-frame field of $\alpha(s)$. Then $\alpha(s)$ is congruent to a normal curve if and only if

$$
\left\{\frac{1}{\kappa_{g}^{2}(s)}\left[\frac{\tau_{g}^{1}(s)}{\kappa_{n}(s)}+\left(\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime}\right)^{\prime}\right]\right\}^{\prime}+\frac{\kappa_{g}^{2}(s)}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime}=0
$$

where $\kappa_{n}, \kappa_{g}^{1}, \kappa_{g}^{2}$ and $\tau_{g}^{1} \neq 0$.
Proof. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathscr{M}$ be a unit speed curve on an oriented hypersurface \mathscr{M} in Euclidean 4-space and $\{T, E, D, N\}$ denote the ED-frame field of $\alpha(s)$. If the derivative of both sides of equation (5) with respect to s is taken and the derivative equation (2) is applied, the following expression for Case 2 is obtained that

$$
\begin{aligned}
& \alpha^{\prime}(s)=\left(-\mu_{2}(s) \kappa_{n}(s)\right) T(s)+\left(\lambda^{\prime}(s)-\mu_{1}(s) \kappa_{g}^{2}(s)-\mu_{2}(s) \tau_{g}^{1}(s)\right) E(s) \\
& +\left(\mu_{1}^{\prime}(s)+\lambda(s) \kappa_{g}^{2}(s)\right) D(s)+\left(\mu_{2}^{\prime}(s)+\lambda(s) \tau_{g}^{1}(s)\right) N(s)
\end{aligned}
$$

We know that $\alpha^{\prime}(s)=T(s)$. So, using the equality of both sides, we get the following expressions for the coefficients of $T(s)$, $E(s), D(s)$ and $N(s)$

Case 2

$$
\begin{align*}
& -\mu_{2}(s) \kappa_{n}(s)=1 \tag{6}\\
& \lambda^{\prime}(s)-\mu_{1}(s) \kappa_{g}^{2}(s)-\mu_{2}(s) \tau_{g}^{1}(s)=0 \tag{7}\\
& \mu_{1}^{\prime}(s)+\lambda(s) \kappa_{g}^{2}(s)=0 \tag{8}\\
& \mu_{2}^{\prime}(s)+\lambda(s) \tau_{g}^{1}(s)=0 \tag{9}
\end{align*}
$$

From (6), we can find the following coefficient function:

$$
\begin{equation*}
\mu_{2}(s)=-\frac{1}{\kappa_{n}(s)} \tag{10}
\end{equation*}
$$

When the coefficient function (10) is used in equation (9), the other coefficient function is as follows:

$$
\begin{equation*}
\lambda(s)=\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime} \tag{11}
\end{equation*}
$$

The coefficient function $\mu_{1}(s)$ is given similarly with the help of the related coefficient functions

$$
\begin{equation*}
\mu_{1}(s)=\frac{1}{\kappa_{g}^{2}(s)}\left[\frac{\tau_{g}^{1}(s)}{\kappa_{n}(s)}+\left(\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime}\right)^{\prime}\right] \tag{12}
\end{equation*}
$$

Substituting (11) and (12) into (8), we get the following relations:

$$
\begin{equation*}
\left\{\frac{1}{\kappa_{g}^{2}(s)}\left[\frac{\tau_{g}^{1}(s)}{\kappa_{n}(s)}+\left(\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime}\right)^{\prime}\right]\right\}^{\prime}+\frac{\kappa_{g}^{2}(s)}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime}=0 \tag{13}
\end{equation*}
$$

where $\kappa_{n}, \kappa_{g}^{1}, \kappa_{g}^{2}$ and $\tau_{g}^{1} \neq 0$.
Conversely, consider an arbitrary unit speed curve on an oriented hypersurface \mathscr{M} in Euclidean 4-space for which the curvature functions satisfy the relations (13) and (11). Then, we consider the vector $X \in \mathbb{E}^{4}$ defined by

$$
X(s)=\alpha(s)-\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime} E(s)-\frac{1}{\kappa_{g}^{2}(s)}\left[\frac{\tau_{g}^{1}(s)}{\kappa_{n}(s)}+\left(\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime}\right)^{\prime}\right] D(s)+\frac{1}{\kappa_{n}(s)} N(s)
$$

It can be seen that $X(s)=0$ through the relations (2), (13). Thus, X is a constant vector. This implies that α is congruent to an normal curve.

Theorem 4. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathscr{M}$ be a unit speed curve on an oriented hypersurface \mathscr{M} in Euclidean 4-space and $\{T, E, D, N\}$ denote the Case $2 E D$-frame field of $\alpha(s)$. Then α is a normal curve if and only if

$$
\begin{equation*}
\langle\alpha(s), E(s)\rangle=\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime},\langle\alpha(s), N(s)\rangle=-\frac{1}{\kappa_{n}(s)}, \tau_{g}^{1}(s), \kappa_{n}(s) \neq 0 \tag{14}
\end{equation*}
$$

Proof. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathscr{M}$ be a unit speed curve on an oriented hypersurface \mathscr{M} in Euclidean 4-space and $\{T, E, D, N\}$ denote the Case 2 ED-frame field of $\alpha(s)$. Substituting (10), (11) and (12) into (5), we get

$$
\alpha(s)=\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime} E(s)+\frac{1}{\kappa_{g}^{2}(s)}+\frac{\tau_{g}^{1}(s)}{\kappa_{n}(s)}+\left(\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime}\right)^{\prime} D(s)-\frac{1}{\kappa_{n}(s)} N(s)
$$

When the inner product of both sides of the equation with respect to $E(s)$ and $N(s)$, respectively, is taken, the expressions $\langle\alpha(s), E(s)\rangle=\frac{1}{\tau_{g}^{1}(s)}\left(\frac{1}{\kappa_{n}(s)}\right)^{\prime}$ and $\langle\alpha(s), N(s)\rangle=-\frac{1}{\kappa_{n}(s)}, \tau_{g}^{1}(s), \kappa_{n}(s) \neq 0$ are found.

Conversely the statement (14) holds. Differentiating equation $\langle\alpha(s), N(s)\rangle=-\frac{1}{\kappa_{n}(s)}$ with respect to s and by applying (2), we find $\langle\alpha(s), T(s)\rangle=0$ which means that α is a normal curve.

Example 5. Let $\alpha(s)=\left(\frac{2 s}{\sqrt{11}}, \sin \left(\sqrt{\frac{2}{11}} s\right), \sqrt{\frac{5}{11}} s,-\cos \left(\sqrt{\frac{2}{11}} s\right)\right)$ be a unit speed curve on an hypersurface
$\mathscr{M} \ldots x_{2}^{2}+x_{4}^{2}=1$ in Euclidean 4-space. The unit normal vector of \mathscr{M} along α is $N(s)=\left(0, x_{2}, 0, x_{4}\right)$. If we calculate the unit tangent vector field we can find as follows:

$$
T(s)=\left(\frac{2}{\sqrt{11}}, \sqrt{\frac{2}{11}} \cos \left(\sqrt{\frac{2}{11}} s\right), \sqrt{\frac{5}{11}}, \sqrt{\frac{2}{11}} \sin \left(\sqrt{\frac{2}{11}} s\right)\right)
$$

The derivative of $T(s)$ is given by

$$
T^{\prime}(s)=\alpha^{\prime \prime}(s)=\left(0,-\frac{2}{11} \sin \left(\sqrt{\frac{2}{11}} s\right), 0, \frac{2}{11} \cos \left(\sqrt{\frac{2}{11}} s\right)\right)
$$

Considering $T^{\prime}(s)$ and $N(s)=\mathscr{N}(\alpha(s))=\left(0, \sin \left(\sqrt{\frac{2}{11}} s\right), 0,-\cos \left(\sqrt{\frac{2}{11}} s\right)\right),\left(T^{\prime}(s)=-\frac{2}{11} N(s)\right)$ they appear to be linearly dependent. Therefore, Case 2 applies. Thus, we get

$$
E(s)=\left(\frac{4}{3 \sqrt{22}}, \frac{-3}{\sqrt{11}} \cos \left(\sqrt{\frac{2}{11}} s\right), \frac{2 \sqrt{5}}{3 \sqrt{22}}, \frac{-3}{\sqrt{11}} \sin \left(\sqrt{\frac{2}{11}} s\right)\right)
$$

and

$$
D(s)=\left(\frac{-\sqrt{5}}{3}, 0, \frac{2}{3}, 0\right)
$$

If we use the equation (4) we get

$$
\left\langle T^{\prime}, N\right\rangle=\kappa_{n}=-\frac{2}{11},\left\langle E^{\prime}, N\right\rangle=\tau_{g}^{1}=\frac{3 \sqrt{2}}{11},\left\langle E^{\prime}, D\right\rangle=\kappa_{g}^{2}=0
$$

According to the results obtained from here, it is concluded that the given unit speed curve cannot be congruent to a normal curve, since $\kappa_{g}^{2}=0$.

On the other hand, the normal like curve is obtained as follows:

$$
\begin{aligned}
\alpha(s) & =\lambda(s)\left(\frac{4}{3 \sqrt{22}}, \frac{-3}{\sqrt{11}} \cos \left(\sqrt{\frac{2}{11}} s\right), \frac{2 \sqrt{5}}{3 \sqrt{22}}, \frac{-3}{\sqrt{11}} \sin \left(\sqrt{\frac{2}{11}} s\right)\right)+\mu_{1}(s)\left(\frac{-\sqrt{5}}{3}, 0, \frac{2}{3}, 0\right) \\
& +\mu_{2}(s)\left(0, \sin \left(\sqrt{\frac{2}{11}} s\right), 0,-\cos \left(\sqrt{\frac{2}{11}} s\right)\right)
\end{aligned}
$$

or

$$
\alpha(s)=\left(\frac{4}{3 \sqrt{22}} \lambda(s)-\frac{\sqrt{5}}{3} \mu_{1}(s),-\frac{3}{11} \lambda(s) \cos \left(\sqrt{\frac{2}{11}} s\right), \frac{2 \sqrt{5}}{3 \sqrt{22}} \lambda(s)+\frac{2}{3} \mu_{1}(s), \frac{-3}{\sqrt{11}} \sin \left(\sqrt{\frac{2}{11}} s\right) \lambda(s)-\mu_{1}(s) \cos \left(\sqrt{\frac{2}{11}} s\right)\right)
$$

for some differentiable functions $\lambda(s), \mu_{1}(s)$ and $\mu_{2}(s)$ of $s \in I \subset \mathbb{R}$.

4. Acknowledgements

The author would like to thank the reviewers for their insightful comments and suggestions that helped to improve the paper.

References

${ }^{[1]}$ Chen, B.Y. (2003). When does the position vector of a space curve always lie in its rectifying plane. The Amer. Math. Monthly, 110(2), 147-152.
[2] İlarslan, K., \& Nesovic, E. (2008). Some characterizations of osculating curves in the Euclidean spaces. Demonstratio Mathematica, 41(4), 931-939.
${ }^{[3]}$ İlarslan, K., \& Nesovic, E. (2008). Some characterizations of rectifying curves in the Euclidean space E^{4}. Turkish Journal of Mathematics, 32(1), 21-30.
 Applied Mathematics, 35(7), 881-888.
${ }^{[5]}$ İlarslan, K. (2005). Spacelike normal curves in Minkowski space E_{1}^{3}. Turkish Journal of Mathematics, 29(1), 53-63.
[6] İlarslan, K., \& Nesovic, E. (2009). Spacelike and timelike normal curves in Minkowski space-time. Publications de l'Institut Mathematique, (105), 111-118.
${ }^{[7]}$ Bektaş, Ö. (2018). Normal Curves in n-dimensional Euclidean Space. Advances in Difference Equations, 2018(1), 1-12.
${ }^{[8]}$ Gluck, H. (1966). Higher curvatures of curves in Euclidean space. The Amer. Math. Monthly, 73(7), 699-704.
${ }^{[9]}$ Guggenheimer, H. (1989). Computing frames along a trajectory. Computer Aided Geometric Design, 6(1), 77-78.
${ }^{[10]}$ Darboux, G. (1896). Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal: ptie. Déformation infiniment petite et représentation sphérique. Notes et additions: I. Sur les méthodes d'approximations successives dans la théorie des équations différentielles, par E. Picard. II. Sur les géodésiques à intégrales quadratiques, par G. Koenigs. III. Sur la théorie des équations aux dérivées partielles du second ordre, par E. Cosserat. IV-XI. Par l'auteur, 4, Gauthier-Villars.
${ }^{[11]}$ Düldül, M., Uyar Düldül, B., Kuruoğlu, N., \& Özdamar, E. (2017). Extension of the Darboux frame into Euclidean 4-space and its invariants. Turkish Journal of Mathematics, 41(6), 1628-1639.
${ }^{[12]}$ Williams, M.Z., \& Stein, F. (1964). A triple product of vectors in four-space. Mathematics Magazine, 37(4), 230-235.

