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Abstract
Let Pn

∼= H∗(BEn;F2
)

be the graded polynomial algebra over the prime field of two ele-
ments F2, where En is an elementary abelian 2-group of rank n, and BEn is the classifying
space of En. We study the hit problem, set up by Frank Peterson, of finding a minimal set
of generators for the polynomial algebra Pn, viewed as a module over the mod-2 Steenrod
algebra A. This problem remains unsolvable for n > 4, even with the aid of computers
in the case of n = 5. By considering F2 as a trivial A-module, then the hit problem is
equivalent to the problem of finding a basis of F2-graded vector space F2⊗APn.
This paper aims to explicitly determine an admissible monomial basis of the F2-vector
space F2⊗APn in the generic degree n(2r − 1) + 2 · 2r, where r is an arbitrary non-negative
integer, and in the case of n = 6.
As an application of these results, we obtain the dimension results for the polynomial
algebra Pn in degrees (n− 1) · (2n+u−1 − 1) + ` · 2n+u, where u is an arbitrary non-negative
integer, ` = 13, and n = 7.
Moreover, for any integer r > 1, the behavior of the sixth Singer algebraic transfer in
degree 6(2r − 1) + 2 · 2r is also discussed at the end of this paper. Here, the Singer
algebraic transfer is a homomorphism from the homology of the Steenrod algebra to the
subspace of F2⊗APn consisting of all the GLn(F2)-invariant classes. It is a useful tool in
describing the homology groups of the Steenrod algebra, TorAn,n+∗(F2,F2).
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1. Introduction
Let X be a topological space. Cohomology operations are generated by the natural

transformations of degree i which are so-called Steenrod squares
Sqi : H∗(X,F2) −→ H∗+i(X,F2),

where H∗(X,F2) is the singular cohomology of X with coefficients in the two-element field
F2, and i is arbitrary non-negative integers. In 1952, Serre established the structure of the
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set of all cohomology operations. Serre [18] proved that the Steenrod squares generate all
stable cohomology operations with the usual addition and the composition of maps. The
algebra of stable cohomology operations with coefficients in F2 is known as the modulo 2
Steenrod algebra, A.

Furthermore, the Steenrod algebra is able to be defined algebraically as a quotient
algebra of F2-free graded associative algebra generated by the symbols Sqi of degree i,
where i is a non-negative integer, by the two-sided ideal generated by the relation Sq0 = 1
and the Adem’s relations

SqaSqb =
[a/2]∑
j=0

(
b− 1 − j

a− 2j

)
Sqa+b−jSqj , for 0 < a < 2b

(see Chapter 1 of [21]).
Calculations of various homotopy groups of spheres by Jean-Pierre Serre were among

the first Steenrod algebra applications. Milnor proved in [9] that the dual of the mod 2
Steenrod algebra is a polynomial algebra and that the mod 2 Steenrod algebra admits a
Hopf algebra’s structure. As a result, an object that was previously considered intractable
suddenly became considerably easier to control. Recently, the mod 2 Steenrod algebra and
the mod 2 dual Steenrod algebra as a subalgebra of the mod 2 dual Leibniz-Hopf algebra
have been studied by many authors (see Crossley-Turgay [4], Crossley [5], Turgay-Kaji [27]
and others).

Let En be an elementary abelian 2-group of rank n. We will denote by BEn the
classifying space of En. It may be thought of as the product of n copies of real project
space RP∞. Then, based on the Künneth formula for cohomology, one gets an isomorphism
of F2-algebras

Pn := H∗(BEn;F2
) ∼= F2[x1] ⊗F2 . . .⊗F2 F2[xn] ∼= F2[x1, x2, . . . , xn],

where xi ∈ H1(BEn;F2
)

for every i.
As is well-known, Pn is a module over the mod-2 Steenrod algebra A. The action of A

on Pn is determined by the formula

Sqk(xj) =


xj , k = 0,
x2

j , k = 1,
0, k > 1,

and the Cartan formula Sqk(uv) =
∑k

i=0 Sq
i(u)Sqk−i(v), where u, v ∈ Pn (see Steenrod-

Epstein [21], and Turgay [26]).
The Peterson hit problem is to find a minimal generating set for Pn regarded as a module

over the mod-2 Steenrod algebra. The hit problem is analogous to the problem of finding
a basis for the F2-graded vector space F2⊗APn if we treat F2 as a trivial A-module.

This issue has first been studied by Peterson [14], Singer [19], Wood [34], and Priddy
[16], who shows its relationship to several classical problems in cobordism theory, modu-
lar respresentation theory, Adams spectral sequence for the stable homotopy of spheres,
stable homotopy type of the classifying space of finite groups. Then, this issue and its
applications were investigated by Silverman [20], Repka-Selick [17], Janfada-Wood [6],
Nam [13], Sum [22,24], Mothebe-Kaelo-Ramatebele [12], Sum-Tin [25], Walker-Wood [33],
the present writer [29,30] and others.

Let α(d) be the number of digits 1 in the binary expansion of a natural integer d.
Consider the function µ : N ∪ {0} −→ N ∪ {0} which is defined as follows:

µ(0) = 0, and µ(d) = min{m ∈ N : α(d+m) 6 m}.

In [14], Peterson hypothesized that as a module over the Steenrod algebra A, Pn is
generated by monomials of degree d obeying the inequality α(d + n) 6 n, and proved it
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for n 6 2. And then, Wood [34] demonstrates this in general. This is a fantastic tool for
figuring out A-generators for Pn.

Kameko’s squaring operation

S̃q
0
∗ := (S̃q0

∗)(n;n+2d) : (F2⊗APn)n+2d → (F2⊗APn)d,

which is induced by an F2-linear map Sn : Pn → Pn, given by

Sn(x) =
{
y, if x = x1x2 . . . xny

2

0, otherwise

for any monomial x ∈ Pn, is one of the most important tools in the analysis of the hit
problem. Clearly, (S̃q0

∗)(n;n+2d) is an F2-epimorphism.
From the results of Kameko [7], Sum [24], and Wood [34], the hit problem is reduced

to the case of degree d of the form d = r(2t − 1) + 2tm, where r,m, t are non-negative
intergers such that 0 6 µ(m) < r 6 n.

Now, the tensor product APn := F2⊗APn was entirely calculated for n 6 4 (see Peter-
son [14] for n = 1, 2, see Kameko [7] for n = 3, see Sum [24] for n = 4), but it remains
unresolved for n > 5, even with the aid of computers in the case of n = 5. Recently, in
the case of n=5, and in some degrees, this problem was studied by many authors (see
Mong-Sum [11], Phuc [15], Tin [31] and others).

In the present paper, we explicitly determine an admissible monomial basis of the F2-
vector space AP6 in the generic degree 6(2s − 1) + 2 · 2s, with s an arbitrary non-negative
integer. The MAGMA computer algebra [35] was used to double-check these results.

As an application of the above results, we obtain the dimension results for the polyno-
mial algebra Pn in degree d = (n − 1) · (2n+u−1 − 1) + ` · 2n+u, where u is an arbitrary
non-negative integer, ` = 13, and n = 7.

One of the primary applications of the hit problem is in surveying a homomorphism
proposed by Singer [19], which is from the homology of the Steenrod algebra to the sub-
space of APn consisting of all the GLn(F2)-invariant classes. Here, GLn(F2) is the general
linear group over the field F2.

Recall that the general linear group GLn(F2) acts naturally on Pn by matrix substitu-
tion. Due to the fact that the two actions of A and GLn(F2) upon Pn commute with each
other, there is an inherited action of GLn(F2) on APn. At the conclusion of this article,
the behavior of the sixth Singer algebraic transfer in degree 2s+3 − 6 is also discussed.

Next, in Section 2, we recall some auxiliary information on admissible monomials in
Pn. The main results are presented in Section 3. Finally, in the appendix, we provide an
algorithm in MAGMA [35] to verify the dimension result of the main results of this paper.

2. Preliminaries
In this section, we review some important facts from Kameko [7], Singer [19], and Sum

[24], which will be used in the following section.
We will denote by Nn = {1, 2, . . . , n} and

XJ = X{j1,j2,...,js} =
∏

j∈Nn\J
xj , J = {j1, j2, . . . , js} ⊂ Nn,

In particular, XNn = 1, X∅ = x1x2 . . . xn, Xj = x1 . . . x̂j . . . xn, 1 6 j 6 n, and X :=
Xn ∈ Pn−1.

Let αt(d) be the t-th coefficient in dyadic expansion of d. Then, d =
∑

t>0 αt(d).2t where
αt(d) ∈ {0, 1}. Let x = xa1

1 x
a2
2 . . . xan

n ∈ Pn. Denote νj(x) = aj , 1 6 j 6 n. Set
Jt(x) = {j ∈ Nn : αt(νj(x)) = 0},

for t > 0. Then, we have x =
∏

t>0X
2t

Jt(x).
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Definition 2.1 (Weight vector-Exponent vector). For a monomial x in Pn, define
two sequences associated with x by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .), and σ(x) = (ν1(x), ν2(x), . . . , νn(x)),
where ωi(x) =

∑
16j6n αi−1(νj(x)) = degXJi−1(x), i > 1. The sequences ω(x) and σ(x)

are respectively called the weight vector and the exponent vector of x.

The sets of all the weight vectors and the exponent vectors are given the left lexico-
graphical order.

Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of non-negative integers. The sequence ω
is called the weight vector if ωi = 0 for i � 0. Then, we define degω =

∑
i>0 2i−1ωi.

Denote by Pn(ω) the subspace of Pn spanned by all monomials y such that deg y = degω,
ω(y) 6 ω, and by P−

n (ω) the subspace of Pn spanned by all monomials y ∈ Pn(ω) such
that ω(y) < ω.

Definition 2.2 (Equivalence relations on Pn). Let A+ be an ideal of A generated by
all Steenrod squares of positive degrees, and u, v two polynomials of the same degree in
Pn. We define the equivalence relations “ ≡ ” and “ ≡ω ” on Pn by stating that

(i) u ≡ v if and only if u− v ∈ A+Pn.
(ii) u ≡ω v if and only if u, v ∈ Pn(ω) and u− v ∈

(
A+Pn ∩ Pn(ω) + P−

n (ω)
)
.

Then, we have an F2-qoutient space of Pn by the equivalence relation “ ≡ω ” as follows:

APn(ω) = Pn(ω)/((A+Pn ∩ Pn(ω)) + P−
n (ω)).

If a polynomial u in Pn can be expressed as a finite sum u =
∑

i>0 Sq
2i(fi) for suitable

polynomials fi ∈ Pn, it is called it hit. That means u belongs to A+Pn.
Let u ∈ Pn, and let ω be a weight vector. We denote by [u] the class in APn represented

by u. If u belongs to Pn(ω), then denote by [u]ω the class in APn(ω) represented by u.

Definition 2.3 (Linear order on Pn). Let u, v be monomials of the same degree in
Pn. We say that u < v if one of the following holds:

(i) ω(u) < ω(v);
(ii) ω(u) = ω(v), and σ(u) < σ(v).

Definition 2.4 (Admissible monomial-Inadmissible monomial). Let u be a mono-
mial in Pn. The monomial u is said to be inadmissible if there exist monomials v1, v2, . . . , vm

such that vi < u for i = 1, 2, . . . ,m and u−
∑m

i=1 vi ∈ A+Pn. If u is not inadmissible mono-
mial, we say it is admissible.

For instance, since x2
1x2 = Sq1(x1x2) + x1x

2
2, and σ(x1x

2
2) < σ(x2

1x2), it follows that
x2

1x2 is inadmissible in P2. Moreover, the monomials x3
1;x3

2 are admissible in P2.
It is crucial to note that the set of all admissible monomials of degree d in Pn is a

minimal set of A-generators for Pn in degree d. And therefore, (APn)d is an F2-vector
space with a basis consisting of all the classes represent by the elements in (Pn)d.

Definition 2.5 (Strictly inadmissible monomial). Let u be a monomial in Pn. We say
u is strictly inadmissible if there exist monomials v1, v2, . . . , vm in Pn such that vj < u, for
j = 1, 2, . . . ,m and u =

∑m
j=1 vj +

∑2s−1
i=1 Sqi(fi) with s = max{k : ωk(u) > 0}, fi ∈ Pn.

Observe that if u is strictly inadmissible monomial, then it is inadmissible monomial,
as defined by the definitions 2.4, and 2.5. In general, the inverse is not true.

For example, the monomial x1x
2
2x

2
3x

2
4x

2
5x6 is inadmissible, but it is not strictly inadmis-

sible in P6.

Theorem 2.6 (Kameko [7], Sum [24]). Let u, v, w be monomials in Pn such that
ωt(u) = 0 for t > k > 0, ωr(w) 6= 0 and ωt(w) = 0 for t > r > 0. Then,



On a minimal set of generators for the algebra H∗(BE6;F2) 1139

(i) uw2k is inadmissible if w is inadmissible.
(ii) wv2r is strictly inadmissible if w is strictly inadmissible.

Definition 2.7 (Minimal spike monomial). Let z = xd1
1 x

d2
2 . . . xdn

n in Pn. The mono-
mial z is called a spike if dj = 2tj −1 for tj a non-negative integer and j = 1, 2, . . . , n. More-
over, z is called the minimal spike, if it is a spike such that t1 > t2 > . . . > tr−1 > tr > 0
and tj = 0 for j > r.

The following is a Singer’s criterion on the hit monomials in Pn.

Theorem 2.8 (Singer [19]). Assume that z is the minimal spike of degree d in Pn, and
u ∈ (Pn)d satisfying the condition µ(d) 6 n. If ω(u) < ω(z), then u is hit.

From now on, let us denote by C⊗
n (d) the set of all admissible monomials of degree d in

Pn. The cardinal of a set U is denoted by |U |. The A-submodules of Pn that spanned all
the monomials xd1

1 x
d2
2 . . . xdn

n such that d1 . . . dn = 0, and d1 . . . dn > 0, respectively, will
be denoted by P0

n and P+
n . It is easy to check that P0

n and P+
n are A-submodules of Pn.

Moreover, we have a direct summand decomposition of the F2-vector spaces:
APn = AP0

n ⊕ AP+
n

where AP0
n := F2⊗AP

0
n, AP+

n := F2⊗AP
+
n .

3. Main Results
First, we explicitly determine an admissible monomial basis of the F2-vector space AP6

in the generic degree ms := 6(2s − 1) + 2 · 2s, with s an arbitrary non-negative integer.
For s = 0, then m0 = 2. It is easy to see that the set

{
[xixj ] : 1 6 i < j 6 6

}
is a basis

of F2-vector space (AP6)m0 . Consequently,
∣∣C⊗

6 (2)
∣∣ = 15.

For s = 1, then m1 = 6(21 − 1) + 2 · 21. Set ω̃1 := (2, 4), ω̃2 := (4, 1, 1), and ω̃3 := (4, 3).
Then, the F2-vector space (AP6)6(21−1)+2·21 is determined as follows:

Since Kameko’s homomorphism (S̃q0
∗)(6;10) is an F2-epimorphism, it follows that

(AP6)m1
∼= (AP0

6)m1

⊕(
Ker(S̃q0

∗)(6;10) ∩ (AP+
6 )m1

)⊕
Im(S̃q0

∗)(6;10)

Consider the homomorphism Tt : Pn−1 → Pn, for 1 6 t 6 n by substituting:

Tt(xk) =
{
xk, if 1 6 k 6 t− 1,
xk+1, if t 6 k < n.

We have the following theorem.

Theorem 3.1. Let us denote by D⊗6
0 :=

{
b : b ∈

⋃6
t=1 Tt(C⊗

5 (6(21 − 1) + 2 · 21))
}
, and set

D⊗6
Im :=

{
[c] : c = Φ6(u), for all u ∈ C⊗

5 (6(20 −1)+2 ·20)
}
, where the map Φn : Pn → Pn

is a homomorphism determined by Φn(x) =
∏n

i=1 xix
2, x ∈ Pn. Then

(i) We have
∣∣D⊗6

0
∣∣ = 880, and the set {[b] : b ∈ D⊗6

0 } is a basis of the F2-vector space
(AP0

6)6(21−1)+2·21 . This implies that (AP0
6)6(21−1)+2·21 has dimension 880.

(ii) The space Im(S̃q0
∗)(6;10) is isomorphic to a subspace of (AP6)10 generated by all the

classes [c] of D⊗6
Im. Consequently,

∣∣D⊗6
Im

∣∣ = dim(Im(S̃q0
∗)(6;10)) = 15.

Proof. We begin by proving Part (i) of the above theorem. Recall that Tin [29] showed
that the space (AP5)10 is an F2-vector space of dimension 280 with a basis consisting of all
the classes represented by the monomials aj , 1 6 j 6 280. Consequently, |C⊗

5 (10)| = 280.
Using the above result, an easy computation shows that∣∣∣∣∣

6⋃
t=1

Tt(C⊗
5 (10))

∣∣∣∣∣ =
∣∣∣∣∣

6⋃
t=1

Tt(aj), 1 6 j 6 280
∣∣∣∣∣ = 880,
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and the set
{
b : b ∈

⋃6
t=1 Tt(aj), 1 6 j 6 280

}
is a minimal set of generators for A-modules

P0
6 in degree ten. Hence, dim(AP0

6)10 = 880.
The proof of Part (ii) of the above theorem is straightforward. Indeed, since Φ6 : P6 →

P6 is the homomorphism defined by Φ6(x) =
∏6

i=1 xix
2 for x ∈ P6, one obtains∣∣∣{[c] : c = Φ6(x), for all x ∈ C⊗

5 (5(20 − 1) + 2 · 20)
}∣∣∣ =

∣∣∣D⊗6
Im

∣∣∣ = 15.

Moreover, combining the above results with the fact that (S̃q0
∗)(6;10) is an epimorphism,

the space Im(S̃q0
∗)(6;10) turns out to be isomorphic to a subspace of (AP6)10 generated by

all the classes [c] of D⊗6
Im. The theorem is proved. �

Theorem 3.2. Let C⊗>
6 (ω) be the set of all admissible monomials in P+

6 (ω), and set
AP+

6 (ω) := AP6(ω) ∩ AP+
6 . Then, the space Ker(S̃q0

∗)(6;10) ∩ (AP+
6 )6(21−1)+2·21 is 50-

dimensional. Moreover, we have

Ker(S̃q0
∗)(6;10) ∩ (AP+

6 )6(21−1)+2·21 ∼=
3⊕

k=1
AP+

6 (ω̃k)),

and

dim
(
AP+

6 (ω̃k)
)

=
∣∣C⊗>

6 (ω̃k)
∣∣ =


4, if k = 1,
10, if k = 2,
36, if k = 3.

Proof. The idea of the proof of the above theorem is to explicitly determine an admissible
monomial basis of the F2-vector space Ker(S̃q0

∗)(6;210) ∩ (AP+
6 )6(21−1)+2·21 .

For a weight vector ω of degree d. We set C⊗
6 (ω) := C⊗

6 (d) ∩P6(ω). It is easy to see that
C⊗

6 (d) =
⋃

deg ω=d
C⊗

6 (ω). Putting

QPω
6 := 〈{[x] ∈ AP6 : x is admissible and ω(x) = ω}〉.

It is straightforward to check that the map AP6(ω) −→ QPω
6 , [x]ω −→ [x] is an

isomorphism of F2-vector spaces. And therefore, QPω
6 ⊂ AP6 can be used to identify the

vector space AP6(ω). From this, one obtains

(AP6)d =
⊕

deg ω=d

QPω
6

∼=
⊕

deg ω=d

AP6(ω).

From this, it follows that (AP+
6 )6(21−1)+2·21 ∼=

⊕
deg ω=10 AP+

6 (ω).
Suppose that x is an admissible monomial of degree ten in P+

6 such that [x] belongs
to Ker(S̃q0

∗)(6;10). Observe that z = x7
1x

3
2 is the minimal spike of degree 10 in P6 and

ω(z) = (2, 2, 1). Using Theorem 2.8, we obtain ω1(x) > ω1(z) = 2. Since the degree of (x)
is even, one get ω1(x) = 2, or ω1(x) = 4, or ω1(x) = 6.

Since ω1(x) = 6, x = X∅y
2 with y a monomial of degree two in P6. Since x is

admissible, by Theorem 2.6, it shows that y is also admissible, and [y] 6= 0. Hence,
[y] = (S̃q0

∗)(6;10)([x]) 6= 0. This contradicts the fact that [x] ∈ Ker(S̃q0
∗)(6;10).

Since ω1(x) = 4, x = X{i,j}u
2, with u an admissible monomial of degree three in P6,

and 1 6 i < j 6 6. It is easy to see that either ω(u) = (3, 0) or ω(u) = (1, 1). Hence,
ω(x) = (4, 3, 0) or ω(x) = (4, 1, 1).

Since ω1(x) = 2, x = xixjv
2, with v an admissible monomial of degree four in P6 and

1 6 i < j 6 6. By Theorem 2.6, and x ∈ P+
6 it implies that ω(x) = (2, 4).
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From the above results, one obtains

(
Ker(S̃q0

∗)(6;10) ∩ (AP+
6 )10

)
=

3⊕
k=1

AP+
6 (ω̃(k)).

Now, we explicitly determining all admissible monomials in P+
6 (ω̃(k)), where k ∈ {1, 2, 3}.

The proof is divided into three parts:
Case 1. Consider the weight vector ω = ω̃1. Assume that x is an admissible monomial
in P6 such that ω(x) = ω̃1, then x = xixjy

2, where y ∈ C⊗
6 (4), and 1 6 i < j 6 6.

We set D1
6 := {xixj .y

2 : ω(y) = (2, 4), 1 6 i < j 6 6} ∩ P+
6 . It is easy to see that

Span{D1
6} = P+

6 (ω̃1), and if u ∈ D1
6 then u = xixjx

2
kx

2
`x

2
mx

2
n, where (i, j, k, `,m, n) is an

arbitrary permutation of (1, 2, 3, 4, 5, 6). Using the Cartan formula, we have

Y = x1x
2
2x

2
3x

2
4x

2
5x6 = Sq4(x1x2x3x4x5x6) + Sq1(Y1) + smaller than,

where Y1 = x2
1x

2
2x

2
3x4x5x6 + x2

1x
2
2x3x

2
4x5x6 + x2

1x2x3x4x
2
5x

2
6 + x2

1x2x
2
3x

2
4x5x6. From this,

the monomial Y is inadmissible.
Clearly, every monomial x2

1xjxkx
2
`x

2
mx

2
n is an inadmissible (more precisely by Sq1), with

(j, k, `,m, n) an arbitrary permutation of (2, 3, 4, 5, 6).
From the aforementioned results, P+

6 (ω̃1) is generated by the following four elements:

c1 = x1x
2
2x

2
3x

2
4x5x

2
6, c2 = x1x

2
2x

2
3x4x

2
5x

2
6, c3 = x1x

2
2x3x

2
4x

2
5x

2
6, c4 = x1x2x

2
3x

2
4x

2
5x

2
6.

We then show that the vectors [ci], 1 6 i 6 4, are linearly independent in AP6. Assume
that there is a linear relation

S1 =
∑

16i64
γici ≡ 0, with γi ∈ F2. (3.1)

For 1 6 k < j 6 6, consider the homomorphism ϕ(k;j) : P6 → P5 by substituting:

ϕ(k;j)(xm) =


xm, if 1 6 m 6 k − 1,
xj−1, if m = k,

xm−1, if k < m 6 6.

It is simple to figure out if these homomorphisms are A-modules homomorphisms.
Using the result in Tin [29], acting the homomorphisms ϕ(5;6) on both sides of (3.1),

one obtains γ2 = γ4 = 0.
So, the relation (3.1) becomes

S1 = γ1c1 + γ3c3 ≡ 0, (3.2)

Similarly, acting the homomorphisms ϕ(2;5) on both sides of (3.2), we obtains γ1 = γ3 =
0.

Hence, the set
{
[ci] : 1 6 i 6 4

}
is a basis of the F2-vector space AP+

6 (ω̃1).
Case 2. Consider the weight vector ω = ω̃2. Based on similar arguments, we also see that
Span{D2

6} = P+
6 (ω̃2), where

D2
6 := {xixjxkx`.u

2 : ω(u) = (4, 1, 1), 1 6 i < j < k < ` 6 6} ∩ P+
6 .

Observe, if u ∈ D2
6 then u = xixjxkx`x

2
mx

4
n, where (i, j, k, `,m, n) is an arbitrary permu-

tation of (1, 2, 3, 4, 5, 6). It is clear that the monomials x2
1xjxkx`xmx

4
n and x4

1xjxkx`xmx
2
n

are inadmissible by Sq1, with (j, k, `,m, n) an arbitrary permutation of (2, 3, 4, 5, 6).
On the one hand, for any 1 < m < n 6 6, we have

xixjxkx`x
4
mx

2
n = Sq2(xixjxkx`x

2
mx

2
n) + Sq1(x2

ixjxkx`x
2
mx

2
n) + smaller than,
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where (i, j, k, `,m, n) is a permutation of (1, 2, 3, 4, 5, 6). It shows that the monomials
xixjxkx`x

4
mx

2
n are inadmissible for m < n.

According to the aforementioned results, P+
6 (ω̃2) is generated by 10 elements ci, with

5 6 i 6 14 as follows:
5. x1x2x3x4x

2
5x

4
6 6. x1x2x3x

2
4x5x

4
6 7. x1x2x3x

2
4x

4
5x6 8. x1x2x

2
3x4x5x

4
6

9. x1x2x
2
3x4x

4
5x6 10. x1x2x

2
3x

4
4x5x6 11. x1x

2
2x3x4x5x

4
6 12. x1x

2
2x3x4x

4
5x6

13. x1x
2
2x3x

4
4x5x6 14. x1x

2
2x

4
3x4x5x6

We then show that the vectors [ci], 5 6 i 6 14, are linearly independent in AP6. Assume
that there is a linear relation

S2 =
∑

16i610
γici+4 ≡ 0, with γi ∈ F2. (3.3)

We recall from [29] the finding that (AP+
5 )10 is an F2-vector space of dimension 50 with

a basis consisting of all the classes represented by the following admissible monomials:
s1 = x1x2x

2
3x

2
4x

4
5 s2 = x1x2x

2
3x

4
4x

2
5 s3 = x1x

2
2x3x

2
4x

4
5 s4 = x1x

2
2x3x

4
4x

2
5

s5 = x1x
2
2x

4
3x4x

2
5 s6 = x1x

2
2x

2
3x

2
4x

3
5 s7 = x1x

2
2x

2
3x

3
4x

2
5 s8 = x1x

2
2x

3
3x

2
4x

2
5

s9 = x1x
3
2x

2
3x

2
4x

2
5 s10 = x3

1x2x
2
3x

2
4x

2
5 s11 = x1x2x3x4x

6
5 s12 = x1x2x3x

2
4x

5
5

s13 = x1x2x3x
3
4x

4
5 s14 = x1x2x3x

6
4x5 s15 = x1x2x

2
3x4x

5
5 s16 = x1x2x

2
3x

5
4x5

s17 = x1x2x
3
3x4x

4
5 s18 = x1x2x

3
3x

4
4x5 s19 = x1x2x

6
3x4x5 s20 = x1x

2
2x3x4x

5
5

s21 = x1x
2
2x3x

5
4x5 s22 = x1x

2
2x

5
3x4x5 s23 = x1x

3
2x3x4x

4
5 s24 = x1x

3
2x3x

4
4x5

s25 = x1x
3
2x

4
3x4x5 s26 = x1x

6
2x3x4x5 s27 = x3

1x2x3x4x
4
5 s28 = x3

1x2x3x
4
4x5

s29 = x3
1x2x

4
3x4x5 s30 = x3

1x
4
2x3x4x5 s31 = x1x2x

2
3x

3
4x

3
5 s32 = x1x2x

3
3x

2
4x

3
5

s33 = x1x2x
3
3x

3
4x

2
5 s34 = x1x

2
2x3x

3
4x

3
5 s35 = x1x

2
2x

3
3x4x

3
5 s36 = x1x

2
2x

3
3x

3
4x5

s37 = x1x
3
2x3x

2
4x

3
5 s38 = x1x

3
2x3x

3
4x

2
5 s39 = x1x

3
2x

2
3x4x

3
5 s40 = x1x

3
2x

2
3x

3
4x5

s41 = x1x
3
2x

3
3x4x

2
5 s42 = x1x

3
2x

3
3x

2
4x5 s43 = x3

1x2x3x
2
4x

3
5 s44 = x3

1x2x3x
3
4x

2
5

s45 = x3
1x2x

2
3x4x

3
5 s46 = x3

1x2x
2
3x

3
4x5 s47 = x3

1x2x
3
3x4x

2
5 s48 = x3

1x2x
3
3x

2
4x5

s49 = x3
1x

3
2x3x4x

2
5 s50 = x3

1x
3
2x3x

2
4x5

By direct computations, apply the homomorphism ϕ(3;5) to (3.3), one obtains

ϕ(3;5)(S2) ≡ γ1s13 + γ2s1 + γ3s16 + γ4s13 + γ5s14 + γ6(s4 + s7)
+ γ7s3 + γ8s21 + γ9(s1 + s2 + s5) + γ10s21 ≡ 0.

From this, it implies γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = γ7 = γ9 = 0.
Using the above result, acting the homomorphism ϕ(4;6) on both sides of (3.3), one gets

γ8 = γ10 = 0.
Hence, the set

{
[ci] : 5 6 i 6 14

}
is a basis of the F2-vector space AP+

6 (ω̃2).
Case 3. Consider the weight vector ω = ω̃3. Let us denote by

D3
6 := {xixjxkx`.v

2 : ω(v) = (4, 3), 1 6 i < j < k < ` 6 6} ∩ P+
6 .

We also have Span{D3
6} = P+

6 (ω̃3), and if x ∈ D3
6 then x = xixjxkx

2
`x

2
mx

3
n, with

(i, j, k, `,m, n) an arbitrary permutation of (1, 2, 3, 4, 5, 6).
The monomials x2

1xjxkx`x
2
mx

3
n and x3

1x
2
2xkx`xmx

2
n are clearly inadmissible by Sq1. And

therefore, P+
6 (ω̃3) is generated by 36 elements ci, with 15 6 i 6 50 as follows:

15. x3
1x

1
2x

1
3x

1
4x

2
5x

2
6 16. x1

1x
3
2x

1
3x

1
4x

2
5x

2
6 17. x1

1x
1
2x

3
3x

1
4x

2
5x

2
6 18. x1

1x
1
2x

1
3x

3
4x

2
5x

2
6

19. x3
1x

1
2x

1
3x

2
4x

1
5x

2
6 20. x1

1x
3
2x

1
3x

2
4x

1
5x

2
6 21. x1

1x
1
2x

3
3x

2
4x

1
5x

2
6 22. x1

1x
1
2x

1
3x

2
4x

3
5x

2
6

23. x3
1x

1
2x

1
3x

2
4x

2
5x

1
6 24. x1

1x
3
2x

1
3x

2
4x

2
5x

1
6 25. x1

1x
1
2x

3
3x

2
4x

2
5x

1
6 26. x1

1x
1
2x

1
3x

2
4x

2
5x

3
6

27. x3
1x

1
2x

2
3x

1
4x

1
5x

2
6 28. x1

1x
3
2x

2
3x

1
4x

1
5x

2
6 29. x1

1x
1
2x

2
3x

3
4x

1
5x

2
6 30. x1

1x
1
2x

2
3x

1
4x

3
5x

2
6

31. x3
1x

1
2x

2
3x

1
4x

2
5x

1
6 32. x1

1x
3
2x

2
3x

1
4x

2
5x

1
6 33. x1

1x
1
2x

2
3x

3
4x

2
5x

1
6 34. x1

1x
1
2x

2
3x

1
4x

2
5x

3
6

35. x3
1x

1
2x

2
3x

2
4x

1
5x

1
6 36. x1

1x
3
2x

2
3x

2
4x

1
5x

1
6 37. x1

1x
1
2x

2
3x

2
4x

3
5x

1
6 38. x1

1x
1
2x

2
3x

2
4x

1
5x

3
6

39. x1
1x

2
2x

3
3x

1
4x

1
5x

2
6 40. x1

1x
2
2x

1
3x

3
4x

1
5x

2
6 41. x1

1x
2
2x

1
3x

1
4x

3
5x

2
6 42. x1

1x
2
2x

3
3x

1
4x

2
5x

1
6

43. x1
1x

2
2x

1
3x

3
4x

2
5x

1
6 44. x1

1x
2
2x

1
3x

1
4x

2
5x

3
6 45. x1

1x
2
2x

3
3x

2
4x

1
5x

1
6 46. x1

1x
2
2x

1
3x

2
4x

3
5x

1
6

47. x1
1x

2
2x

1
3x

2
4x

1
5x

3
6 48. x1

1x
2
2x

2
3x

3
4x

1
5x

1
6 49. x1

1x
2
2x

2
3x

1
4x

3
5x

1
6 50. x1

1x
2
2x

2
3x

1
4x

1
5x

3
6
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Assume that there is a linear relation

S3 =
∑

16i636
γici+14 ≡ 0, with γi ∈ F2. (3.4)

Using the same method as above, we explicitly compute ϕ(k;j)(S3) in terms of si, 1 6
i 6 50 in P5(mod(A+P5)).

From the relations ϕ(k;j)(S3) ≡ 0 with 1 6 k < j 6 6, one gets γi = 0 for all 15 6 i 6 50.
That means, the vectors [ci], 15 6 i 6 50, are linearly independent in AP6.

Hence,
{
[ci], 15 6 i 6 50

}
is a basis of AP+

6 (ω̃3). The theorem is proved. �

From the above results, we obtain the following corollary.

Corollary 3.3. There exist exactly 945 admissible monomials of degree ten in P6. This
implies that the space (AP6)6(21−1)+2·21 has dimension 945.

It should be noted that Mothebe-Kaelo-Ramatebele [12] utilized a different method to
verify the dimension result of the vector space (AP6)6(21−1)+2·21 .

Next, we consider the degree ms := 6(2s − 1) + 2 · 2s, for any s > 2. For s = 2, we have
m2 = 6(22 − 1) + 2 · 22. Since (S̃q0

∗)(6;26) is a F2-epimorphism, it shows that

(AP6)m2
∼= (AP0

6)m2

⊕(
Ker(S̃q0

∗)(6;26) ∩ (AP+
6 )m2

)⊕
Im(S̃q0

∗)(6;26)

Then, the F2-vector space (AP6)6(22−1)+2·22 is explicitly determined by the following
theorem.

Theorem 3.4. Let us denote by AP+
n (ω) = APn(ω) ∩ AP+

n , ω̃[1] := (4, 3, 4), ω̃[2] :=
(4, 3, 2, 1), ω̃[3] := (4, 5, 3), ω̃[4] := (4, 5, 1, 1). Then

(i) The space Im(S̃q0
∗)(6;26) is isomorphic to a subspace of (AP6)6(22−1)+2·22 generated

by all the classes represented by the admissible monomials of the form Φ6(u) for all u ∈
C⊗

6 (6(21 − 1) + 2 · 21). Consequently, dim Im(S̃q0
∗)(6;26) = 945.

(ii) The set
{
[ei] : ei ∈

⋃6
t=1 Tt(C⊗

5 (26)), 1 6 i 6 5184
}

is a basis of the F2-vector space
(AP0

6)6(22−1)+2·22 . This implies that (AP0
6)6(22−1)+2·22 has dimension 5184.

(iii) We have
(
Ker(S̃q0

∗)(6;26) ∩ (AP+
6 )6(22−1)+2·22

) ∼=
⊕4

i=1 AP+
6
(
ω̃[i]
)
. Moreover, the

vector space Ker(S̃q0
∗)(6;26) ∩ (AP+

6 )6(22−1)+2·22 is 3636-dimensional.

Proof. Since Kameko’s homomorphism

(S̃q0
∗)(6;26) : (AP6)6(22−1)+2·22 → (AP6)6(21−1)+2·21

is an F2-epimorphism, it shows that the proof of Part (i) of the above theorem is straight-
forward. It is an immediate consequence of Corollary 3.3. More specifically, we see that
the space Im(S̃q0

∗)(6;26) turns out to be isomorphic to a subspace of (AP6)26 generated by
all the classes [e] of E⊗6

Im, where

E⊗6
Im =

{
[e] : e = Φ6(u), for all u ∈ C⊗

5 (5(21 − 1) + 2 · 21)
}
.

Hence, dim Im(S̃q0
∗)(6;26) =

∣∣∣E⊗6
Im

∣∣∣ = 945.
Next, we prove Part (ii) of the above theorem. Recall that, Wood-Walker [33] proved

that the space APn has dimension 2(n
2) in degree d(n) = 2n − n − 1. For n = 5, we have

d(5) = 25 − 5 − 1 = 26, and therefore, dim(AP5)26 = 2(5
2) = 1024.
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Assume that the set C⊗
5 (26) =

{
ui ∈ (P5)26 : 1 6 i 6 1024

}
. A simple calculation

reveals that ∣∣∣∣∣
{ 6⋃

t=1
Tt(ui) : 1 6 i 6 1024

}∣∣∣∣∣ = 5184,

and the set {
v : v ∈

6⋃
t=1

Tt(ui), 1 6 j 6 1024
}

is a minimal set of generators for A-modules P0
6 in degree twenty-six.

Therefore, dim(AP0
6)6(22−1)+2·22 = 5184. The second part has been established.

Finally, we prove Part (iii) of the theorem. For a weight vector ω of degree d, we
set C⊗

n (ω) := C⊗
n (d) ∩ Pn(ω). Then, one has C⊗

n (d) =
⋃

deg ω=d
C⊗

n (ω). Denote by QPω
n the

subspace of APn spanned by all the classes represented by the admissible monomials of
weight vector ω in Pn.

By the same arguments as in the proof of the previous theorem, the map APn(ω) −→
QPω

n , [u]ω −→ [u] is an isomorphism of F2-vector spaces. And therefore, QPω
n ⊂ APn can

be used to identify the vector space APn(ω). From this, one obtains

(APn)d =
⊕

deg ω=d

QPω
n

∼=
⊕

deg ω=d

APn(ω).

Hence, it shows that (AP+
6 )m2 =

⊕
deg ω=m2 AP+

6 (ω).
Suppose that x is an admissible monomial of degree twenty-six in P6 such that [x]

belongs to Ker(S̃q0
∗)(6;26). Observe that z = x15

1 x
7
2x

3
3x4 is the minimal spike of degree

twenty-six in P6 and ω(z) = ω̃[2]. By Theorem 2.8, we obtain ω1(x) > ω1(z) = 4. Since
the degree of (x) is even, one gets either ω1(x) = 4, or ω1(x) = 6.

If ω1(x) = 6 then x = X∅y
2, with y a monomial of degree ten in P6. Since x is

admissible, by Theorem 2.6, it shows that y is also admissible, and [y] 6= 0. Hence,
[y] = (S̃q0

∗)(6;26)([x]) 6= 0 which contradicts the fact that [x] belongs to Ker(S̃q0
∗)(6;26).

Hence, ω1(x) = 4 then x = X{i,j}u
2, with u an admissible monomial of degree eleven in

P6, and 1 6 i < j 6 6. Using the result in [12], one has ω(u) = (3, 4) or ω(u) = (3, 2, 1),
or ω(u) = (5, 3) or ω(u) = (5, 1, 1). Hence, ω(x) = ω̃[i] for all i = 1, 2, 3, 4.

From the above results, one obtains

(
Ker(S̃q0

∗)(6;26) ∩ (AP+
6 )6(22−1)+2·22

)
=

4⊕
i=1

AP+
6 (ω̃[i]).

By the same arguments as in the proof of the previous theorem, we determine the
space Ker(S̃q0

∗)(6;26) ∩ (AP+
6 )m2 by explicitly determining all admissible monomials in

P+
6 (ω̃[i]), where i ∈ {1, 2, 3, 4}. However, to list all the elements of the admissible mono-

mial basis of these subspaces is far too long and computationally very technical. The
following is a sketch of its proof with the aid of computers. At the same time, we pro-
vide an algorithm in MAGMA [35] to verify the dimension result of the vector space
Ker(S̃q0

∗)(6;26) ∩ (AP+
6 )6(22−1)+2·22 which is presented in the appendix of this article.

We will denote by D⊗6
6(22−1)+2·22(ω) the set of classes represented by the admissible

monomials of the vector space Ker(S̃q0
∗)(6;26) ∩ (AP+

6 )6(22−1)+2·22 . Consider the set

B⊗6
26 :=

{
X{i,j} · f2 : f ∈ C⊗

6 (11), 1 6 i < j 6 6
}

∩ P+
6 .

Using Theorem 2.6, it shows that if u is an admissible monomial of degree twenty-six
in P+

6 such that (S̃q0
∗)(6;26)([u]) does not belong to Im(S̃q0

∗)(6;26), then u ∈ B⊗6
26 .
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By observing that each monomial xa1
1 x

a2
2 x

a3
3 x

a4
4 x

a5
5 x

a6
6 corresponds to a series of numbers

of the type (a1; a2; a3; a4; a5; a6), we set up an algorithm implemented in Microsoft Excel
software to eliminate the inadmissible monomials in B⊗6

26 . By direct calculations, using
Theorem 2.6, we get |D⊗6

6(22−1)+2·22(ω)| = 3636.

So, we have dim
(
Ker(S̃q0

∗)(6;26) ∩ (AP+
6 )6(22−1)+2·22

)
= 3636. The theorem has been

established. �

From the above results, we get the following corollary.

Corollary 3.5. There exist exactly 9765 admissible monomials of degree twenty-six in P6.
That means, (AP6)6(22−1)+2·22 has dimension 9765.

Consider the degree ms := 6(2s − 1) + 2 · 2s, for any s > 2. Then, we have the following
theorem.

Theorem 3.6. The set
{
[x] : x ∈ Φs−2

6
(
C⊗

6 (26)
)}

is a basis of the F2-vector space
(AP6)6(2s−1)+2·2s for any s > 2. Consequently,

∣∣C⊗
6 (2s+3 − 6)

∣∣ = 9765, for each integer
s > 2.

Proof. We will begin the proof of the theorem by calling a result in [28] as follows:
Let d be an arbitrary non-negative integer, and let ζ(u) be the greatest integer v such

that u is divisible by 2v. That means u = 2vm, with m an odd integer. Put

λ(n, d) = max{0, n− α(d+ n) − ζ(d+ n)}.
Then, Tin-Sum showed in [28] that the map

(S̃q0
∗)r−t : (APn)n(2r−1)+2rd −→ (APn)n(2t−1)+2td

is an isomorphism of GLn(F2)-modules for every r > t if and only if t > λ(n, d).
For n = 6, ms = 6(2s − 1) + 2 · 2s, and d = 2 then α(d + n) = α(8) = 1, and one has

ζ(d + n) = ζ(23 · 1) = 3. And therefore λ(n, d) = 2. Using the above result, we get an
isomorphism of F2-vector space:

(AP6)6(2r−1)+2·2r
∼= (AP6)6(22−1)+2·22

for all r > 2.
Hence, the set

{
[x] : x ∈ Φs−2

6
(
C⊗

6 (6(22 − 1) + 2 · 22)
)}

is a basis of the F2-vector space
(AP6)6(2s−1)+2·2s for any s > 2.

Moreover, dim(AP6)6(2s−1)+2·2s = |C⊗
6 (6(22 − 1) + 2 · 22)| = 9765, for any s > 2. The

theorem has been established. �

Now, we describe the dimension result for the polynomial algebra by studying the F2-
vector space APn in the generic degree (n−1)(2n+u−1 −1)+`2n+u, where u is an arbitrary
non-negative integer, ` = 13, and n = 7.

As is well known, after explicitly determining AP4, Sum [24] has established an inductive
formula by n for the dimension of the vector space (APn)d, where d is of general degree
(see Theorem 1.3 in [24]). As a result of combining this result in Sum [24] with the results
above, we get the following.

Theorem 3.7. For any integer r > 0, there exist exactly 1240155 admissible monomials
of degree dr = 6(2r+5 − 1) + 13 · 2r+6 in P7. This implies that the space (AP7)dr has
dimension 1240155, for all r > 1.

Proof. Consider the degree d = (n− 1)(2s − 1) + 2st, where s and t are positive integers
such that 1 6 n− 3 6 µ(t) 6 n− 2. If s > n− 1, then we have an inductive formula by n
for the dimension of the vector space (APn)d, which was shown in Sum [24] as follows:
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dim(APn)d = (2n − 1) dim(APn−1)t.

We can easily observe that for n = 6, and t = 26, then we have

µ(t) = µ(26) = 4 = α(t+ µ(t)) = α(70) = n− 2.
Hence, using the above result, one gets

∣∣C⊗
6
(
6(2s − 1) + 13 · 2s+1)∣∣ = (27 − 1) ·

∣∣C⊗
6 (26)

∣∣ = 1240155,
for any integer s > 6.

So, there exist exactly 1240155 admissible monomials of degree 6.(2r − 1) + 13 · 2r+1

in P7, for any integer r > 5. Consequently, dim(AP7)6.(2r+5−1)+13·2r+6 = 1240155, for all
r > 1. The theorem is proved. �

One of the key applications of the hit problem is in surveying a homomorphism proposed
by Singer. It is a useful tool for describing the cohomology groups of the Steenrod algebra,
Extn,n+∗

A (F2,F2). We will start by recalling the definition of the Singer algebraic transfer,
which was shown in [19] as follows:

Consider the graded polynomial ring P1 = F2[x1] with deg(x1) = 1. Thus, the canonical
A-action on P1 is extended to an A-action on the ring of finite Laurent series F2[x1, x

−1
1 ].

Hence, there exists an A-submodule P̃1 of F2[x1, x
−1
1 ], spanned by all powers xi

1 with
i > −1. The inclusion P1 ⊂ P̃1 gives rise to a short exact sequence of A-modules:

0 → P1
π→ P̃1

σ→
∑−1F2 → 0,

where π is the inclusion, and σ is given by σ(xi
1) = 0 if i 6= −1 and σ(x−1

1 ) = 1.
Writing e1 for the corresponding element in Ext1

A(
∑−1F2,P1). Based on the cross, the

Yoneda and the cap products, Singer set

en = (e1 × Pn−1) ◦ (e1 × Pn−2) ◦ · · · ◦ (e1 × P1) ◦ e1 ∈ Extn
A(
∑−nF2,Pn).

Then, Singer defined the following homomorphism

ϕ̃n : TorAn (F2,
∑−1F2) −→ TorA0 (F2,Pn) = APn

by ϕ̃n(z) = en ∩ z. Its image is a submodule of (APn)GLn(F2).
So, ϕ̃n induces the homomorphism

ϕn : TorAn (F2,
∑−1F2) −→ (APn)GLn(F2).

Let (APn)GLn(F2)
m be the subspace of (APn)m consisting of all the GLn(F2)-invariant

classes of degreem, and let the space F2⊗GLn(F2)PHm((RP∞)n) be the dual to (APn)GLn(F2)
m .

Then, the dual of ϕn :

ψn := (ϕn)∗ : F2⊗GLn(F2)PH∗((RP∞)n) −→ Extn,n+∗
A (F2,F2).

is also called the n-th Singer algebraic transfer.
Singer illustrated the importance of the algebraic transfer by proving that ψn is an

isomorphism with n = 1, 2 and at other degrees with n = 3, 4, but he refuted this for ψ5
at degree 9, and then proposed the following conjecture.

Conjecture 3.8 (Singer [19]). For any n > 0, the algebraic transfer ψn is a monomor-
phism.
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The hit problem’s importance and relevance may be found throughout Singer’s work.
Moreover, using the modular representation theory of linear groups, Boardman confirmed
in [1] that ψ3 is also an isomorphism. Many authors have studied the Singer algebraic
transfer for n > 4 (see Minami [10], Bruner-Ha-Hung [2], Phuc [15], Sum-Tin [23], Tin
[29] and others). However, Singer’s conjecture remains open for n > 4.

Based on the results for the hit problem, combining the computation of the cohomology
groups Ext5,5+∗

A (F2,F2) by Lin [8] and Chen [3], we studied and verified the Singer’s
conjecture for the algebraic transfer in degrees 5(2s −1)+2sm, with s an arbitrary positive
integer, and m ∈ {1, 2, 3}. We have the following.

Theorem 3.9 (see [23] and [29]). Let s be an arbitrary positive integer. Singer’s conjecture
is true for n = 5 and the generic degrees ds = 5(2s − 1) + 2sm, where m ∈ {1, 2, 3}.

In the current article, using the result in Tin-Sum [28] (see Theorem 1.3), we also see
that

(AP6)GL6(F2)
6(2s−1)+2·2s

∼= (AP6)GL6(F2)
6(22−1)+2·22 , for all s > 1.

By passing to the dual, we obtain the following theorem.

Theorem 3.10. We have an isomorphism of F2-vector spaces:
F2⊗GL6(F2)PH6(2s−1)+2·2s((RP∞)6) ∼= F2⊗GL6(F2)PH6(22−1)+2·22((RP∞)6),

for any positive integers s > 2.

Remarkability, from the result of the above theorem, we only need to study the vector
space F2⊗GL6(F2)PH6(2s−1)+2·2s((RP∞)6) for s 6 2.

4. Conclusions and Future work
In this article, we study the hit problem for the polynomial algebra as a module over

the Steenrod algebra in some generic degrees and its application to the sixth algebraic
transfer of Singer. In the future, we will verify the Singer’s conjecture for the sixth
algebraic transfer in degree 6(2s − 1) + 2 · 2s, with s an arbitrary positive integer, by
combining the computations of the cohomology groups of the Steenrod algebra in these
cases.

5. Appendix
In the appendix, we provide an algorithm in MAGMA [35] to verify the dimension

result of the vector space (AP6)6(22−1)+2·22 . And then, we obtain the dimension result of
the vector space Ker(S̃q0

∗)(6;26) ∩ (AP+
6 )6(22−1)+2·22 .

N := 26;
R<x1, x2, x3, x4, x5, x6> := PolynomialRing(GF(2), 6);
P<t> := PolynomialRing (R);
Sqhom := hom < R → P | [x + t ∗ x2 : x in [x1, x2, x3, x4, x5, x6]] >;
function Sq(j, x)

c := Coefficients (Sqhom(x));
if j+1 gt ]c then

return R ! 0;
else

return c[j+1];
end if;

end function;
M := MonomialsOfDegree(R, N);
V := VectorSpace(GL(2), ] M);
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function MtoV(m)
If IsZero(m) then
return V ! 0;
else
cv := [Index(M, mm) : mm in Terms(m)];
return CharacteristicVector(V, cv);
end if;
end function;
M1 := MonomialsOfDegree(R, N-1);
M2 := MonomialsOfDegree(R, N-2);
M4 := MonomialsOfDegree(R, N-4);
M8 := MonomialsOfDegree(R, N-8);
M16 := MonomialsOfDegree(R, N-16);
print [ ] m : m in [M1, M2, M4, M8, M16] ];
S1 := [Sq(1, x) : x in M1];
print "S1";
H1 := sub <V | [M to V(x) : x in S1]>;
print Dimension(H1);
S2 := [Sq(2, x) : x in M2];
print "S2";
H2 := sub <V | [M to V(x) : x in S2]>;
print Dimension(H2);
H := H1 + H2;
print Dimension(H);
S4 := [Sq(4, x) : x in M4];
print "S4";
H4 := sub <V | [M to V(x) : x in S4]>;
print Dimension(H4);
H := H + H4;
print Dimension(H);
S8 := [Sq(8, x) : x in M8];
print "S8";
H8 := sub <V | [M to V(x) : x in S8]>;
print Dimension(H8);
H := H + H8;
print Dimension(H);
S16 := [Sq(16, x) : x in M16];
print "S16";
H16 := sub <V | [M to V(x) : x in S16]>;
print Dimension(H16);
H := H + H16;
print Dimension(H);
print "\n", Dimension(V);
print Dimension(H);
print Dimension(V) - Dimension(H);
According to the above calculations, we get

dim
(
AP6

)
6(22−1)+2·22 = Dimension(V ) −Dimension(H) = 9765.

Hence, we obtain

dim
(
Ker(S̃q0

∗)(6;26) ∩ (AP+
6 )26

)
= 9765 − dim(AP0

6)26 − dim Im(S̃q0
∗)(6;26) = 3636.
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Note that the result on the dimension of Ker(S̃q0
∗)(6;26) ∩ (AP+

6 )6(22−1)+2·22 can also
be verified by using a computer calculation program in SAGE (Software for Algebra and
Geometry Experimentation), see Viet [32], and [36].
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