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Abstract

Let P,, = H*(BE,;F2) be the graded polynomial algebra over the prime field of two ele-
ments Fy, where F, is an elementary abelian 2-group of rank n, and BE, is the classifying
space of F,,. We study the hit problem, set up by Frank Peterson, of finding a minimal set
of generators for the polynomial algebra P,, viewed as a module over the mod-2 Steenrod
algebra A. This problem remains unsolvable for n > 4, even with the aid of computers
in the case of n = 5. By considering Fy as a trivial A-module, then the hit problem is
equivalent to the problem of finding a basis of Fo-graded vector space Fo®4P,,.

This paper aims to explicitly determine an admissible monomial basis of the Fs-vector
space Fo® 4P, in the generic degree n(2" —1)+2-2", where r is an arbitrary non-negative
integer, and in the case of n = 6.

As an application of these results, we obtain the dimension results for the polynomial
algebra P, in degrees (n—1)-(2"%~1 —1) +£.2"" where u is an arbitrary non-negative
integer, £ = 13, and n = 7.

Moreover, for any integer r > 1, the behavior of the sixth Singer algebraic transfer in
degree 6(2" — 1) + 2 - 2" is also discussed at the end of this paper. Here, the Singer
algebraic transfer is a homomorphism from the homology of the Steenrod algebra to the
subspace of Fo® 4P, consisting of all the G L, (Fs)-invariant classes. It is a useful tool in
describing the homology groups of the Steenrod algebra, Tor’ , . (Fa,Fy).
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1. Introduction

Let X be a topological space. Cohomology operations are generated by the natural
transformations of degree ¢ which are so-called Steenrod squares
qu : H*(X> IFQ) — H*+i(X>IF2)7
where H* (X, Fg) is the singular cohomology of X with coefficients in the two-element field
Fa, and 7 is arbitrary non-negative integers. In 1952, Serre established the structure of the
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set of all cohomology operations. Serre [18] proved that the Steenrod squares generate all
stable cohomology operations with the usual addition and the composition of maps. The
algebra of stable cohomology operations with coefficients in Fg is known as the modulo 2
Steenrod algebra, A.

Furthermore, the Steenrod algebra is able to be defined algebraically as a quotient
algebra of Fo-free graded associative algebra generated by the symbols Sq* of degree 4,
where i is a non-negative integer, by the two-sided ideal generated by the relation Sq° = 1
and the Adem’s relations

/2l 1y _ j o

Sq?Sq® = Z ( . >Sqa+b3Sq3, for 0 <a<2b
o\ a- 27

(see Chapter 1 of [21]).

Calculations of various homotopy groups of spheres by Jean-Pierre Serre were among
the first Steenrod algebra applications. Milnor proved in [9] that the dual of the mod 2
Steenrod algebra is a polynomial algebra and that the mod 2 Steenrod algebra admits a
Hopf algebra’s structure. As a result, an object that was previously considered intractable
suddenly became considerably easier to control. Recently, the mod 2 Steenrod algebra and
the mod 2 dual Steenrod algebra as a subalgebra of the mod 2 dual Leibniz-Hopf algebra
have been studied by many authors (see Crossley-Turgay [4], Crossley [5], Turgay-Kaji [27]
and others).

Let E, be an elementary abelian 2-group of rank n. We will denote by BE, the
classifying space of F,. It may be thought of as the product of n copies of real project
space RP*°. Then, based on the Kiinneth formula for cohomology, one gets an isomorphism
of F9-algebras

P i= H*(BEy;F2) = Fala1] ®F, - . . ®r, Falzn] = Foz1, 22, ..., 24,
where z; € H'(BE,;F3) for every i.

As is well-known, P,, is a module over the mod-2 Steenrod algebra A. The action of A
on P, is determined by the formula

Ty, k= 0,
Sq(zj) =4 3, k=1,
0, k>1,

and the Cartan formula Sq¢*(uv) = Y2  Sq’(u)S¢*(v), where u,v € P,, (see Steenrod-
Epstein [21], and Turgay [26]).

The Peterson hit problem is to find a minimal generating set for P,, regarded as a module
over the mod-2 Steenrod algebra. The hit problem is analogous to the problem of finding
a basis for the Fo-graded vector space Fo® 4P, if we treat Fo as a trivial A-module.

This issue has first been studied by Peterson [14], Singer [19], Wood [34], and Priddy
[16], who shows its relationship to several classical problems in cobordism theory, modu-
lar respresentation theory, Adams spectral sequence for the stable homotopy of spheres,
stable homotopy type of the classifying space of finite groups. Then, this issue and its
applications were investigated by Silverman [20], Repka-Selick [17], Janfada-Wood [6],
Nam [13], Sum [22,24], Mothebe-Kaelo-Ramatebele [12], Sum-Tin [25], Walker-Wood [33],
the present writer [29,30] and others.

Let a(d) be the number of digits 1 in the binary expansion of a natural integer d.
Consider the function p: NU {0} — NU {0} which is defined as follows:

1(0) =0, and pu(d) =min{m € N : a(d+ m) < m}.

In [14], Peterson hypothesized that as a module over the Steenrod algebra A, P, is
generated by monomials of degree d obeying the inequality a(d 4+ n) < n, and proved it
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for n < 2. And then, Wood [34] demonstrates this in general. This is a fantastic tool for
figuring out A-generators for P,.
Kameko’s squaring operation

~0 ~0
5¢, = (S¢.) (nmt2d) * F2®aPn)nr2a = (F2®aPn)a;
which is induced by an Fa-linear map S, : P, — Py, given by

S, () y, ifz=xz120... 2,y
xr) =
" 0, otherwise

2

for any monomial x € P,,, is one of the most important tools in the analysis of the hit

problem. Clearly, (%2)(n;n+2d) is an Fa-epimorphism.

From the results of Kameko [7], Sum [24], and Wood [34], the hit problem is reduced
to the case of degree d of the form d = 7(2! — 1) + 2!m, where r,m,t are non-negative
intergers such that 0 < p(m) <r < n.

Now, the tensor product AP, := Fo®4P,, was entirely calculated for n < 4 (see Peter-
son [14] for n = 1,2, see Kameko [7] for n = 3, see Sum [24] for n = 4), but it remains
unresolved for n > 5, even with the aid of computers in the case of n = 5. Recently, in
the case of n=>5, and in some degrees, this problem was studied by many authors (see
Mong-Sum [11], Phuc [15], Tin [31] and others).

In the present paper, we explicitly determine an admissible monomial basis of the Fo-
vector space APg in the generic degree 6(2° — 1) + 2- 2% with s an arbitrary non-negative
integer. The MAGMA computer algebra [35] was used to double-check these results.

As an application of the above results, we obtain the dimension results for the polyno-
mial algebra P, in degree d = (n — 1) - (2"t%~1 — 1) 4 £ . 2"*% where u is an arbitrary
non-negative integer, £ = 13, and n = 7.

One of the primary applications of the hit problem is in surveying a homomorphism
proposed by Singer [19], which is from the homology of the Steenrod algebra to the sub-
space of AP, consisting of all the GL,,(Fq)-invariant classes. Here, GL,,(FF2) is the general
linear group over the field Fo.

Recall that the general linear group GL,(F3) acts naturally on P,, by matrix substitu-
tion. Due to the fact that the two actions of A and GL,(F2) upon P,, commute with each
other, there is an inherited action of GL,(F3) on AP,. At the conclusion of this article,
the behavior of the sixth Singer algebraic transfer in degree 2573 — 6 is also discussed.

Next, in Section 2, we recall some auxiliary information on admissible monomials in
P,. The main results are presented in Section 3. Finally, in the appendix, we provide an
algorithm in MAGMA [35] to verify the dimension result of the main results of this paper.

2. Preliminaries

In this section, we review some important facts from Kameko [7], Singer [19], and Sum
[24], which will be used in the following section.
We will denote by N, = {1,2,...,n} and

Xy = X{j17j27-"7js} = H zj, J= {j1,J2,- -, Js} C Ny,
SN
In particular, Xy, = 1, Xp = v122... 2y, Xj = 21...85...7p, 1 < J < n,and X :=
X, e P_q.
Let a4 (d) be the ¢-th coefficient in dyadic expansion of d. Then, d = 3,5 a¢(d).2" where
a¢(d) € {0,1}. Let z = 2{*25? ... 2% € P,. Denote vj(z) = aj,1 < j < n. Set
Ji(x) ={j € Nu : au(vj()) = 0},

for ¢ > 0. Then, we have x =[], Xf;(z).
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Definition 2.1 (Weight vector-Exponent vector). For a monomial x in P,,, define
two sequences associated with x by

w(x) = (w1 (z),w2(x),...,wi(x),...), and o(z) = (1 (x),v2(x),...,vn(x)),

where w;i(z) = 371 cjcp @i-1(vj(z)) = deg Xy, | (2), © = 1. The sequences w(z) and o(z)
are respectively called the weight vector and the exponent vector of x.

The sets of all the weight vectors and the exponent vectors are given the left lexico-
graphical order.

Let w = (wy,ws,...,w;,...) be a sequence of non-negative integers. The sequence w
is called the weight vector if w; = 0 for i > 0. Then, we define degw = 3,52 tw;.
Denote by P, (w) the subspace of P,, spanned by all monomials y such that degy = degw,
w(y) < w, and by P, (w) the subspace of P,, spanned by all monomials y € P, (w) such
that w(y) < w.

Definition 2.2 (Equivalence relations on P,). Let AT be an ideal of A generated by
all Steenrod squares of positive degrees, and u, v two polynomials of the same degree in
P.. We define the equivalence relations “ = ” and “ =, ” on P,, by stating that

(i) u=wv if and only if u —v € ATP,,.

(ii) u =, v if and only if u,v € Pp(w) and u — v € (ATP, NPy (w) + Py, (w)).

Then, we have an Fao-qoutient space of P,, by the equivalence relation “ =,, ” as follows:

AP, (w) = Pr (W) /(ATP, N Pp(w)) + Py (w)).
If a polynomial v in P, can be expressed as a finite sum u = ;- Sq2i (fi) for suitable
polynomials f; € P, it is called it hit. That means u belongs to ATP,,.

Let u € Py, and let w be a weight vector. We denote by [u] the class in AP,, represented
by w. If u belongs to P, (w), then denote by [u], the class in AP, (w) represented by w.

Definition 2.3 (Linear order on P,). Let u, v be monomials of the same degree in
P,. We say that u < v if one of the following holds:

(i) w(u) < w(v);

(ii) w(u) = w(v), and o(u) < o(v).

Definition 2.4 (Admissible monomial-Inadmissible monomial). Let v be a mono-
mial in P,,. The monomial v is said to be inadmissible if there exist monomials v1, vs, . . ., Um
such that v; <wufori=1,2,...,mand u—>1", v; € ATP,. If u is not inadmissible mono-
mial, we say it is admissible.

For instance, since zry = Sq'(r129) + 7123, and o(1123) < o(22x3), it follows that
2225 is inadmissible in Py. Moreover, the monomials z3; 23 are admissible in Ps.

It is crucial to note that the set of all admissible monomials of degree d in P, is a
minimal set of A-generators for P, in degree d. And therefore, (AP,)y is an Fo-vector
space with a basis consisting of all the classes represent by the elements in (P,,)4.

Definition 2.5 (Strictly inadmissible monomial). Let v be a monomial in P,,. We say
u is strictly inadmissible if there exist monomials vy, va, ..., vy, in P, such that v; < u, for
j=12,...,mand u= 3" v; + STV SGH(f;) with s = max{k : wy(u) > 0}, fi € Po.

Observe that if u is strictly inadmissible monomial, then it is inadmissible monomial,
as defined by the definitions 2.4, and 2.5. In general, the inverse is not true.
For example, the monomial 2323237226 is inadmissible, but it is not strictly inadmis-

sible in Pg.

Theorem 2.6 (Kameko [7], Sum [24]). Let u,v,w be monomials in P, such that
we(u) =0 fort >k >0, w.(w) # 0 and w(w) =0 fort >r > 0. Then,
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(i) ww?" is inadmissible if w is inadmissible.

(ii) wv?" is strictly inadmissible if w is strictly inadmissible.
Definition 2.7 (Minimal spike monomial). Let z = 2% 2% ... 2% in P,. The mono-
mial z is called a spike if d; = 2% —1 for ¢; a non-negative integer and j = 1,2, ...,n. More-

over, z is called the minimal spike, if it is a spike such that ¢t} > to > ... > ¢,_1 > ¢, >0
and t; = 0 for j > r.

The following is a Singer’s criterion on the hit monomials in P,,.

Theorem 2.8 (Singer [19]). Assume that z is the minimal spike of degree d in Py, and
u € (Pp)a satisfying the condition p(d) < n. If w(u) < w(z), then u is hit.

From now on, let us denote by €2(d) the set of all admissible monomials of degree d in

Pr. The cardinal of a set U is denoted by |U|. The A-submodules of P,, that spanned all

the monomials a:‘lilxg? ...x% such that dy...d, = 0, and d; ...d, > 0, respectively, will

be denoted by P and P, It is easy to check that PO and P,/ are A-submodules of P,,.
Moreover, we have a direct summand decomposition of the Fo-vector spaces:
AP, = APV © AP
where APV 1= Fo@4 P, AP = Fo@, P,

3. Main Results

First, we explicitly determine an admissible monomial basis of the Fo-vector space APg
in the generic degree mg := 6(2° — 1) + 2 - 2%, with s an arbitrary non-negative integer.

For s = 0, then mo = 2. It is easy to see that the set {[z;z;] : 1 <14 < j <6} is a basis
of Fo-vector space (APg)m,. Consequently, |G (2)| = 15.

For s = 1, then m; = 6(2' — 1) +2-2L. Set w1 := (2,4), W2 := (4,1,1), and w3 := (4, 3).
Then, the Fa-vector space (APg)g21—_1)42.21 is determined as follows:

~0
Since Kameko’s homomorphism (Sg,)(g,10) is an Fe-epimorphism, it follows that

—~0 -0
(‘Ag)ﬁ)ml = (‘A{‘Pg)ﬂh @ (Ker(SQ*)(&lO) N (‘Afpg_)ﬂH) @Im(SQ*)(&lO)
Consider the homomorphism T; : P,y — P,,, for 1 <t < n by substituting:

Tk, if 1<
Tt(ﬁk):{k if t <

<t
Tpa1, if t <n

k
k
We have the following theorem.
Theorem 3.1. Let us denote by DF® = {b: b e [JS_; T(CP(6(2" — 1) +2-21)}, and set
DO = {[c] : ¢ =Bg(u), for all uec CL(6(2°—1)+2-2°)}, where the map @, : P, — Py,
is a homomorphism determined by ®,(z) = [/, xiz?, x € P,. Then

(i) We have |DF°| = 880, and the set {[b] : b€ DO} is a basis of the Fy-vector space
(AT%)6(21_1)+2,21. This implies that (A?8)6(21_1)+2,21 has dimension 880.

(ii) The space Im(%g)(ﬁ 10) is isomorphic to a subspace of (APg)10 generated by all the
classes [c] of DS, Consequently, | DS | = dlm(Im(Sq*)(6 10)) = 15.
Proof. We begin by proving Part (i) of the above theorem. Recall that Tin [29] showed
that the space (AP5)10 is an Fa-vector space of dimension 280 with a basis consisting of all

the classes represented by the monomials aj, 1 < j < 280. Consequently, |C£(10)| = 280.
Using the above result, an easy computation shows that

CJ T:(€2(10))

t=1

U Ti(a;),1 < j < 280| = 880,
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and the set {b: b € U?_; Ti(a;), 1 < j < 280} is a minimal set of generators for A-modules
P2 in degree ten. Hence, dim(APY)19 = 830.

The proof of Part (ii) of the above theorem is straightforward. Indeed, since ®¢ : Pg —
Pe is the homomorphism defined by ®g(x) = H?:l z;z? for x € Pg, one obtains

’{[C]: ¢ = ®g(z), for all z € C¥(5(2° — 1) +2-2°) }’ ‘D ’_15

Moreover, combining the above results with the fact that (Sq*)(ﬁ;w) is an epimorphism,

the space Im(%i)(&lo) turns out to be isomorphic to a subspace of (APg)109 generated by
all the classes [c] of DFC. The theorem is proved. O

Theorem 3.2. Let €~ (w) be the set of all admissible monomials in Pg(w), and set

APE (W) == APg(w) N APE. Then, the space Ker(gjg)(&m) N (AT§)6(21_1)+2,21 is 50-
dimenstonal. Moreover, we have

3
—0
Ker(5q,)(6:10) N (AP§ )21 -1)42.21 = @

and
4, if k=1,
dim (AP{ (W) = |€§~ (W) = 10, if k=2,
36, if k=3.

Proof. The idea of the proof of the above theorem is to explicitly determine an admissible
monomial basis of the Fo-vector space Ker(%i)(ﬁ;gm) N (ATér)6(21,1)+2_21.
For a weight vector w of degree d. We set C§ (w) := CF(d) N Pg(w). It is easy to see that
e&(d)= U C§(w). Putting
degw=d

QPg = ({[x] € APs : x is admissible and w(z) = w}).

It is straightforward to check that the map APs(w) — QP¢, [z]e — [z] is an
isomorphism of Fo-vector spaces. And therefore, QPg C AP can be used to identify the
vector space APg(w). From this, one obtains

(APe)a= P QPF= P APs(w)

degw=d degw=d

From this, it follows that (AT3)6(21_1)+2,21 =~ Ddeg w=10 AP (w).
Suppose that x is an admissible monomial of degree ten in P¢ such that [z] belongs

to Ker(SA'&S)(G;lo). Observe that z = x{x3 is the minimal spike of degree 10 in Pg and

w(z) = (2,2,1). Using Theorem 2.8, we obtain w;(z) > wi(z) = 2. Since the degree of (x)
is even, one get wi(z) = 2, or wi(x) =4, or wi(z) = 6.

Since wi(z) = 6, z = Xpy? with y a monomial of degree two in Pg. Since z is
dmissible by Theorem 2.6, it shows that y is also admissible, and [y] # 0. Hence,
[y] = (Sq*)(&lo ([x]) # 0. This contradicts the fact that [z] € Ker(%i)@ 10)-

Since wi(z) =4, x = X{”}u , with v an admissible monomial of degree three in Pg,
and 1 < ¢ < j < 6. It is easy to see that either w(u) = (3,0) or w(u) = (1,1). Hence,
w(z) = (4,3,0) or w(z) = (4,1,1).

Since wi(x) = 2, x = x;xv v?, with v an admissible monomial of degree four in Pg and
1 <i<j<6. By Theorem 2. 6 and x € P{ it implies that w(x) = (2,4).
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From the above results, one obtains
3
NO o
(Ker(S¢,) 6:10) N (AP )10) = P AP (W(w))-
k=1

Now, we explicitly determining all admissible monomials in Pg (w(z)), where k € {1,2,3}.
The proof is divided into three parts:
Case 1. Consider the weight vector w = wy. Assume that x is an admissible monomial
in Pg such that w(z) = &y, then z = z;z;y?, where y € €§(4), and 1 < i < j < 6.
We set D} = {miz;.9? : w(y) = (2,4), 1 <i < j <6} N Pf. It is easy to see that
Span{D}} = Pd (1), and if u € D§ then u = z;z;220722, 22, where (4,7, k, £, m,n) is an
arbitrary permutation of (1,2,3,4,5,6). Using the Cartan formula, we have

Y = zyadadaiaieg = Sqt (v rorsr,x518) + Sqt (Y1) + smaller than,

where Y1 = zirdadvwyng + vivdegaivgng + advaagr,aiad + viw,wdniwsvg. From this,
the monomial Y is inadmissible.
Clearly, every monomial x%ajjxkx%xgnx% is an inadmissible (more precisely by Sq'), with
(4, k, ¢, m,n) an arbitrary permutation of (2,3,4,5,6).
From the aforementioned results, P () is generated by the following four elements:
2,22 2 2.2 .2 2 2., .22 2 2,22 2
Cl = T ToX3X4T5Tgy C2 = L1XQX3L4X5T g, C3 = L1 XX 3L 4L 5Lg, C4 = L1 XL 3L4Tl5Tg-
We then show that the vectors [¢;], 1 < ¢ < 4, are linearly independent in APg. Assume
that there is a linear relation

81 =Y 7ci=0, withy; € Fa. (3.1)

1<i<4

For 1 < k < j <6, consider the homomorphism ¢(.;) : Pg — P5 by substituting:

T, if1<m<k-1,
go(k;j)(a:m) =93N7Tj-1, ifm= k‘,
Tm—_1, if k< m <6.

It is simple to figure out if these homomorphisms are A-modules homomorphisms.

Using the result in Tin [29], acting the homomorphisms ¢ 5.5y on both sides of (3.1),
one obtains v9 = v4 = 0.

So, the relation (3.1) becomes

81 = v1C1 + Y3C3 = O, (32)

Similarly, acting the homomorphisms ¢ (2.5, on both sides of (3.2), we obtains v, = 3 =
0.

Hence, the set {[c;] : 1 <i < 4} is a basis of the Fo-vector space AP (w1).
Case 2. Consider the weight vector w = wy. Based on similar arguments, we also see that
Span{D2} = P (w2), where

D% = {$i$j$k$g.u2 cwlu) = (4,1,1), 1<i<j<k<{<6} N P

2 ¢} where (i, j, k,£,m,n) is an arbitrary permu-

Observe, if u € D% then u = x;z;xL2027,7,,,
tation of (1,2,3,4,5,6). It is clear that the monomials x%xjxkxexmxi and x‘llxjxkxzxmx%
are inadmissible by Sq', with (4, k, £, m,n) an arbitrary permutation of (2,3,4,5,6).

On the one hand, for any 1 < m < n < 6, we have

xia?jmkazgxilxz = Sq2(ximja:kxémgla:i) + 5S¢t (x?xjkaexfnx%) + smaller than,



1142

where (i,7,k, ¢, m,n) is a permutation of (1,2,3,4,5,6). It shows that the monomials

N. K. Tin

4 92 . P
LT T T T, T, are inadmissible for m < n.

According to the aforementioned results, ﬂ’g (w2) is generated by 10 elements ¢;, with

5 < i < 14 as follows:
5. T ToT3T,roTg
9. zTyx3T 7T,

We then show that the vectors [¢;],5 < ¢ < 14, are linearly independent in APg. Assume
that there is a linear relation

We recall from [29] the finding that (APF )i is an Fao-vector space of dimension 50 with
a basis consisting of all the classes represented by the following admissible monomials:

S1

S5

59

513
S17
521
525
529
533
837
S41
S45
549

$1$2x§$i$§

xlm%x§x4m§

—-xlx%xgxiwg
xlxgxgmixg
x1x2x§x4xé
azla:%:chiacg,
$1$%x§$4$5
$%$2$§$4$5
$1$2$§$2$§
xlxgxgxixg
x1x§x§$4x§
$%$2$§$4$§
x?x%x3m4x§

2, 4
6. T{ToT3TiT5TE

2,.4
7. T1XT9T3TL{T5Tg

89 = Z Yici+4 = 0, with v; € Fa.

89

S6

510
S14
518
522
526
530
534
538
S42
S46
S50

1<:i<10

::$1x2$§xﬁx§

::xlxgngixg
w?xgxgximg
x1x2x3x2m5
a:lxgx%xixg)
.’L‘lﬂ?%l‘glel‘g)
$1$g$3$4$5
$%$§$3$4$5
_’$1$%$3$2$§
$1$%$3$2$§
x1x§x§x2$5
$%$2$§$2$5

—-m?w%x3x2$5

53

87

S11
515
519
523
S27
531
535
539
543
Sq7

:=$1x%$3$§x§

=:$1x%x§$ix§
x1x2x3x4xg
x1x2x§x4xg
x1x2x3x4x5
xlx%x3x4x§
$%$2$3$4$%
$1$2$§$i$§
_‘$1$%$§$4$§
x1$§$§$4$§
x?nggxixg

A*x?$2x§x4x§

8. myxoriv ToT]
10. my@gr3aizsrg 11, zyrd3wswyzszg 12, 2yvdvsr aizg
13. my@3wgaizszg 14, zy03rin,vs2g

S4

S8

512
516
520
524
528
532
536
540
S44
S48

xlxgxgxﬁmg
xlx%xgxixg
xlxgxgxixg
x1x2x§x2x5
xlx%x3x4xg
I1$%$3$3$5
$?$2$3$3$5
$1$2$§$Z$§
_'$1$%$§$2$5
$1$%$§$§$5
x?xgxgxixg

x?xgngix5

By direct computations, apply the homomorphism 3.5 to (3.3), one obtains

From this, it implies 1 =2 =y =y =7 =% =77 =7 =0.
Using the above result, acting the homomorphism ¢4.6) on both sides of (3.3), one gets

©3:5)(82) = 71513 + 7251 + 73516 + 74513 + V5514 + ¥6(54 + 57)
+ 753 + Y8521 + Y9(s1 + 82 + S5) + 10521 = 0.

vs8 = 710 = 0.
Hence, the set {[c;] : 5 < i < 14} is a basis of the Fa-vector space AP¢ (w2).
Case 3. Consider the weight vector w = w3. Let us denote by

D = {mimjaprev® wv) = (4,3), 1<i<j<k<l<6} N P

We also have Span{D3} = P{(w3), and if x € D then x = z;zjzpxie? 23, with

(i,4,k,€,m,n) an arbitrary permutation of (1,2,3,4,5,6).

The monomials x%xjxkxgxfn:z% and 23237, 2,7,,72 are clearly inadmissible by S¢'. And

therefore, P (w3) is generated by 36 elements c;, with 15 < i < 50 as follows:

15.
19.
23.
27.
31.
35.
39.
43.
47.

viakalrliie?
viaaiadeled
vioaiadeind
vioairlele?
wiaairlaind
rioaiadulnd
rlodairlale?
rlodrioteiel

1,2,1,.2..1,3
LILRL3LALEL g

16.
20.
24.
28.
32.
36.
40.
44.
48.

sladzlaledel
IR
N R
TR
SN
T1T5T3TLT5T
A .

1,2,2,3.1,.1
L1LoT3LYT5Tg

17.
21.
25.
29.
33.
37.
41.
45.
49.

TYTHTITITET
wloladuiziol
rladalrladod
rladadrizisl

1,.2,2,1,3.1
L1LoL3LYT5Lg

18.
22.
26.
30.
34.
38.
42.
46.
50.

slalalodoled
AT o 00
slalalaiolsd
slalairloiol
rlatatalodel
x%$%$§$%xg$?
T1T5T3T4TETg
SO o

1,,2,2,.1,.1,3
L1LRT3LYT5Lg
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Assume that there is a linear relation

Z YiCit14 = 0, with v; € Fo. (34)
1<i<36

Using the same method as above, we explicitly compute ¢(;.;)(83) in terms of s;,1 <
i < 50 in P5(mod(ATP5)).

From the relations ¢;.)(83) = 0 with 1 < k < j < 6, one gets y; = 0 for all 15 < 4 < 50.
That means, the vectors [¢;],15 < i < 50, are linearly independent in APg.

Hence, {[¢;], 15 < i < 50} is a basis of AP{ (w3). The theorem is proved. O

From the above results, we obtain the following corollary.

Corollary 3.3. There exist exactly 945 admissible monomials of degree ten in Pg. This
implies that the space (APg)g21—_1)42.01 has dimension 945.

It should be noted that Mothebe-Kaelo-Ramatebele [12] utilized a different method to
verify the dimension result of the vector space (APg)g21—1)42.21-
Next, we consider the degree ms :=6(2°—1)+2-25 for any s > 2. For s = 2, we have

my = 6(22 — 1) + 2 - 22. Since (Sq*)(&%) is a Fy-epimorphism, it shows that

—0 —0
(AP6)my = (APG)m, P (Ker(Sq,)6:26) N (AP )imy) D Im(Sq,) (6:26)

Then, the Fa-vector space (APg)g(22—1)42.92 is explicitly determined by the following
theorem.

Theorem 3.4. Let us denote by AP} (w) = APp(w) N AP, Wy = (4,3,4), @y =
(4,3,2,1), &g = (4,5,3), &g == (4,5,1,1). Then

(i) The space Im(%i)(ﬁ;%) is isomorphic to a subspace of (APg)g22_1)+2.22 generated
by all the classes represented by the admissible monomials of the form ®g(u) for all u €
eL(6(21 — 1) +2-21). Consequently, dim Im(%g)(ﬁ;QG) = 945.

(ii) The set {[e;]: e; € Up_; Te(C2(26)),1 < i < 5184} is a basis of the Fa-vector space
(Ai]’g)6(22,1)+2_22. This implies that (ﬂ?g)6(22,1)+2,22 has dimension 5184.

(iii) We have (Ker(g&g)(&%) N (AP )g22—1)42.22) = Pl APS (@ wpi))- Moreover, the
vector space Ker(g&g)(&%) N (.A?ér)6(22,1)+2_22 is 3636-dimensional.

Proof. Since Kameko’s homomorphism

(Sq*)(ﬁ 26) * (AP6)g22-1)+2.22 = (AP6)6(21—1)42.21
is an Fy-epimorphism, it shows that the proof of Part (i) of the above theorem is straight-
forward. It is an immediate consequence of Corollary 3.3. More specifically, we see that

~0
the space Im(Sq*)(G;%) turns out to be isomorphic to a subspace of (APg)2s generated by
all the classes [e] of EF8, where

EF0 = {le] : e = Dg(u), for all u € CF(5(2" —1)+2-24)}.

Hence, dim Im(Sq*) 6:26) ‘8 ‘ = 945.

Next, we prove Part (ii) of the above theorem. Recall that, Wood-Walker [33] proved
that the space AP, has dimension 2(3) in degree d(n) = 2™ —n — 1. For n = 5, we have
d(5) = 2° — 5 — 1 = 26, and therefore, dim(APs)s6 = 203) = 1024.
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Assume that the set CZ(26) = {u; € : 1 <4 < 1024}. A simple calculation

reveals that

6

HU Te(us) 1 1< < 1024}‘ = 5184,
t=1

and the set

6
{v tve [ T(u), 1< < 1024}

t=1

is a minimal set of generators for A-modules PY in degree twenty-six.

Therefore, dim(ﬂ?g)G(Qz,l) 19.02 = 5184. The second part has been established.

Finally, we prove Part (iii) of the theorem. For a weight vector w of degree d, we
set C¥(w) := C€¥(d) N Pp(w). Then, one has C2(d) = |J C¥(w). Denote by QP the

degw=d

subspace of AP,, spanned by all the classes representedgby the admissible monomials of
weight vector w in P,.

By the same arguments as in the proof of the previous theorem, the map AP, (w) —
QPY, [u], — [u] is an isomorphism of Fa-vector spaces. And therefore, QPY C AP, can
be used to identify the vector space AP, (w). From this, one obtains

@ QP = @ APp(w)

degw=d degw=d

Hence, it shows that (AP )m, = (S I— AP (w).

Suppose that x is an admissible monomial of degree twenty-six in Pg such that [x]
belongs to Ker(g&g)(&%). Observe that z = xi®zlr3x, is the minimal spike of degree
twenty-six in Pg and w(z) = wyy. By Theorem 2.8, we obtain wi(z) > wi(z) = 4. Since
the degree of (z) is even, one gets either w;(x) = 4, or wi(x) = 6.

If wi(r) = 6 then * = Xyy?, with y a monomial of degree ten in Pg. Since z is
admissible, by Theorem 2.6, it shows that y is also admissible, and [y] # 0. Hence,
ly] = (%2)(6;26)(@]) # 0 which contradicts the fact that [z] belongs to Ker(%i)(&%).

Hence, wi(x) =4 then x = X {i,j}“2v with v an admissible monomial of degree eleven in
P, and 1 < i < j < 6. Using the result in [12], one has w(u) = (3,4) or w(u) = (3,2,1),
or w(u) = (5,3) or w(u) = (5,1,1). Hence, w(z) = wy; for all i = 1,2,3,4.

From the above results, one obtains

—0
(Ker(Sq,)6:26) N (AP )6 (22-1)4222) @A% (wpp)-

By the same arguments as in the proof of the previous theorem, we determine the
space Ker(%i)(&%) N (AP )m, by explicitly determining all admissible monomials in
’Pé”((f[ﬁ ), where i € {1,2,3,4}. However, to list all the elements of the admissible mono-
mial basis of these subspaces is far too long and computationally very technical. The
following is a sketch of its proof with the aid of computers. At the same time, we pro-
vide an algorithm in MAGMA [35] to verify the dimension result of the vector space

Ker(g&g)(ﬁ 26) N (APE)6 (22 1)+222 Which is presented in the appendix of this article.
We will denote by D 6(22—1)+2- 52(w) the set of classes represented by the admissible

monomials of the vector space Ker(SqS)(6.26) N (A?+)6(22_1)+2,22. Consider the set
By ={Xgu -2 feCP(ll),1<i<j<6} n Pf.

Using Theorem 2.6, it shows that if u is an admissible monomial of degree twenty-six
—~0 -0
in Py such that (Sq,)s26)([u]) does not belong to Im(Sq,)(s.26), then u € BSS
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By observing that each monomial 7' 25?532} * x2° g% corresponds to a series of numbers

of the type (a1;az;as;aq;as;ag), we set up an algorithm implemented in Microsoft Excel
software to eliminate the inadmissible monomials in Bg%-ﬁ. By direct calculations, using

Theorem 2.6, we get |9222_1)+2_22 (w)| = 3636.

So, we have dim (Ker(%g)(ﬁ;%) N (A?g)6(22_1)+2,22) = 3636. The theorem has been
established. I

From the above results, we get the following corollary.

Corollary 3.5. There exist exactly 9765 admissible monomials of degree twenty-siz in Pg.
That means, (APg)g(22—1)42.02 has dimension 9765.

Consider the degree mg := 6(2° — 1) +2- 2%, for any s > 2. Then, we have the following
theorem.

Theorem 3.6. The set {[z] : = € ®5 2(CS(26))} is a basis of the Fa-vector space
(AP6)g(25—1)42.2¢ for any s > 2. Consequently, €& (2513 — 6)| = 9765, for each integer
s> 2.

Proof. We will begin the proof of the theorem by calling a result in [28] as follows:
Let d be an arbitrary non-negative integer, and let {(u) be the greatest integer v such
that u is divisible by 2Y. That means u = 2Ym, with m an odd integer. Put

A(n,d) = max{0,n —a(d+n) — ((d+n)}.
Then, Tin-Sum showed in [28] that the map

(SQS)T_t : ('Ag)n)n(2r—1)+2’“d — (A?n)n(2t—1)+2td
is an isomorphism of G L, (IF3)-modules for every r > ¢t if and only if t > A(n, d).
For n =6, ms = 6(2° — 1)+ 2-2° and d = 2 then a(d +n) = a(8) = 1, and one has
¢(d+n) = (¢(2%-1) = 3. And therefore A\(n,d) = 2. Using the above result, we get an
isomorphism of Fs-vector space:

(AP6)6(2r—1)42.20 = (APg)g(22—1)42.22
for all » > 2.
Hence, the set {[z] : x € ®§ 2(CF(6(2% — 1) +2-22))} is a basis of the Fo-vector space
(AT6)6(2571)+2-25 for any s > 2.
Moreover, dim(A®Pg)g(2s—1)42.25 = €S (6(22 — 1) + 2 - 22)| = 9765, for any s > 2. The
theorem has been established. O

Now, we describe the dimension result for the polynomial algebra by studying the Fs-
vector space AP, in the generic degree (n—1)(2" %=1 —1)+ /2" % where u is an arbitrary
non-negative integer, £ = 13, and n = 7.

As is well known, after explicitly determining AP,, Sum [24] has established an inductive
formula by n for the dimension of the vector space (AP, )4, where d is of general degree
(see Theorem 1.3 in [24]). As a result of combining this result in Sum [24] with the results
above, we get the following.

Theorem 3.7. For any integer r > 0, there exist exactly 1240155 admissible monomials
of degree d, = 6(2"5 — 1) + 13 - 26 4n P;. This implies that the space (AP7)q4, has
dimension 1240155, for all r > 1.

Proof. Consider the degree d = (n — 1)(2° — 1) + 2°t, where s and ¢ are positive integers
such that 1 <n—3 < p(t) <n—2.If s > n— 1, then we have an inductive formula by n
for the dimension of the vector space (AP,)q, which was shown in Sum [24] as follows:
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dim(AP,)g = (2" — 1) dim(APp_1 ).

We can easily observe that for n = 6, and ¢ = 26, then we have

pu(t) = pu(26) =4 =a(t+ p(t)) = a(70) =n — 2.

Hence, using the above result, one gets

¥ (6(2° — 1) + 13- 25T1)| = (27 — 1) - |€§(26)| = 1240155,
for any integer s > 6.
So, there exist exactly 1240155 admissible monomials of degree 6.(2" — 1) + 13 - 27!

in P7, for any integer r > 5. Consequently, dim(AP7)g (or+5_1)413.2r+6 = 1240155, for all
r > 1. The theorem is proved. ]

One of the key applications of the hit problem is in surveying a homomorphism proposed
by Singer. It is a useful tool for describing the cohomology groups of the Steenrod algebra,
Exty" (2, Fy). We will start by recalling the definition of the Singer algebraic transfer,
which was shown in [19] as follows:

Consider the graded polynomial ring Py = Fa[z1] with deg(x1) = 1. Thus, the canonical
A-action on Py is extended to an A-action on the ring of finite Laurent series Fo[x1,z7].
Hence, there exists an A-submodule ﬁ of Fg[ml,:ﬂfl], spanned by all powers x{ with
1 > —1. The inclusion P; C f/PI gives rise to a short exact sequence of A-modules:

0— P 5P 2> "R, -0,

where 7 is the inclusion, and o is given by o(z}) = 0 if i # —1 and o(27") = 1.
Writing ey for the corresponding element in Ext}q(z ~1Fy, P1). Based on the cross, the
Yoneda and the cap products, Singer set

€en = (61 X iPn—l) o (61 X (Pn—2) 0-.--0 (61 X Tl) oe| € EX‘U%(Z 7”[5‘2, ?n)

Then, Singer defined the following homomorphism

On : Torﬁ(Fg, Z _le) — TOI"{){(FQ, Pn) = AP,

by @n(2) = e, N 2. Its image is a submodule of (AP,,)ELn(F2),

So, ¢y, induces the homomorphism

©On TOI":LL(IF27Z_1IF2) — (AP,)GLn(F2),

Let (ATn)gL"(F” be the subspace of (APy,),, consisting of all the GL,,(IF3)-invariant
classes of degree m, and let the space Fa®¢r,, (,) P Hm ((RP>)") be the dual to (A‘.Pn)nGlL"(FQ).

Then, the dual of ¢, :

Un = (pn)" : Fa®qr, (py) PHL(RP)") — Ext)y ™ (Fy, Fy).

is also called the n-th Singer algebraic transfer.

Singer illustrated the importance of the algebraic transfer by proving that v, is an
isomorphism with n = 1,2 and at other degrees with n = 3,4, but he refuted this for 5
at degree 9, and then proposed the following conjecture.

Conjecture 3.8 (Singer [19]). For any n > 0, the algebraic transfer ¢, is a monomor-
phism.
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The hit problem’s importance and relevance may be found throughout Singer’s work.
Moreover, using the modular representation theory of linear groups, Boardman confirmed
in [1] that 13 is also an isomorphism. Many authors have studied the Singer algebraic
transfer for n > 4 (see Minami [10], Bruner-Ha-Hung [2], Phuc [15], Sum-Tin [23], Tin
[29] and others). However, Singer’s conjecture remains open for n > 4.

Based on the results for the hit problem, combining the computation of the cohomology
groups Extif5+*(IE‘2,IF‘2) by Lin [8] and Chen [3], we studied and verified the Singer’s
conjecture for the algebraic transfer in degrees 5(2° —1)+2%m, with s an arbitrary positive
integer, and m € {1,2,3}. We have the following.

Theorem 3.9 (see [23] and [29]). Let s be an arbitrary positive integer. Singer’s conjecture
is true for n =5 and the generic degrees ds = 5(2° — 1) 4+ 2°m, where m € {1, 2, 3}.

In the current article, using the result in Tin-Sum [28] (see Theorem 1.3), we also see
that

GL6(F ~ GLg(F
(A?6)6(25£12))+2-23 = (AT6)6(226(_12))+2‘22, for all s > 1.

By passing to the dual, we obtain the following theorem.

Theorem 3.10. We have an isomorphism of Fo-vector spaces:
Fo®¢Lg(Fy) PHe(2:—1)12.2: (RP™)) = Fo@crq () P He (22— 1)+2.22 (RP™)0),
for any positive integers s > 2.

Remarkability, from the result of the above theorem, we only need to study the vector
space F2®GL6(F2)PH6(2S,1)+2.2S((R?‘”)ﬁ) for s < 2.

4. Conclusions and Future work

In this article, we study the hit problem for the polynomial algebra as a module over
the Steenrod algebra in some generic degrees and its application to the sixth algebraic
transfer of Singer. In the future, we will verify the Singer’s conjecture for the sixth
algebraic transfer in degree 6(2° — 1) + 2 - 2°, with s an arbitrary positive integer, by
combining the computations of the cohomology groups of the Steenrod algebra in these
cases.

5. Appendix

In the appendix, we provide an algorithm in MAGMA [35] to verify the dimension
result of the vector space (APg)g22_1)4+2.22- And then, we obtain the dimension result of

the vector space Ker(SA’Z]S)(G;QG) N (ﬂ?§)6(22,1)+2.22.

N := 26;

R<xl1, x2, x3, x4, x5, x6> := PolynomialRing(GF(2), 6);

P<t> := PolynomialRing (R);

Sghom := hom < R — P | [z + t*2? :xin [z],22,23, 24, 5, 26]] >;

function Sq(j, x)
¢ := Coeflicients (Sqhom(x));
if j+1 gt fc then

return R ! 0;
else

return c[j+1];
end if;

end function;
M := MonomialsOfDegree(R, N);
V := VectorSpace(GL(2), § M);
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function MtoV(m)

If IsZero(m) then

return V ! 0;

else

cv := [Index(M, mm) : mm in Terms(m)];
return CharacteristicVector(V, cv);

end if;

end function;

M1 := MonomialsOfDegree(R, N-
M2 := MonomialsOfDegree(R, N-
M4 := MonomialsOfDegree(R, N-
M8 := MonomialsOfDegree(R, N-
M16 := MonomialsOfDegree( ,N—16);

print [fm : m in [M1, M2, M4, M8, M16] |;

)

S1 := [Sq(1,x) : x in MI];

print "S1";

Hl = sub<V | [Mto V(x) : x in S1|>;
print Dimension(H1);

S2 := [Sq(2,x) : x in M2J;

print "S2";

H2 := sub <V | [Mto V(x) : x in S2]>;

print Dimension(H2);

H :=H1 + H2;

print Dimension(H);

S4 := [Sq(4,x) : x in M4];

print "S4";

H4 := sub <V | [Mto V(x) : x in S4]>;
print Dimension(H4);

H =H + H4;

print Dimension(H);

S8 = [Sq(8,x) : x in MS];

print "S8";

H8 := sub <V | [Mto V(x) : x in S8>;
print Dimension(HS);

H :=H + HS;

print Dimension(H);

S16 := [Sq(16,x) : x in M16];

print "S16";

H16 := sub <V | [Mto V(x) : x in S16]>
print Dimension(H16);

H :=H + HI16;

print Dimension(H);

print "\n', Dimension(V);

print Dimension(H);

print Dimension(V) - Dimension(H);
According to the above calculations, we get

dim (APs) = Dimension(V) — Dimension(H) = 9765.

6(22—1)+2-22

Hence, we obtain

dim (Ker(Sg,) (6:26) N (APE)a6) = 9765 — dim (APY) o6 — dim Tm(Sq,) (g.26) = 3636.
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Note that the result on the dimension of Ker(SN’qg)(G;%) N (AT;)6(22,1)+2,22 can also

be verified by using a computer calculation program in SAGE (Software for Algebra and
Geometry Experimentation), see Viet [32], and [36].
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