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ABSTRACT

This study deals with hyperbolic number forms of the Euler-Savary Equation (ESE) that find one of
the four points on a pole ray, provided the other three are known. These hyperbolic number forms
are examined under one-parameter planar hyperbolic motions that are examined according to the
osculating circles contacting through three infinitesimally close points. The hyperbolic number
approach gives more detailed information than the traditional method. Thus, it eliminates sign
errors and provides convenience in the application. As a final part, examples are given to show the
utility of the practical way in the application.
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1. Introduction

Kinematics deals with the study of relative motion and identifies the possible motion of points, objects, and
systems of objects geometrically without consideration of the causes of the motions. In general, the motion of
the moving objects relative to the fixed objects is examined according to the time parameter. For mathematics,
kinematics is a bridge connecting geometry, physics, and mechanics. When planes are thought of as objects,
rotation and translation are used to study planar kinematic geometry [11, 19, 21, 22, 30].

In 1956, one-parameter planar motions were introduced by Blaschke and Müller in the 2-dimensional
Euclidean plane E2 [4]. Also, in [4], the relation between velocities and accelerations is examined, and the
Euler-Savary Equation (ESE) is calculated. ESE gives the relation between a point in the moving plane and the
center of curvature of the trajectory drawn by this point in the fixed plane [6]. Using a similar approach, one-
parameter planar motions are examined in the complex plane C (see in [4]) and ESE is obtained by presenting
the relation between the curvatures of the trajectory curves (see in [1, 23]). In analogy with complex motions,
one-parameter motions in the hyperbolic plane H are defined by [38]. Also, ESE is determined by [13] in H.
Additionally, considering generalized complex numbers (see in [20]), one-parameter planar motion and ESE
are obtained in generalized complex number plane (see in [17]). In these studies, ESE is calculated based on the
radius of the osculating circles and the diameter of the inflection circle. A relative coordinate system is used to
talk about ESE.

Additionally, several studies can be found in the literature on combined graphical and analytical methods
in kinematic synthesis and analysis [19, 21]. These methods discuss how to observe sign conventions to
identify their senses and find magnitudes of point-to-point line segments graphically. These sign conventions
often become sources of error. Instead of these well-known methods, it is possible to choose new techniques
convenient for digital computation. Just for this purpose, in planar kinematics, the complex number approach
with its arithmetic theory is an efficient analytical technique that enables digital computation and automatically
takes care of the signs. With this aim, in 1982, Sandor et al. introduced the complex number forms of the
ESE using the complex number approach. This technique has the advantage of eliminating the need for sign
conventions and is suitable for the application. It enables us to determine the fourth point while three of the
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four points on the pole ray are known in the light of the ESE’s four different complex number forms. This
approach gives a direct relationship between these four points via osculating circles [11, 30–33].

In this paper, we establish a new approach for the ESE by considering the hyperbolic numbers motivated by
the studies [31–33]. This study is organized into 4 sections. The first section is devoted to the introduction and
the rest is arranged as follows: Section 2 examines the fundamental concepts related to complex and hyperbolic
numbers and gives the ESE’s complex number forms. In Section 3, we obtain the hyperbolic number forms of
the ESE by introducing four different forms that find each of the four special points on the same pole ray: pole
point, arbitrary point of moving plane, inflection point, and the center of curvature of the path described by the
arbitrary point of moving plane in the fixed plane. The hyperbolic number forms of the ESE are obtained by
directly relating to these four points and discussed with the help of the osculating circles. Also, these hyperbolic
forms have the advantage of eliminating sign conventions and giving an easy calculation. These advantages
are also illustrated with numerical examples in Section 4.

2. Fundamental Notions

This section provides basic information about complex and hyperbolic numbers [2,3,7–9,14–16,18,20,24–29,
34–37]. Also, it includes the complex number forms of the ESE (see in [30–33]).

2.1. Complex Numbers and Hyperbolic Numbers

The set of complex numbers is denoted by C :=
{
z = x1 + ix2 : x1, x2 ∈ R, i2 = −1, i ̸= ±1

}
. Every element

of this set with the form z = x1 + ix2 is called a complex number. Here x1 and x2 are called real and imaginary
parts of z, respectively. For z1 = x1 + ix2, z2 = y1 + iy2 ∈ C, we have: z1 + z2 = (x1 + y1) + i(x2 + y2), and
z1z2 = (x1y1 − x2y2) + i(x1y2 + x2y1), cz = cx1 + icx2, c ∈ R. Multiplication is commutative, associative, and
distributes over addition. The conjugate of z is z̄ = x1 − ix2. The scalar product of z1 and z2 is defined
by ⟨z1, z2⟩ = x1y1 + x2y2. The modulus of z, which is the distance from the origin, is calculated as
∥z∥ =

√
⟨z, z⟩ =

√
zz =

√
x12 + x22. The geometric location of points at a fixed distance r from a fixed point

z0 is a circle defined by d(z0, z) =
√

⟨z0 − z, z0 − z⟩ = r. Since the set of complex numbers is isomorphic to the
Euclidean plane, z = (x1, x2) can be written for the position vector of z. Moreover, the polar form of z is defined
as z = ∥z∥ ei arg(z), where arg(z) = tan−1

(
x2

x1

)
. Here arg(z) is the positive angle from the real axis to the vector

z. From Euler’s formula ei arg(z) = cos (arg(z)) + i sin (arg(z)) can be written [18, 20, 36].
The next theorem establishes the projection vector in C.

Theorem 2.1. In C, if the projection vector of
−→
AC onto vector x is

−−→
AB, then it can be written as:

−−→
AB = cos

(
∢
(−−→
AB,

−→
AC

))
ei(arg(

−−→
AB)−arg(

−→
AC))−→AC,

where
−→
AC and x are arbitrary vectors.

Besides, the set of hyperbolic numbers is denoted by H :=
{
z = x1 + jx2 : x1, x2 ∈ R, j2 = 1, j ̸= ±1, j /∈ R

}
.

Every element of this set with the form z = x1 + jx2 is called a hyperbolic number. Here x1 and
x2 are called real and imaginary parts of z, respectively. For z1 = x1 + jx2, z2 = y1 + jy2 ∈ H, we
have: z1 + z2 = (x1 + y1) + j(x2 + y2), z1z2 = (x1y1 + x2y2) + j(x1y2 + x2y1), cz = cx1 + jcx2, c ∈ R. Multipli-
cation is commutative, associative, and distributes over addition. The hyperbolic conjugate of z is
z = x1 − jx2. The hyperbolic inner product of z1 and z2 is defined by ⟨z1, z2⟩ = x1y1 − x2y2. The hyperbolic
modulus of z is given by ∥z∥ =

√
|⟨z, z⟩| =

√
|zz| =

√
|x12 − x22|. The set of all points in H that satisfies the

equation d(z0, z) =
√

|⟨z0 − z, z0 − z⟩| = r is a circle with radius r and center z0. The asymptotes y = ±x of the
unit circles (dashed lines in Fig. 1) naturally separate H into four regions labeled branches H-I, H-II, H-III,
and H-IV (see in Fig. 1). The hyperbolic numbers, serve as coordinates in the Lorentzian plane in much the
same way that the complex numbers serve as coordinates in the Euclidean plane. The relationship between
the complex numbers and the Euclidean plane also exists between the hyperbolic numbers and the Lorentzian
plane. Thus, the position vector of a hyperbolic number z = x1 + jx2 is z = (x1, x2). The character of any vector
in Lorentzian plane can be classified such as: z is called spacelike (SL) if ⟨z, z⟩ > 0 or z = 0, timelike (TL) if
⟨z, z⟩ < 0, null if ⟨z, z⟩ = 0 whereby z ̸= 0. z is future pointing timelike (FPTL) if ⟨z,E⟩ < 0, and past pointing
timelike (PPTL) if ⟨z,E⟩ > 0 where E = (0, 1). z is spacelike-I (SL-I) if ⟨z, e⟩ > 0, and spacelike-III (SL-III) if
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⟨z, e⟩ < 0 where e = (1, 0). Moreover, the polar forms of z are given as follows:{
z = ∥z∥ ej arg(z) if z is on H-I,
z = −∥z∥ ej arg(z) if z is on H-III,

(2.1)

where arg(z) = tanh−1
(
x2

x1

)
. Here arg(z) represents the angle from the real axis to the vector z. And{

z = j ∥z∥ ej arg(z) if z is on H-II,
z = −j ∥z∥ ej arg(z) if z is on H-IV,

(2.2)

where arg(z) = coth−1
(
x2

x1

)
= tanh−1

(
x1

x2

)
. Here arg(z) represents the angle from the imaginary axis to the

vector z [2,3,7–9,14–16,20,24–29,34,35,37]. Using the hyperbolic form of the Euler’s formula, ej arg(z) in equation
(2.1) and equation (2.2) can be written as ej arg(z) = cosh (arg(z)) + j sinh (arg(z)).

For every region in H, the hyperbolic numbers approach the asymptotes relating to its argument value,
giving rise to positive and negative directed arguments (see in Fig. 1). Hyperbolic rotations through hyperbolic
angles occur along the hyperbola. The positive and negative directed hyperbolic rotation can be seen in Fig.
2 [20, 27].

(a) (b)

Figure 1. (a) Positive directed argument (b) Negative directed argument

(a) (b)

Figure 2. (a) Positive directed rotation, (b) Negative directed rotation
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Theorem 2.2. The oriented hyperbolic angle function ∢(., .) has the following properties [25]:

i) ∢(z, z) = ∢(z,−z) = 0
ii) ∢(z1, z2) = −∢(z2, z1)

iii) ∢(z1, z2) = ∢(−z1, z2) = ∢(z1,−z2) = ∢(−z1,−z2)
iv) ∢(z1, z2) +∢(z2, z3) = ∢(z1, z3)

The following theorem related to the projection vector in H is given without proof since it can be easily
verified using study [24].

Theorem 2.3. In H, if the projection vector of
−→
AC onto vector x is

−−→
AB, then it can be written as follows:

−−→
AB = cosh

(
∢
(−−→
AB,

−→
AC

))
ej(arg(

−−→
AB)−arg(

−→
AC))−→AC,

where
−−→
AB and

−→
AC are two noncollinear SL vectors and

−−→
BC is TL vector. Similarly

−−→
AB = j sinh

(
∢
(−−→
AB,

−→
AC

))
ej(arg(

−−→
AB)−arg(

−→
AC))−→AC,

where
−−→
BC and

−→
AC are two noncollinear SL vectors and

−−→
AB is TL vector.

It is worthy of note that, the equations in the above theorem also hold if the words "SL" and "TL" are reversed.

2.2. Complex Number Forms of the ESE

In this section, four different complex forms of the ESE* are discussed [31].
Consider one-parameter planar motion of the moving plane Σ with respect to the fixed plane of

reference Σ′. At each time t, the fixed and moving pole curves, p and π, are tangent to each other
at pole point I . The osculating circles of p and π have radius (or radius of curvature) ρp, ρπ and
center Op, Oπ, respectively. As the motion progresses, π rolls on p without slipping. Therefore, the
osculating circle of radius ρπ (is called the moving osculating circle) rolls without slipping on the
osculating circle of radius ρp (is called the fixed osculating circle) through three infinitesimally close
positions, i.e. they contact through three infinitesimally close points. Let {Op;x, iy} be the fixed coordinate
system linked to Σ and let A be a point on Σ. Then the position vector of the first position of
A according to {Op;x, iy} is:

−−→
OpA = w + z, where w = ρp − ρπ, z = ρπ + a and a =

−→
IA is pole ray

emanating from I in the direction θ with respect to the iy-axis (the common normal of the pole curves
at I). Also, ρp =

−−→
OpI and ρπ =

−−→
OπI . After π has rolled on p infinitesimally small angle ϕ; A displaces to Ak

and position vector of Ak is given by:
−−−→
OpAk = weiψ + zeiϕ, (2.3)

where the angles ψ and ϕ are infinitesimally small rotations of w and z respectively. Meanwhile, the points
A and Oπ displace infinitesimally close points which enables to compute the velocity vectors [31]: The
velocity vector of Oπ is given in two ways: VOπ = iϕ̇(−ρπ) or VOπ = iψ̇(ρp − ρπ). Thus, it is clear that: ψ̇ = ρϕ̇
where ρ = −ρπ

ρp−ρπ
. The velocity vector of A which is moved from the first position to Ak, is also found as

VA = i
.

ψw + i
.

ϕ or VA = i
.

ϕa. By taking the second derivative of equation (2.3) and applying necessary
calculations give the following acceleration vector:

AA = iϕ̈a− ϕ̇2a− iϕ̇u.

Here, the first term is the tangential acceleration component, the second term is the centripetal component
and the third term is the invariant acceleration component where u is the transfer velocity vector. Transfer
velocity is defined as the time rate of change in position along p of the instant center I as it π rolls on p.

∗In the classical approach, during one-parameter planar motions in C, ESE is given by

(
1

IA
−

1

IOA

)
Im(eiα) =

1

IOπ

−
1

IOp

= −
dν

ds
, where I is the

pole point, Oπ and Op are the centers of curvatures of polodes at their point of contact, OA is the center of path curvature of A of the moving plane
described in the fixed plane, α is the argument of the pole ray, dν is the infinitesimal small rotation angle and ds is the scalar arc element of the pole
curves. Here overlines are used to indicate that the particular quantity is directed. For detailed information, see the studies [1, 4, 6, 17, 22, 23]
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This vector is calculated as u = iψ̇ρp = iϕ̇ρpρ. Also, considering the inflection point† and denoting the normal
component of AA as An

A , we have: An
A = −ϕ̇2a+ (cos θ)eiθ(−iϕ̇u) = 0. Simplifying and letting −iu/ϕ̇ = δ, we

obtain: JA =
−−→
IJA = cos θeiθδ where JA is the inflection point.

Consequently, considering the four points OA (the center of path curvature of A), JA, A and I on the pole ray
and correlating the vectors which are all collinear with the ray as OA =

−−→
IOA, JA =

−−→
IJA, a =

−→
IA, and ρA =

−−−→
OAA,

the following four complex ESE forms provide a way to find any one of the four points: OA, JA, A and I , if the
other three are known, respectively [31–33]:

ρA =
∥a∥2

∥a− JA∥
ei arg(a−JA) , (ESE-1)

JA = a−
∥a∥2

∥ρA∥2
ρA , (ESE-2)

a =
JAOA

OA + JA
, (ESE-3)

a =

∣∣∣∣(∥∥∥−−→JAA
∥∥∥∥ρA∥)1/2

∣∣∣∣ (±ei arg ρA
) . (ESE-4)

3. Construction of Hyperbolic Number Forms of the ESE

Motivated by studies [31–33], the main goal of this section is to examine ESE with the hyperbolic number
approach‡. While calculating hyperbolic number forms of the ESE, during the one-parameter planar hyperbolic
motion, types of pole curves (SL, TL) and types of pole rays (SL-I, SL-III, FPTL, PPTL) must be taken into
consideration. Throughout this section, four different hyperbolic number forms of the ESE will be examined for
SL pole curves considering different types of pole rays. For TL pole curves, the calculations will be conducted
with a similar approach, and the results will be compared in Corollary 3.2 for the sake of brevity.

Let us consider the one-parameter planar hyperbolic motion of moving plane Σ with respect to the fixed
plane of reference Σ′. At each time t, the fixed and moving SL pole curves, p and π, are tangent to each other at
pole point I . The osculating circles of p and π have radius ρp, ρπ and centerOp, Oπ, respectively. Here

−−→
OpI = ρp

and
−−→
OπI = ρπ. As the hyperbolic motion progresses, the osculating circle of radius ρπ rolls without slipping

on the osculating circle of radius ρp through three infinitesimally close positions. Let {Op;x, jy} be the fixed
coordinate system linked to Σ and let A be a point on Σ.
Remark 3.1. Considering SL pole curves, the following probabilities can be given for the radius vectors ρp and
ρπ of the osculating circles: 1st probability: FPTL & PPTL (see in Fig. 3), 2nd probability: PPTL & FPTL, 3rd
probability: PPTL & PPTL, 4th probability: FPTL & FPTL.

Throughout this section 1st probability is taken into consideration, namely ρp is FPTL and ρπ is PPTL.
The position vector of the first position of A according to the fixed coordinate system is

−−→
OpA = w + z, where

w =
−−−→
OpOπ =

−−→
OpI +

−−→
IOπ = ρp − ρπ

and
z =

−−→
OπA =

−−→
OπI +

−→
IA = ρπ + a.

Also a =
−→
IA is pole ray emanating from I in the direction§ θ with respect to the jy-axis. Here jy-axis¶ is the

common normal of pole curves at I and θ is the angle between pole ray with the common normal of pole curves
(From Theorem 2.2-iii, ∢ (jy,a) = ∢ (−jy,a) = θ).

†Points with the center of the path curvature at infinity is called the inflection point [4] and the normal component of their acceleration vector is zero [31].
‡In the classical approach, during one-parameter hyperbolic planar motions, ESE for SL-I (FPTL) pole ray on SL (TL) pole curves is given by(

1

IA
−

1

IOA

)
Im(ejα) =

1

IOπ

−
1

IOp

= −
dν

ds
, where ds represents the scalar arc element and dν represents the infinitesimal hyperbolic angle of

the motion of the pole curves. Here overlines are used to indicate that the particular quantity is directed. Here, if the pole curves are SL (TL) and pole
ray is FPTL (SL-I), Im(ejα) is changed as Im(jejα). For detailed information, see the studies [13, 17, 38].
§Throughout the study, the positive direction is examined.
¶For TL pole curves, x-axis is the common normal of the pole curves at I.
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While π has rolled on p with infinitesimally small hyperbolic angle ϕ; A displaces from the first position to
Ak and the position vector of Ak is given by (see the visualization in Fig. 4 for the SL-I pole ray):

−−−→
OpAk = wejψ + zejϕ. (3.1)

Figure 3. The position of SL pole curves with osculating circles||

(a) (b)

Figure 4. (a) The first position, (b) The position after rotation with infinitesimally small hyperbolic angle ϕ for SL-I pole ray

3.1. Examining Velocities and Acceleration

Since π has rolled on p by the infinitesimally small hyperbolic angle ϕ, the points A and Oπ displace
infinitesimally close points. Thus, the velocity vectors of the points are found by taking the time dependent
derivative of the position vectors. With relation

−−−−→
OpOπk

=
−−→
OpI +

−−−→
IOπk

(see in Fig. 4), the velocity vector of point

Oπ can be found in two ways. The first derivative of this equation is ˙−−−−→
OpOπk

=
˙−−−→

IOπk
. Since infinitesimally close

displacement occurs at the same time t, ρp does not depend on t. During this displacement Oπ, moves to Oπk
,

∥t and n are the common tangent and common normal of SL pole curves, respectively.
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and its position vector becomes:
−−−−→
OpOπk

= wejψ or
−−−→
IOπk

= −ρπe
jϕ.

By taking derivatives, we have:

˙−−−−→
OpOπk

= jψ̇(ρp − ρπ)e
jψ or ˙−−−→

IOπk
= jϕ̇(−ρπ)e

jϕ.

The above equations are valid throughout the two infinitesimally small displacements, including the very
beginning when ϕ = ψ = 0. Thus, we express:

VOπ
= jϕ̇(−ρπ) = jψ̇(ρp − ρπ) (3.2)

or
VOπ

= jϕ̇(−ρπ) = jψ̇w.

Then, by equation (3.2), it is clear that: ϕ̇(−ρπ) = ψ̇(ρp − ρπ). Thus, we obtain:

ψ̇ = ρϕ̇, where ρ =
−ρπ

ρp − ρπ
. (3.3)

Here ρ is either a positive or a negative real, its algebraic sign depends on the position of the osculating circles
and the relative magnitudes of ρπ and ρp. It is expressed in vector form for assurance of its accurate algebraic
sign in digital computation.

Similarly, A moves to infinitesimally point Ak during hyperbolic motion. Via the first derivative of
−−−→
OpAk =

−−→
OpI +

−−→
IAk (see in Fig. 4), the velocity vector of A is also found in two ways. Firstly, the position vector

ofA at positionAk can be written as equation (3.1) or
−−→
IAk = aejϕ. Taking the derivative of these equations give:

˙−−−→
OpAk = jψ̇wejψ + jϕ̇zejϕ or ˙−−→

IAk = jϕ̇aejϕ.

Above equations are valid for ϕ = ψ = 0. Thus, we express the velocity vector of A at the first position as:

VA = jψ̇w + jϕ̇z = jϕ̇a.

By taking the second derivative of equation (3.1) and letting ϕ = ψ = 0, we obtain the acceleration vector of
point A at the first position as:

AA = jϕ̈a+ ϕ̇2a+ ϕ̇2ρπ (1− ρ) . (3.4)

Since moving pole curve π rolls on fixed pole curve p, the rate of change in position of pole point I along
pole curve p over time is called the transfer rate of the pole point. So using equation (3.3), the transfer velocity
u = jψ̇ρp can be rewritten as:

u = jϕ̇ρpρ. (3.5)

Therefore, equation (3.4) is rewritten as follows:

AA = jϕ̈a+ ϕ̇2a− jϕ̇u. (3.6)

Here the first term is the tangential acceleration component, the second term is the centripetal component. The
third term is the invariant acceleration component since it is independent of the choice of A and I , (see in Fig.
5 (a)).

Corollary 3.1. Algebraic expressions of velocity vectors are the same for all probabilities, however, vector type varies.
VOπ is SL-I in 1st (Fig. 3) and 3rd probabilities, SL-III in 2nd and 4th probabilities for each pole ray. Additionally, for
each probability, VA is FPTL, PPTL, SL-I and SL-III for SL-I, SL-III, FPTL and PPTL pole rays, respectively.

3.2. Obtaining Hyperbolic Number Forms of the ESE

In this section, consider the following four points on the pole ray: the pole point I , an arbitrary point A of
the moving plane, the center of curvature OA of the path of A, and the inflection point JA on the pole ray. Let
us find the fourth one when three of them are known.
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Considering mentioned points, the following four vectors which are all collinear with the ray are written as
−→
IA = a,

−−→
IJA = JA,

−−→
IOA = OA and

−−−→
OAA = ρA. Here ρA is the vector radius of path curvature.

The center of path curvature, OA, is fixed and then the angular velocity (denote with γ̇) of the vector radius

of curvature ρA pivoted at OA is given by: γ̇ = ϕ̇
a

ρA
. The quantity

a

ρA
is a positive or negative real, according

as a and ρA have the same or opposite sense. Thus, we obtain:

An
A = (γ̇)2ρA = (ϕ̇)2

∥a∥2

∥ρA∥2
ρA . (3.7)

In this step, we consider the following four cases:

Case 1: Hyperbolic ESE Forms for SL-I Pole Ray:

Let us first find the normal component of equation (3.6) using the projection vector (see Theorem 2.3) to
calculate the inflection point.

(a) (b)

Figure 5. (a) The acceleration, (b) The projection vector of SL-I pole ray

For the SL-I pole ray, the normal component of −jϕ̇u (PPTL) is obtained by its projection onto −a (SL-III)
such that (see Fig. 5 (b)):

(−jϕ̇u)n = j sinh θej(arg(−a)−arg(−ju))(−jϕ̇u).

Substituting the above equation into equation (3.6), we have:

An
A = ϕ̇2a+ j sinh θej(arg(−a)−arg(−ju))(−jϕ̇u). (3.8)

Here An
A = 0 gives JA as SL-I:

JA = j sinh θej(arg(−a)−arg(−ju))
(
ju

ϕ̇

)
. (3.9)

Using Theorem 2.2, this equation is also rewritten as:

JA = j sinh θej(arg(a)−arg(ju))

(
ju

ϕ̇

)
. (3.10)

Simplifying and letting
ju

ϕ̇
= δ, (3.11)
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it is said that the projection vector of δ onto the pole ray is JA. The geometrical locus of inflection points is a circle
with diameter δ for all values of θ. This circle is called inflection circle. Using equations (3.7) and (3.8), we have:

An
A = (ϕ̇)2

∥a∥2

∥ρA∥2
ρA = ϕ̇2a+ j sinh θej(arg(−a)−arg(−ju))(−jϕ̇u).

Substituting equation (3.9) into the last equation, we obtain:

ρA

∥ρA∥2
=

a− JA

∥a∥2
. (3.12)

It is worth to note that, for SL pole rays, the types of ρA and
−−→
JAA are same since argρA = arg(a− JA). In other

words, equation (3.12) reveals the fact that OA and JA are always on the same side of A. Thus a and JA are
SL-I, and OA is SL-I or SL-III (see Fig. 6). ρA can be solved from equation (3.12) such that:

∥ρA∥ =
∥a∥2

∥a− JA∥
.

(a) (b) (c)

(d) (e)

Figure 6. Different positions of four points for the ESE for SL-I pole ray (The circles in figures are inflection circles)

It should be noted that the equation ∥ρA∥ej arg(ρA)

∥ρA∥2 = ∥a−JA∥ej arg(a−JA)

∥a∥2 is used where ρA,
−−→
JAA are SL-I and ρA or

−−→
JAA are SL-III. Also, equation (2.1) is used for ρA (SL-I or SL-III) in the last equation. Hence, the first hyperbolic
form of the ESE for SL-I pole ray is obtained as:

ρA = ±
∥a∥2

∥a− JA∥
ej arg(a−JA) . (ESE-1) (3.13)

This equation is in sign-proof hyperbolic-number notation. ESE-1 is applicable to find OA when I , A and JA
are known. Unlike the traditional expression of the ESE, the argument part of ESE-1 indicates that the path of
A is always concave towards JA. The choice of the sign is based on the fact that OA and JA are always on the
same side of A similar to equation (3.12).

351 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Hyperbolic Number Forms of the Euler-Savary Equation

The second hyperbolic form of the ESE is produced by solving equation (3.12) for JA:

JA = a−
∥a∥2

∥ρA∥2
ρA , (ESE-2) (3.14)

for the case when points I , A and OA are known, and JA is sought.
The third hyperbolic form of the ESE can be obtained by rearranging equation (3.14) and solving it for a:

1

JA
=

1

a−
∥a∥2

∥ρA∥2
ρA

=
1

a−
∥a∥2ej2 arg a

∥ρA∥2ej2 arg a
(±∥ρA∥ ej arg ρA)

.

Let’s examine the expression
ej arg ρA

ej2 arg a
for vector ρA (SL-I or SL-III). Using relationship ej arg ρA =

{
ej arg a

−ej arg a
, we

have:
1

JA
=

1

a−
∥a∥2ej2 arg a

±∥ρA∥
1

ej arg ρA

=
1

a−
a2

ρA

=
ρA

a(ρA − a)
.

Then, with the necessary regulations, we obtain:

1

JA
=

1

a
+

1

ρA − a
=

1

a
−

1

OA

.

Solving it for a gives
1

a
=

1

JA
+

1

OA

, and so

a =
JAOA

OA + JA
(ESE-3) (3.15)

is obtained. This form finds the location of A when the locations of points I , JA and OA are known on the
pole ray. Equation (3.15) is in vector form and therefore is suitable for automatic computation since it contains
information about the sense of the vectors without the need for traditional sign conventions.

The last form of the ESE obtains the possible locations of I for the given locations of A, OA and JA: This can
be done by starting with equation (3.14). We can write

JA − a =
−−→
AJA = −

∥a∥2

∥ρA∥2
ρA .

With the necessary regulations

∥a∥2 = −
−−→
AJA

∥ρA∥2

ρA
=

−−→
JAA

∥ρA∥2

ρA

is obtained. The right side of the last equation must be examined to write ∥a∥, that is, to take the square root of
the equation. Thus, pass on to polar form in the last equation

∥a∥2 =
∥∥∥−−→JAA

∥∥∥∥ρA∥
is obtained as ρA and

−−→
JAA are SL-I or SL-III. Since

∥∥∥−−→JAA
∥∥∥∥ρA∥ has positive sign, we can write

∥a∥ =

√∥∥∥−−→JAA
∥∥∥∥ρA∥. Thus, the last hyperbolic number form

a =

∣∣∣∣(∥∥∥−−→JAA
∥∥∥∥ρA∥)1/2

∣∣∣∣ (±ej arg ρA
) , (ESE-4)

where ej arg a = ±ej arg ρA is written since arg a = ± argρA (To find the point I , ESE-4 must not contain I .).
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Case 2: Hyperbolic ESE Forms for SL-III Pole Ray:

For SL-III pole ray, the normal component of −jϕ̇u (PPTL) is obtained by its projection onto a (SL-III)
(Theorem 2.3) and calculated as:

(−jϕ̇u)n = j sinh θej(arg(a)−arg(−ju))(−jϕ̇u).

Thus we have:
An
A = ϕ̇2a+ j sinh θej(arg(a)−arg(−ju))(−jϕ̇u). (3.16)

Via Theorem 2.2, we obtain JA as SL-I by letting An
A = 0:

JA = j sinh θej(arg(a)−arg(−ju))
(
ju

ϕ̇

)
or

JA = j sinh θej(arg(−a)−arg(ju))

(
ju

ϕ̇

)
. (3.17)

An
A is easily written by using equations (3.6) and (3.16), so equation (3.12) is reobtained. Then, four hyperbolic

number forms of the ESE are given as follows:

ρA = ±
∥a∥2

∥a− JA∥
ej arg(a−JA) , (ESE-1)

JA = a−
∥a∥2

∥ρA∥2
ρA , (ESE-2)

a =
JAOA

OA + JA
, (ESE-3)

a = −
∣∣∣∣(∥∥∥−−→JAA

∥∥∥∥ρA∥)1/2
∣∣∣∣ (±ej arg ρA

) . (ESE-4)

(3.18)

Case 3: Hyperbolic ESE Forms for FPTL Pole Ray**:

For FPTL pole ray, the normal component of −jϕ̇u (PPTL) is obtained by its projection onto −a (PPTL) (see
Theorem 2.3) and calculated as:

An
A = ϕ̇2a+ cosh θej(arg(−a)−arg(−ju))(−jϕ̇u). (3.19)

Thus, we have JA as FPTL (via Theorem 2.2):

JA = cosh θej(arg(−a)−arg(−ju))
(
ju

ϕ̇

)
or

JA = cosh θej(arg(a)−arg(ju))

(
ju

ϕ̇

)
. (3.20)

Then using equations (3.7) and (3.19), we can write:

An
A = (ϕ̇)2

∥a∥2

∥ρA∥2
ρA = ϕ̇2a+ cosh θej(arg(−a)−arg(−ju))(−jϕ̇u).

∗∗This case was presented as an oral presentation at the International Conference on Mathematics and Its Applications in Science and Engineering
(ICMASE 2020) which was held between 9-10 July 2020. The abstract was published in the abstract book of the congress with the title ”Hyperbolic-
Number Forms of the Euler Savary Equation: The Consideration of Future Pointing Timelike Pole Rays for Spacelike Pole Curves” [10].
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It is clear that equation (3.12) is reobtained. The hyperbolic number forms of the ESE for FPTL pole ray are
given by: 

ρA = ±j
∥a∥2

∥a− JA∥
ej arg(a−JA) , (ESE-1)

JA = a−
∥a∥2

∥ρA∥2
ρA , (ESE-2)

a =
JAOA

OA + JA
, (ESE-3)

a = j

∣∣∣∣(∥∥∥−−→JAA
∥∥∥∥ρA∥)1/2

∣∣∣∣ (±ej arg ρA
) . (ESE-4)

(3.21)

Case 4: Hyperbolic ESE Forms for PPTL Pole Ray:

For PPTL pole ray, the normal component of −jϕ̇u (PPTL) is obtained by its projection onto a (PPTL) (see
Theorem 2.3) and calculated as:

An
A = ϕ̇2a+ cosh θej(arg(a)−arg(−ju))(−jϕ̇u). (3.22)

Thus, we get JA as FPTL (via Theorem 2.2):

JA = cosh θej(arg(a)−arg(−ju))
(
ju

ϕ̇

)
or

JA = cosh θej(arg(−a)−arg(ju))

(
ju

ϕ̇

)
.

An
A is easily written using equations (3.7) and (3.22), so equation (3.12) is reobtained. Then, four hyperbolic

number forms of the ESE are given as follows:

ρA = ±j
∥a∥2

∥a− JA∥
ej arg(a−JA) , (ESE-1)

JA = a−
∥a∥2

∥ρA∥2
ρA , (ESE-2)

a =
JAOA

OA + JA
, (ESE-3)

a = −j
∣∣∣∣(∥∥∥−−→JAA

∥∥∥∥ρA∥)1/2
∣∣∣∣ (±ej arg ρA

) . (ESE-4)

(3.23)

Remark 3.2. For the 2nd-4th probabilities mentioned in Remark 3.1, the hyperbolic number forms of the ESE
are obtained in the same algebraic form. However, they have varying vector types.

Remark 3.3. Hyperbolic ESE forms considering TL pole curves considering different types of pole rays can be
deduced with a similar approach immediately (see Example 4.5).

Let us end this section by comparing the results in the following corollary considering hyperbolic ESE forms
for SL and TL pole curves.

Corollary 3.2. For hyperbolic ESE forms considering SL and TL pole curves, the following statements are given:

• Algebraic expressions of the position, velocity and acceleration vectors are same; however, they have varying types.
• Algebraic expressions of JA are different; however, vector types of JA are the same.
• The algebraic expression of four different hyperbolic ESE forms is the same for every type of pole ray.

Thus, it is concluded that the type of pole curves is not a distinctive property while calculating hyperbolic ESE forms, but
the type of pole ray gives distinctive properties.
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4. Implementation

Computing ESE considering the hyperbolic number approach gives an easy calculation method. It is based
on vector calculations and provides a detailed examination of the locations of the points in H.

Example 4.1. During one-parameter planar hyperbolic motion, let us determine the location of the point OA
considering the points I = 0, A = 2 + j, Oπ = 2j, Op = −j and θ = 0.1. It is seen that pole curves are SL and
pole ray is SL-I. Thus, the argument of pole ray does not equal the angle between pole curves and their normal.
Then, from equation (2.1), we can write :

A =
√
3ej tanh

−1( 1
2 ).

Using equations (3.10), we have:

JA =
2

3
sinh(0.1)

(
cosh

(
tanh−1

(
1

2

))
+ j sinh

(
tanh−1

(
1

2

)))
=

32

415
+

16

415
j,

where tanh−1
(
1
2

)
≃ 0.549 and δ = ρρp =

(
0 , 2

3

)
(see equations (3.5) and (3.11)). Here, it is clear that JA is

obtained as SL-I.

We know I, A and JA, so we will find OA. By applying ESE-1 (see equation (3.13)) ρA = ±
(
830

399
, 415
399

)
is written where ej arg(a−JA) = ej arg(a). Since OA and JA are always on the same side of A, ρA is SL-I and

OA = −
32

399
−

16

399
j, where OA = a− ρA. Thus, this example is example for Fig. 6-(e) in 1st probability (see in

Fig. 3).

In Example 4.2-Example 4.4, the application of the hyperbolic number forms of the ESE to the Cardan
mechanism is examined specifically. The Cardan (Cardanic) motion generated by a circle rolling within another
circle with twice its radius [5, 12]. 3rd probability (in Example 4.2 and Example 4.3) and 4th probability (in
Example 4.4) are discussed (see Remark 3.1). The solutions are calculated practically with the hyperbolic
number forms of the ESE.

Example 4.2. During one-parameter planar hyperbolic motion, let us determine the location of the point OA
considering the points I = 0, A = 1 + 2j, Oπ = j and Op = 2j. It is seen that pole curves are SL and pole ray is
FPTL. From equation (2.2), we can write:

A = j
√
3ej coth

−1(2).

Considering equation (3.20) via (3.5) and (3.11), we have:

JA = 2j cosh
(
coth−1 (2)

)
ejcoth

−1(2) =
4

3
+

8

3
j ,

where coth−1 (2) ≃ 0.549 = θ and δ = ρρp = (0, 2). Here, it is clear that JA is obtained as FPTL.
We know I, A and JA, so we will find OA. By applying ESE-1 (see equation (3.21)) ρA = ± (3, 6) is written

where ej arg(a−JA) = ej arg(a). Since OA and JA are always on the same side of A, ρA is PPTL and OA = 4 + 8j,
where OA = a− ρA.
Additionally, it is possible to find A by using the calculated values of OA = j4

√
3ej coth

−1(2) and
JA = j 4√

3
ej coth

−1(2) considering ESE-3 (see equation (3.21)) as:

A =

4√
3
4
√
3ej coth

−1(2)ej coth
−1(2)

j
(

4√
3
+ 4

√
3
)
ej coth

−1(2)
= 1 + 2j.

Example 4.3. During one-parameter planar hyperbolic motion, let us determine the location of the point OA
considering the points I = 0, A = −4− 3j, Oπ = 2j and Op = 4j and θ = 0.2. It is seen that pole curves are SL
and pole ray is SL-III. Thus, the argument of pole ray does not equal the angle between pole curves and their
normal. Then, from equation (2.1), we can write:

A = −
√
7ej tanh

−1( 3
4 ).
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Using equations (3.17), (3.5) and (3.11), we have:

JA = −4 sinh(0.2)ejtanh
−1( 3

4 ) = −610

501
− 305

334
j,

where tanh−1 (3/4) ≃ 0.973 and δ = ρρp = (0,−4). Here, it is clear that JA is SL-III.
We know I, A and JA, so we will find OA. By applying ESE-1 (see equation (3.18)) we obtain

ρA = ±
(
4008

697
, 3006
697

)
where ej arg(a−JA) = ej arg(a). Since OA and JA are always on the same side of A, ρA is

SL-III and OA =
1220

697
+

915

697
j, where OA = a− ρA.

Additionally, let us take consider OA = 305
√
7

697 ejtanh
−1( 3

4 ) and JA = − 305
√
7

1002 e
jtanh−1( 3

4 ) and use ESE-3 (see
equation (3.18)) to obtain A as:

A =
− 305

√
7

697
305

√
7

1002 e
jtanh−1( 3

4 )ejtanh
−1( 3

4 )(
305

√
7

697 − 305
√
7

1002

)
ejtanh

−1( 3
4 )

= −4− 3j

which was assumed in this example.

Example 4.4. During one-parameter planar hyperbolic motion, let us determine the location of the point OA
considering the points I = 0, A = −2− 3j, Oπ = −j and Op = −2j. It is seen that pole curves are SL and pole
ray is PPTL. In this case, the argument of pole ray equals the angle between pole curves and their normal.
Similar to the above example, from equation (2.2), we can write:

A = −j
√
5ej coth

−1( 3
2 ).

Using equation (3.20), we have:

JA = −2j cosh

(
coth−1

(
3

2

))
ejcoth

−1( 3
2 ) = −12

5
− 18

5
j,

where coth−1
(
3
2

)
≃ 0.804 = θ and δ = ρρp = (0,−2) (see equations (3.5) and (3.11)). Here, it is clear that JA is

PPTL.
We know I, A and JA, so we will find OA. By applying ESE-1 (see equation (3.23)) we obtain ρA = ± (10, 15)

where ej arg(a−JA) = ej arg(a). SinceOA and JA are always on the same side ofA, ρA is FPTL andOA = −12− 18j,
where OA = a− ρA.
Additionally, let us take consider OA = −j6

√
5ejcoth

−1( 3
2 ) and JA = −j 6√

5
ejcoth

−1( 3
2 ) and use ESE-3 (see

equation (3.23)) to obtain A:

A =
6
√
5 6√

5
ejcoth

−1( 3
2 )ejcoth

−1( 3
2 )

−j
(
6
√
5 + 6√

5

)
ejcoth

−1( 3
2 )

= −2− 3j

which was assumed in this example.

Example 4.5. During one-parameter planar hyperbolic motion, let us determine the location of the point A
considering the points I = 0, OA = 4 + j, Oπ = 1 and Op = −1. It is seen that pole curves are TL and pole
ray is SL. Thus, the argument of pole ray equals the angle between pole curves and their normal. Hence
JA = cosh θej(θ−0)δ gives

JA =
1

2
cosh

(
tanh−1

(
1

4

))
ejtanh

−1( 1
4 ) =

8

15
+

2

15
j,

where tanh−1
(
1
4

)
≃ 0, 255, ρ =

(
1

2
, 0
)

and δ =

(
1

2
, 0
)

. It is seen JA is SL-I. We know I,OA and JA, so we can

find A by applying ESE-3 (equations (3.15) or (3.18)). Then the following vector is obtained as SL-I:

a =
JAOA

OA + JA
=

(
8

17
, 2

17

)
.
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5. Conclusion

The ESE is a well-known formulation obtained in various forms and has great importance in kinematics.
The classical ESE is generally used for deriving the radius of curvature and the center of curvature of the path
traced by a point in a planar rolling-contact mechanism. Using combined graphical and algebraic techniques
to determine the ESE often causes sign errors. To eliminate the need for the traditional sign conventions and
make them suitable for digital computation, the complex number forms of the ESE are obtained by Sandor [31].
This complex number method is useful for applying path-curvature theory to higher-pair rolling contact
mechanisms, like cams, gears, linkages, etc.

The remarkable relationship between the complex numbers-Euclidean plane and the hyperbolic numbers-
Lorentzian plane gives researchers many new aspects. This viewpoint concentrates on investigating studies
dealing with hyperbolic numbers based on the studies on complex numbers. Features of the hyperbolic plane,
like the idea of regions, the shapes of the vectors, and the fact that the circle is an Euclidean hyperbola, make
these studies interesting.

The main motivation for this paper is whether the hyperbolic number approach could be used for the ESE,
inspired by the advantages of the complex number approach. Based on the affirmative answer, hyperbolic ESE
forms are obtained by using the basic properties of the hyperbolic plane and vector calculations. Hyperbolic
forms of the ESE gives directly the relationship between the four points I (the pole point), A (an arbitrary
point), JA (the inflection point), and OA (the center of curvature of the path of A) on the same pole ray in the
hyperbolic plane. While doing this observation, types of pole curves (SL, TL) and types of pole rays (SL-I, SL-
III, FPTL, PPTL) are considered to make a detailed computation. When three of these four points are known
in the hyperbolic plane, the fourth one can be found easily. Also, applying the hyperbolic vector approach
provides a detailed examination of the locations of the points in the hyperbolic plane. Thus, it enables the
advantage of eliminating sign errors and convenience in practice.
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