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Abstract. In this article, identification of the time-dependent lowest term in
a fourth order in time partial differential equation (PDE) from knowledge of

a boundary measurement is studied by means of contraction mapping.

1. Introduction

Fourth order derivative in time arises in various fields. For instance, in the
Taylor series expansion of the Hubble law [22], in the study of chaotic hyper jerk
systems [2] and in the kinematic performance of long-dwell mechanisms of linkage
type [8]. The fourth order in time equation, that is our motivation point, was
introduced and investigated by Dell’Oro and Pata [5] for the first time

∂ττττy(x, τ)+α∂τττy(x, τ)+β∂ττy(x, τ)−γ∂xxττy(x, τ)− δ∂xxτy(x, τ)−ρ∂xxy(x, τ) = 0

where α, β, γ, δ, ρ are real numbers. This model is obtained from the third-order Moore–
Gibson–Thompson equation with memory, which has been extensively studied in the lit-
erature, [7,13,14]. More recently, this model has attracted the attention of many authors,
see [3, 15,16,18,19].

Consider the third order in time nonlinear partial differential equation model in abstract
form

∂τττy(x, τ) + α∂ττy(x, τ)− c2∂xxy(x, τ)− b∂xxτy(x, τ) = G(x, τ , y, yτ , yττ ) (1)

where G(x, t, y, yτ , yττ ) is a non-linear or linear function and α, c, b > 0 are given parame-
ters. This type of model is often called Moore-Gibson-Thompson equation and appeared
in many scientific fields such as nonlinear acoustics, medical ultrasound, viscoelasticity
and thermoelasticity, [4, 6, 10–12,20].
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Taking the subtraction

∂τ (1)− α(1),

we obtain

∂ττττy(x, τ)− α2∂ττy(x, τ)− b∂xxττy(x, τ)

+ αc2∂xxy(x, τ) + (αb− c2)∂xxτy(x, τ) = ∂τG− αG. (2)

Taking into account that the critical parameter (C.P. ≡ α − c2

b ) of the third
order in time equation (1) is zero. i.e. the energy is conservative and no decay of
the energy occurs. Then αb−c2 = 0. In this case, the fourth order in time equation
(2) reads

∂ττττy(x, τ) + β∂ττy(x, τ)− γ∂xxττy(x, τ)− ρ∂xxy(x, τ) = F (x, τ , y, yτ , yττ ), (3)

where F (x, τ , y, yτ , yττ ) = ∂τG− αG, β = −α2, γ = b and ρ = −αc2.
In this paper, we choose the right hand side of the fourth order in time PDE (3)

as a linear function such that F (x, τ , y, yτ , yττ ) = a(τ)y(x, τ) + f(x, τ). Our aim is
to investigate the solvability of the inverse problem of simultaneous identification
of the solely time-dependent lowest term (a(τ)) and displacement function (y(x, τ))
in the fourth order in time PDE

∂ττττy(x, τ) + β∂ττy(x, τ)− γ∂xxττy(x, τ)− ρ∂xxy(x, τ) = a(τ)y(x, τ) + f(x, τ), (4)

for (x, τ) ∈ DT subject to the initial conditions

y(x, 0) = ξ0(x), yτ (x, 0) = ξ1(x), yττ (x, 0) = ξ2(x), yτττ (x, 0) = ξ3(x), x ∈ [0, 1], (5)

and the boundary conditions

y(0, τ) = yx(1, τ) = 0, τ ∈ [0, T ], (6)

and the additional condition

y(1, τ) = h(τ), τ ∈ [0, T ], (7)

where DT = {(x, τ) : 0 ≤ x ≤ 1, 0 ≤ τ ≤ T} for some fixed T > 0, β, γ, ρ > 0 are
given constants, f(x, τ) is the force function, ξ0(x), ξ1(x), ξ2(x), ξ3(x) are initial
displacements, and h(τ) is the extra measurement to obtain the solution of the
inverse problem.

The inverse problems of determining time or space dependent coefficients for
the higher order in time (more than 2) PDEs attract many scientists. The inverse
problem of recovering the solely space dependent and solely time dependent coef-
ficients for the third order in time PDEs are studied by [1] and [21], respectively.
More recently, in [9] authors studied the inverse problem of determining time de-
pendent potential and time dependent force terms from the third order in time
partial differential equation by considering the critical parameter equal to zero.

Main purpose of this paper is the simultaneous identification of the time-dependent
lowest coefficient a(τ), and y(x, τ), for the first time, from the equation (4), initial
conditions (5), homogeneous boundary conditions (6) and additional condition (7)
under the assumption on the parameters.
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The article is organized as following: In Section 2, we first present the eigen-
values and eigenfunctions of the corresponding Sturm-Liouville spectral problem
for equation (4). Then two Banach spaces are introduced and roots of the fourth
order polynomial (quartic) are investigated. In Section 3, we transform the inverse
problem into the system of integral equations which are Volterra type by using the
eigenfunction expansion method. Then, the theorem of the existence and unique-
ness of the solution of the inverse problem is proved via Banach fixed point theorem
for sufficiently small times under some conformity and consistency conditions on
the initial and boundary data.

2. Auxiliary Spectral Problem and Preliminaries

The corresponding spectral problem of the inverse problem (4)-(7) is W ′′(x) + λW (x) = 0, 0 ≤ x ≤ 1,

W (0) = W ′(1) = 0.
(8)

The eigenvalues and corresponding eigenfunctions of these eigenvalues of the spec-

tral problem (8) are λn =
(
2n+1

2 π
)2

and Wn(x) =
√
2 sin(

√
λnx), n = 0, 1, 2, ...,

respectively. The system of eigenfunctions Wn(x) are biorthonormal on [0, 1], i.e.:∫ 1

0

Wn(x)Wm(x)dx =

{
1 ,m = n
0 ,m ̸= n

.

Also the system Wn(x) =
√
2 sin(

√
λnx), n = 0, 1, 2, ... forms a Riesz basis in

L2[0, 1].
Now, let us introduce two Banach spaces that are connected with the eigenvalues

and eigenfunctions of the auxiliary spectral problem (8):

i:

BT =
{
y(x, τ) =

∞∑
n=0

yn(τ)Wn(x) : yn(τ) ∈ C[0, T ],

JT (y) =

( ∞∑
n=0

(λ5/2
n ∥yn(τ)∥C[0,T ])

2

)1/2

< +∞
}
, (9)

where JT (y) := ∥y(x, τ)∥BT
is the norm of the function y(x, τ).

ii: ET = BT × C[0, T ] is a Banach space with the norm

∥ν(x, τ)∥ET
= ∥y(x, τ)∥BT

+ ∥a(τ)∥C[0,T ] ,

where ν(x, τ) = {y(x, τ), a(τ)} is a vector function.

These spaces are suitable to investigate the solution of the inverse problem (4)-
(7).

Consider the quartic polynomial P (k)

P (k) = k4 + (β + γλn)k
2 + ρλn.
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Let us denote ∆n = (β + γλn)
2 − 4ρλn, and consider ∆n > 0. Therefore, the roots

of the quartic polynomial P (k) are

k1,2 = ±
√
−sn,

k3,4 = ±
√
−sn,

where sn = β+γλn−
√
∆n

2 , and sn = β+γλn+
√
∆n

2 . Since β, γ, ρ, and λn are strictly
positive, sn, and sn are also positive. Thus we have four complex conjugate roots

k1,2 = ±ipn,

k3,4 = ±irn,

where pn =

√
β+γλn−

√
∆n

2 , rn =

√
β+γλn+

√
∆n

2 and sn = p2n, sn = r2n.

3. Existence and Uniqueness

In this section, our aim is to set and prove the main theorem that is about the
unique solvability of the inverse problem for the fourth order in time PDE. Before
giving these let us define the classical solution of the inverse problem.

Let the pair of functions {y(x, τ), a(τ)} be from the class C2,4(DT ) × C[0, T ]
and satisfies the equation (4) and conditions (5)-(7). Then we call that the pair
{y(x, τ), a(τ)} is the classical solution of the inverse problem (4)-(7).

The existence and uniqueness theorem of the solution of the inverse problem is
as follows:

Theorem 1. Let the assumptions

A1: ξ0(x) ∈ C4[0, 1], ξ
(5)
0 (x) ∈ L2[0, 1],

ξ0(0) = ξ′0(1) = ξ′′0(0) = ξ′′′0 (1) = ξ
(4)
0 (0) = 0,

A2: ξ1(x) ∈ C3[0, 1], ξ
(4)
1 (x) ∈ L2[0, 1],

ξ1(0) = ξ′1(1) = ξ′′1(0) = ξ′′′1 (1) = 0,
A3: ξ2(x) ∈ C2[0, 1], ξ′′′2 (x) ∈ L2[0, 1],

ξ2(0) = ξ′2(1) = ξ′′2(0) = 0,
A4: ξ3(x) ∈ C1[0, 1], ξ′′3(x) ∈ L2[0, 1],

ξ3(0) = ξ′3(1) = 0,
A5: h(τ) ∈ C4[0, T ], h(τ) ̸= 0, ∀τ ∈ [0, T ],

h(0) = ξ0(1), h′(0) = ξ1(1), h
′′(0) = ξ2(1), h

′′′(0) = ξ3(1),
A6: f(x, τ) ∈ C(DT ), fx, fxx, fxxx ∈ C[0, 1], ∀τ ∈ [0, T ],

f(0, τ) = fx(1, τ) = fxx(0, τ) = 0,

be satisfied, β, γ, ρ > 0, and ∆n = (β + γλn)
2 − 4ρλn > 0. Then, the inverse

problem (4)-(7) has a unique solution for small T .

Proof. Let a(τ) ∈ C[0, T ] be an arbitrary function. Thus,we will use the Fourier
(Eigenfunction expansion) method to construct the formal solution of the inverse
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problem (4)-(7). In keeping with this aim, let us consider

y(x, τ) =

∞∑
n=0

yn(τ)Wn(x), (10)

is a formal solution of the inverse problem (4)-(7).
Since y(x, τ) is the formal solution of the inverse problem (4)-(7), we get the

following Cauchy problems with respect to yn(τ) from the equation (4) and initial
conditions (5); y

(4)
n (τ) + (β + γλn)y

′′
n(τ) + ρλnyn(τ) = Fn(τ ; a, y),

yn(0) = ξ0n, y′n(0) = ξ1n, y′′n(0) = ξ2n, y
′′′
n (0) = ξ3n, n = 0, 1, 2, ....

(11)

Here

Fn(τ ; a, y) = a(τ)yn(τ) + fn(τ),

yn(τ) =
√
2

∫ 1

0

y(x, τ) sin(
√
λnx)dx,

fn(τ) =
√
2

∫ 1

0

f(x, τ) sin(
√
λnx)dx,

and

ξin =
√
2

∫ 1

0

ξi(x) sin(
√
λnx)dx, i = 0, 1, 2, 3, n = 0, 1, 2, ....

These Cauchy problems have the quartic characteristic polynomial

P (k) = k4 + (β + γλn)k
2 + ρλn.

Since ∆n = (β + γλn)
2 − 4ρλn > 0, solving (11) by using the roots of this charac-

teristic polynomial that are investigated in previous section, we obtain

yn(t) =
r2n cos(pnτ)− p2n cos(rnτ)√

∆n

ξ0n +
r3n sin(rnτ)− p3n sin(pnτ)

pnrn
√
∆n

ξ1n

+
cos(pnτ)− cos(rnτ)√

∆n

ξ2n +
rn sin(rnτ)− pn sin(pnτ)

pnrn
√
∆n

ξ3n

+

∫ τ

0

[
pn√

∆nρλn
sin(rn(τ − η))− rn√

∆nρλn
sin(pn(τ − η))

]
Fn(η; a, y)dη.

(12)

Substitute the expression (12) into (10) to determine y(x, τ). Then we get

y(x, τ) =

∞∑
n=0

[
r2n cos(pnτ)− p2n cos(rnτ)√

∆n

ξ0n +
r3n sin(rnτ)− p3n sin(pnτ)

pnrn
√
∆n

ξ1n
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+
cos(pnτ)− cos(rnτ)√

∆n

ξ2n +
rn sin(rnτ)− pn sin(pnτ)

pnrn
√
∆n

ξ3n

+

∫ τ

0

[
pn√

∆nρλn
sin(rn(τ − η))− rn√

∆nρλn
sin(pn(τ − η))

]
Fn(η; a, y)dη

]
×Wn(x). (13)

Let us derive the equation of a(τ). If we evaluate the equation (4) at x = 1 and
consider the additional condition (7), then we have:

a(τ) =
1

h(τ)

[
h(4)(τ) + βh′′(τ)− f(1, τ) +

∞∑
n=0

(−1)n+1λn

(
γy′′

n(τ) + ρyn(τ)
)]

(14)

where yn(τ) is defined in (12) and

y′′n(τ) =
p2nr

2
n (cos(rnτ)− cos(pnτ))√

∆n

ξ0n +
r5n sin(pnτ)− p5n sin(rnτ)

pnrn
√
∆n

ξ1n

+
r2n cos(rnτ)− p2n cos(pnτ)√

∆n

ξ2n +
p3n sin(pnτ)− r3n sin(rnτ)

pnrn
√
∆n

ξ3n

+

∫ τ

0

[
p2nrn√
∆nρλn

sin(pn(τ − η))− r2npn√
∆nρλn

sin(rn(τ − η))

]
Fn(η; a, y)dη.

(15)

We convert the inverse problem (4)-(7) into the system of Volterra integral equa-
tions (13)-(14) with respect to y(x, τ) and a(τ) by considering

yn(τ) =

∫ 1

0

y(x, τ)Wn(x)dx, n = 0, 1, 2, ...

is the solution of the system of differential equations (11). Analogously, we can prove
that if {y(x, τ), a(τ)} is a solution of the inverse problem (4)-(7), then yn(τ), n =
0, 1, 2, ...satisfy the system of differential equations (11). For proof of this assertion
please see ( [17]). From this assertion we can conclude that proving the uniqueness
of the solution of the inverse problem (4)-(7), It is enough to prove the unique
solvability of the system (13)-(14).

To prove the existence of a unique solution of the system (13) and (14) we need to
rewrite this system into operator form and to show that this operator a contraction

operator. Consider ν(x, τ) = [y(x, τ), a(τ)]
T

is a 2 × 1 inverse problem’s solution
vector function. Thus, we can rewrite the system of equations (13) and (14) into
the operator equation form as

ν = O(ν) (16)

where O(ν) ≡ [O1, O2]
T
and ϕ1 and ϕ2 are

O1(ν) =

∞∑
n=0

[
r2n cos(pnτ)− p2n cos(rnτ)√

∆n

ξ0n +
r3n sin(rnτ)− p3n sin(pnτ)

pnrn
√
∆n

ξ1n
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+
cos(pnτ)− cos(rnτ)√

∆n

ξ2n +
rn sin(rnτ)− pn sin(pnτ)

pnrn
√
∆n

ξ3n

+

∫ τ

0

[
pn√

∆nρλn
sin(rn(τ − η))− rn√

∆nρλn
sin(pn(τ − η))

]
Fn(η; a, y)dη

]
×Xn(x),

and

O2(ν) =
1

h(τ)

[
h(4)(τ) + βh′′(τ)− f(1, τ) +

∞∑
n=0

(−1)n+1λn (γy
′′
n(τ) + ρyn(τ))

]
.

We can easily obtain following equalities

ξ0n =
1

λ5/2
n

α0n, ξ1n =
1

λ2
n

α1n, ξ2n =
1

λ3/2
n

α2n, ξ3n =
1

λn
α3n, fn(τ) =

1

λ3/2
n

ωn(τ),

using integration by parts under consideration of the assumptions (A1) − (A6),
where

ωn(τ) = −
√
2

∫ 1

0

fxxx(x, τ) cos(
√
λnx)dx,

α0n =
√
2

∫ 1

0

ξ
(5)
0 (x) cos(

√
λnx)dx,

α1n =
√
2

∫ 1

0

ξ
(4)
1 (x) sin(

√
λnx)dx,

α2n = −
√
2

∫ 1

0

ξ′′′2 (x) cos(
√

λnx)dx,

and

α3n = −
√
2

∫ 1

0

ξ′′3(x) sin(
√

λnx)dx.

Since
√
2 sin(

√
λnx) (or

√
2 cos(

√
λnx)) forms a biorthonormal system of func-

tions on [0, 1], by using Bessel’s inequality we get the estimates

∞∑
n=0

|α0n|2 ≤
∥∥∥ξ(5)0

∥∥∥2
L2[0,1]

,

∞∑
n=0

|α1n|2 ≤
∥∥∥ξ(4)1

∥∥∥2
L2[0,1]

,

∞∑
n=0

|α2n|2 ≤
∥∥ξ′′′2 ∥∥2L2[0,1]

,

∞∑
n=0

|α3n|2 ≤
∥∥ξ′′3∥∥2L2[0,1]

,

∞∑
n=0

|ωn(τ)|2 ≤ ∥fxxx(·, τ)∥2L2[0,1]
. (17)
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Also we can easily obtain the following estimates of the coefficients which arise
in the operator equations O1(ν) and O2(ν):

|χ1(τ)| ≤ d1, |χ2(τ)| ≤
d2√
λn

, |χ3(τ)| ≤
d3
λn

, |χ4(τ)| ≤
d4

λ3/2
n

, |χ5(τ)| ≤
d5
λn

,

|Γ1(τ)| ≤ λnD1, |Γ2(τ)| ≤
√
λnD2, |Γ3(τ)| ≤ D3, |Γ4(τ)| ≤

D4√
λn

, |Γ5(τ)| ≤ D5,

(18)
where

χ1(τ) =
r2n cos(pnτ)− p2n cos(rnτ)√

∆n

, χ2(τ) =
r3n sin(rnτ)− p3n sin(pnτ)

pnrn
√
∆n

,

χ3(τ) =
cos(pnτ)− cos(rnτ)√

∆n

, χ4(τ) =
rn sin(rnτ)− pn sin(pnτ)

pnrn
√
∆n

,

χ5(t) =
pn√

∆nρλn

sin(rn(τ − η))− rn√
∆nρλn

sin(pn(τ − η)),

Γi(τ) = χ′′
i (τ), i = 1, 5, di and Di, i = 1, 5 are positive real constants. (These

boundaries can be obtained by taking λn common multiplier)
Now we can show in two steps that O is a contraction operator by considering

the assumptions and estimates are given above.
I) First let us verify that O is a continuous map which maps the space ET

onto itself continuously. That is to say, our aim is to show O1(ν) ∈ BT and

O2(ν) ∈ C[0, T ] for arbitrary ν(x, τ) = [y(x, τ), a(τ)]
T

such that y(x, τ) ∈ BT ,
a(τ) ∈ C[0, T ].

Let us start with O1(ν) ∈ BT , i.e. we need to verify

JT (O1) =

( ∞∑
n=0

(λ5/2
n ∥O1,n(τ)∥C[0,T ])

2

)1/2

< +∞,

where

O1,n(τ) =
r2n cos(pnτ)− p2n cos(rnτ)√

∆n

ξ0n +
r3n sin(rnτ)− p3n sin(pnτ)

pnrn
√
∆n

ξ1n

+
cos(pnτ)− cos(rnτ)√

∆n

ξ2n +
rn sin(rnτ)− pn sin(pnτ)

pnrn
√
∆n

ξ3n

+

∫ τ

0

[
pn√

∆nρλn

sin(rn(τ − η))− rn√
∆nρλn

sin(pn(τ − η))

]
Fn(η; a, y)dη.

After some manipulations under the assumptions (A1)−(A6), using the estimates
(18) we obtain
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(JT (O1))
2
=

∞∑
n=0

(λ5/2
n ∥O1,n(τ)∥C[0,T ])

2

≤6d21

∞∑
n=0

|α0n|2 + 6d22

∞∑
n=0

|α1n|2 + 6d23

∞∑
n=0

|α2n|2 + 6d24

∞∑
n=0

|α3n|2

+ 6d25T
2

∞∑
n=0

(
max

0≤τ≤T
|ωn(τ)|

)2

+ 6d25T
2

(
max

0≤τ≤T
|a(τ)|

)2 ∞∑
n=0

(
λ5/2
n ∥yn(τ)∥C[0,T ]

)2
.

Since y(x, τ), a(τ) belong to the spaces BT , and C[0, T ], respectively, the series

at the right hand side of (JT (ϕ1))
2
are convergent from the Bessel’s inequality

(considering the estimates (17)). JT (O1) is convergent (i.e. JT (O1) < +∞) because

(JT (O1))
2
is bounded above. Thus we can conclude that O1(ν) belongs to the space

BT .
Now let us prove that O2(ν) ∈ C[0, T ]. By using the equation of a(τ) (14), we

can write

|O2(ν)| ≤
1

min
0≤τ≤T

|h(τ)|

[∣∣∣h(4)(τ)
∣∣∣+ β |h′′(τ)|+ |f(1, τ)|

+

∞∑
n=0

λn (γ |y′′n(τ)|+ ρ |yn(τ)|)].

Taking into account the estimates (17) and (18) and using the Cauchy-Schwartz
inequality, from the inequality for |ϕ2(ν)| we get

max
0≤τ≤T

|O2(ν)| ≤
1

min
0≤τ≤T

|h(τ)|

[∣∣∣h(4)(τ)
∣∣∣+ β |h′′(τ)|+ |f(1, τ)|

+m1

∞∑
n=0

|α0n|2 +m2

∞∑
n=0

|α1n|2 +m3

∞∑
n=0

|α2n|2 +m4

∞∑
n=0

|α3n|2

+m5T

(
max

0≤τ≤T
|a(τ)|

)2 ∞∑
n=0

(
λ5/2
n ∥yn(τ)∥C[0,T ]

)2
+m6T

∞∑
n=0

(
max

0≤τ≤T
|ωn(τ)|

)]
, (19)
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where mi = γDi

(∑∞
n=0

1
λn

)1/2
+ ρdi

(∑∞
n=0

1
λ3
n

)1/2
, i = 1, 5 and

m6 = γD5

(∑∞
n=0

1
λ3
n

)1/2
+ρd5

(∑∞
n=0

1
λ5
n

)1/2
. Considering the estimates (17) and∑∞

n=0
1
λn

,
∑∞

n=0
1
λ3
n

and
∑∞

n=0
1
λ5
n

are convergent, the majorizing series (19) are

convergent. According to Weierstrass M-test O2(ν) is absolutely continuous. Thus,
O2(ν) belongs to the space C[0, T ].

Thereby, we have shown that O is a continuous and onto map on ET .
II) Since O in a continuous map onto ET , let us prove that the operator O is

contraction mapping operator. Assume that let ν1 and ν2 be any two elements of ET

such that νi =
[
y(i)(x, τ), a(i)(τ)

]T
, i = 1, 2. From the definition of the space ET ,

we have ∥O(ν1)−O(ν2)∥ET
= ∥O1(ν1)−O1(ν2)∥BT

+ ∥O2(ν1)−O2(ν2)∥C[0,T ].

For the convenience of this norm, let us consider the following differences

O1(ν1)−O1(ν2) =

∞∑
n=0

[∫ τ

0

(
pn√

∆nρλn

sin(rn(τ − η))− rn√
∆nρλn

sin(pn(τ − η))

)
×
(
Fn(η; a

1, y1)− Fn(η; a
2, y2)

)
dη
]
Wn(x),

O2(ν1)−O2(ν2) =
1

h(τ)

[ ∞∑
n=0

λn

{
γ

∫ τ

0

[
p2nrn√
∆nρλn

sin(pn(τ − η))− r2npn√
∆nρλn

sin(rn(τ − η))

]
×
(
Fn(η; a

1, y1)− Fn(η; a
2, y2)

)
dη

+ρ

∫ τ

0

[
pn√

∆nρλn

sin(rn(τ − η))− rn√
∆nρλn

sin(pn(τ − η))

]
×
(
Fn(η; a

1, y1)− Fn(η; a
2, y2)

)
dη}].

After some manipulations in last equations under the assumptions (A1)-(A6)
and using the estimates (17)-(18) , we obtain

∥O1(ν1)−O1(ν2)∥BT
≤ T

[
C1

∥∥∥y(1) − y(2)
∥∥∥
BT

+ C2

∥∥∥a(1) − a(2)
∥∥∥
C[0,T ]

]
,

∥O2(ν1)−O2(ν2)∥C[0,T ] ≤
T

min
0≤τ≤T

|h(τ)|

[
C3

∥∥∥y(1) − y(2)
∥∥∥
BT

+ C4

∥∥∥a(1) − a(2)
∥∥∥
C[0,T ]

]
,

where Ck, k = 1, 4 are the constants depend on the norms
∥∥a(1)∥∥

C[0,T ]
,
∥∥y(2)∥∥

BT
,

m5, and m6 . From the last inequalities it follows that

∥O(ν1)−O(ν2)∥ET
≤ A(T )C(a(1), y(2),m5,m6) ∥ν1 − ν2∥ET

whereA(T ) = T

(
1 + 1

min
0≤τ≤T

|h(τ)|

)
and C(a(1), y(2),m5,m6) = max {C1, C2, C3, C4}

is the constant depends on the norms
∥∥a(1)∥∥

C[0,T ]
,
∥∥y(2)∥∥

BT
, m5, and m6.
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Since h(τ) ∈ C4[0, T ], h(τ) ̸= 0, ∀τ ∈ [0, T ], a(1)(τ) ∈ C[0, T ], y(2)(x, τ) ∈ BT

and m5, m6 are finite constants, 1
min

0≤τ≤T
|h(τ)| and C(a(1), y(2),m5,m6) are bounded

above. Thus A(T )C(a(1), y(2),m5,m6) tends to zero as T → 0. In other words, for
sufficiently small T we have 0 < A(T )C(a(1), y(2),m5,m6) < 1. This means that
the operator O is a contraction mapping operator.

From the first and second steps, the operator O is contraction mapping operator
that is a continuous and onto map on ET . Then according to Banach fixed point
theorem the solution of the operator equation (16) exists and it is unique. □

4. Conclusion

The paper studies the inverse initial-boundary value problem of determining the
time dependent lowest term together with the displacement function in a fourth
order in time PDE from an additional observation. The unique solvability of the
solution of the inverse problem on a sufficiently small time interval has been proved
by using of the contraction principle. The proposed work is novel and has never
been solved theoretically nor numerically before. Our results shed light on the
methodology for the existence and uniqueness of the inverse problem for the fourth
order in time PDEs in two dimensions.

Declaration of Competing Interests This work does not have any conflicts of
interest.

References

[1] Arancibia, R., Lecaros, R., Mercado, A., Zamorano, S., An inverse problem for Moore-Gibson-
Thompson equation arising in high intensity ultrasound, Journal of Inverse and Ill-posed

Problems, 30(5) 82022, 659-675. https://doi.org/10.1515/jiip-2020-0090

[2] Chlouverakis, K. E., Sprott, J. C., Chaotic hyperjerk systems, Chaos, Solitons & Fractals,
28(3) (2006),739-746. https://doi.org/10.1016/j.chaos.2005.08.019

[3] Choucha, A., Boulaaras, S., Ouchenane, D., Abdalla, M., Mekawy, I., Benbella, A., Exis-
tence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic

memory and integral condition, AIMS Mathematics, 6(7) (2021), 7585-7624.

[4] Conti, M., Pata, V., Quintanilla, R., Thermoelasticity of Moore-Gibson-Thompson type
with history dependence in the temperature, Asymptotic Analysis, 120(1-2) (2020), 1-21.

https://doi.org/10.3233/ASY-191576

[5] Dell’Oro, F., Pata, V., On a fourth-order equation of Moore-Gibson-Thompson type, Milan
J. Math., 85 (2017), 215-234.

[6] Dell’Oro, F., Pata, V., On the Moore-Gibson-Thompson equation and its relation

to linear viscoelasticity, Applied Mathematics & Optimization, 7683 (2017), 641-655.
https://doi.org/10.1007/s00245-016-9365-1

[7] Dell’ Oro, F., Lasiecka, I., Pata, V., The Moore-Gibson-Thompson equa-

tion with memory in the critical case, J Differ Equ., 261 (2016), 4188-4222.
https://doi.org/10.1016/j.jde.2016.06.025

[8] Figliolini, G., Lanni, C., Jerk and jounce relevance for the kinematic performance
of long-dwell mechanisms, Mechanisms and Machine Science, 73 (2019), 219-228.

https://doi.org/10.1007/978-3-030-20131-9 22



IDENTIFICATION OF THE TIME-DEPENDENT LOWEST TERM 511

[9] Huntul, M. J., Tekin, I., On an inverse problem for a nonlinear third order in

time partial differential equation, Results in Applied Mathematics, 15 (2022), 100314.

https://doi.org/10.1016/j.rinam.2022.100314
[10] Kaltenbacher, B., Lasiecka, I., Pospieszalska, M. K., Well-posedness and exponential decay

of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high in-

tensity ultrasound, Mathematical Models and Methods in Applied Sciences, 22(11) (2012),
1250035. https://doi.org/10.1142/S0218202512500352
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