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Abstract: This paper focuses on comparative results of two different controllers applied to 
kinematic bicycle model with rear wheel contact point to the ground as the reference point. 
The wide range of representation of different types of robots and vehicles of kinematic bicycle 
model is the main reason for this model selection. This paper has three main sections. The first 
section of the paper is mathematical modeling of the model. The second section is describing 
the utilized control techniques. The last section shares results of the simulations. The 
simulations have been carried out with pure feedback signals in absence of noise. The 
compared two controllers are an (Linear Quadratic Regulator)LQR controller and a Lyapunov 
based controller. The objective in the simulations is to track and complete a given constant 
radius trajectory. Last section includes comparison of results by analyzing statistical values of 
a defined error signal. 
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LQR ve Lyapunov temelli iki kontrolcünün kinematik bisiklet tipi model için güzergah izleme 
performansının dairesel bir güzergahta karşılaştırması 
 
 

Anahtar Kelimeler  
Mobil robot 
LQR 
Lyapunov 
Kinematik bisiklet modeli 
Güzergah takibi 
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Öz: Bu makale farklı kontrol tekniklerinin arka tekerleğinin yere temas noktasını referans alan 
kinematik bisiklet tipi robot üzerine uygulamasının karşılaştırmalı sonuçlarına odaklanmıştır. 
Kinematik bisiklet tipi modelin seçilmesinin ardında yatan asıl sebep, bu modelin günümüzde 
kullanılan birçok robot modelini ve aracı temsil edebilmesidir. Çalışma üç ana bölümden 
oluşmaktadır. İlk bölüm robotun modellenmesini içermekte. İkinci bölüm uygulanan kontrol 
teknikleri ile ilgili çalışmaları barındırmakta. Son bölüm ise simülasyon sonuçlarını 
paylaşmaktadır. Kullanılan sinyaller gürültüsüz ortamda bir geribesleme sinyali için 
oluşturulmuştur. Karşılaştırılan kontrolcüler (Linear Quadratic Regulator)LQR ve bir 
Lyapunov temelli kontrolcülerdir. Simülasyonların ana amacı modelin verilen sabit yarıçaplı 
güzergahı takip ederek tamamlamasıdır. Son bölüm içerisinde tanımlanan hata sinyalinin 
istatistiksel olarak değerlendirmesini içerir. 

  

 
1. Introduction 
 
Nowadays, the achievements in mobile robotics allow 
advanced applications in real life. One of the popular 
tasks for autonomous and mobile robots is trajectory 
tracking. This task requires mathematical model of the 
mobile robot and a proper control approach to 
minimize the total deviation from a desired trajectory. 

 
In this research, the main aspect is to investigate the 
control performances of two different controllers which 
have been designed for a kinematic bicycle type 
wheeled mobile robot (WMR). The rear tire contact 
point assumed as a reference to accomplish trajectory 
tracking task. Linear Quadratic Regulator (LQR) and 
Lyapunov based controllers are the applied control  
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approaches in this paper. MATLAB/Simulink 
environment has been used to simulate the trajectory 
tracking performances of the WMR. 
Robotic motion, kinematic models and well-known 
control techniques are presented in many references. 
While [1-3], [6] and [16] are covering most of these 
topics, other references such as [5] is concentrated on 
nonlinear control techniques and [4] is scoping 
Lyapunov stability and regulation problem. 
 
We can see that, using a linear controller is a practical 
approach to the problem as stated in [7]. This paper 
uses a differential drive type robot. Then subjects it to a 
coordinate transformation by using reference frames 
and input transformation. PI tuning with LQR is realized 
in 3-dimensional state space system. In [8] a dynamic 
model of bicycle type robot is used together with its 
kinematic model. By this manner, a Lyapunov function 
is used for control. Stability through Barbalat condition 
is studied. 
 
The kinematic model and linearization through input 
transformation is validated and a control scheme 
shown in [9]. This paper also uses a differential drive 
robot in 3-dimensional error system linearized around 
origin. Linear feedback control is proposed with pole 
placement approach to regulate the desired 
polynomials. 
 
In [10] a 3-dimensional state space system is 
considered under Lyapunov conditions. Dynamic model 
is utilized for the related study. [11] follows a similar 
approach for a welding application combined with a 
wheeled mobile robot control. 
 
In [12] a differential drive model is the subject of 
feedback linearizing control to accomplish “Follow the 
Carrot” algorithm by replacing system nonlinearities 
with desired dynamics. Position and orientation error 
form the error system. [17] and [18] are detailed and 
explanatory sources for optimal control theory. 
 
An inclusive reference for path tracking methods of 
autonomously steering vehicles is [13]. Dynamic and 
kinematic models are shown together with geometric 
tracking algorithms such as Pure Pursuit and Stanley 
Control. Kinematic and optimal control including LQR 
form are also investigated deeply. 
 
[14] considers center of wheelbase as the reference 
point of the kinematic model. Therefore, another 3-
dimensional approach is made by LQR-LMI tuning for a 
Lyapunov based controller. 
 
[15] Both forward and backward motions are 
considered for tractor trailer wheeled robot. Lyapunov  

 
based approach is stated for different types of 
trajectories. Slip condition is also considered. 
 
Instead of taking statically balanced models [19] takes 
an e-scooter model and investigates a higher 
dimensional state space system. This new system also 
takes self-stabilization as an additional task other than 
motion control. 
 
[20] takes even larger state space system with 12 
degrees of freedom. Tracking problem simulations are 
done for PD and H∞ controllers then tested for PD 
controller. 
 
A time-varying LQR control is applied in [22] for 
tracking task. This paper uses a 4-dimensional state 
space system as in our study. 
 
Contributions to WMR studies in “Automatic Control 
and Robotics Laboratory” of Dokuz Eylül University 
focus on linear and non-linear controller design, 
navigation, sensor fusion and implementations on 
experimental models. [23] realizes a path following task 
for autonomous vehicles by GPS measurement. [24] 
considers relative positioning of a robot together with 
trajectory tracking and obstacle avoidance task. 
Sensory measurement and indoor mapping by a LIDAR 
are researched deeply in order to ensure autonomous 
navigation in [25]. Alongside traditional approaches, a 
neural network-based control approach is applied to a 
non-holonomic model using multiple sensors in [26]. 
 
As another perspective, [27] takes the standard form of 
a PI controller and combine it with a nonlinear gain and 
control a second order system. Stability analysis is done 
for different criteria. Then all these considerations are 
subjected to a higher order system which is the active 
suspension system. Reference tracking performances 
are evaluated for different system parameter settings. 
On the other hand [28] suggests a hybrid control 
approach by including a neural network to the tuning 
part. Then tracking performances are evaluated and 
compared for regular PD, Anfis and a hybrid controller 
constructed by both. 
 
1.1. Problem Definition 
 
Our work, unlike many applications, takes a four-
dimensional state space for kinematic bicycle model. 
Considered model uses reference as rear wheel center. 
Reference inputs are longitudinal velocity and rate of 
change in steering angle. This consideration allows us 
to model many of the real-life robots and vehicles. 
Therefore, this paper can be considered as a case study 
for a wide range autonomous wheeled mobile robots 
and a large class of vehicle family. Cars, busses,  
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motorcycles, scooters can be given as examples of this 
model. 
 
Moreover, the problem of tracking for this type of model 
is taken as the studied topic to test the tracking 
controller performances. As stated above, the model is 
a representative of frequently encountered vehicle 
families and therefore tracking control for these types 
of vehicles becomes vital for the futuristic autonomous 
driving scenarios. This paper searches the less 
deviating tracking control for that matter. 
 
2.  Mathematical Modeling  
 
The rear wheel reference kinematic bicycle model is a 
very common model for a family of wheeled mobile 
robots. Equation 1 show the states for this type of model. 
First two states x and y are taken as planar position 
information. Next states are orientation angle of the 
robot/vehicle and steering angle. They are shown with 
θ and φ respectively. As a result, a 4-dimensional state 
vector is created. 
 

𝑝 = (

𝑥
𝑦
𝜃
𝜑

) (1) 

 
The main principle is to apply a non-holonomic 
constraint for two wheels. The wheels are assumed not 
sliding sideways and motion is obtained only by rolling. 
This assumption results two constraints for two wheels. 
 
In Figure 1, coordinates of the robot can be seen as a 
vector of rear wheel cartesian coordinates, front wheel 
cartesian coordinates, orientation angle of whole body 
and steering angle. This is a redundant representation 
of this robot. Because with a constant wheelbase “L” it 
is possible to rewrite one wheel’s coordinates by using 
the other one as in Equation 2 and 3. 
 

𝑥𝑓𝑟𝑜𝑛𝑡 = 𝑥𝑟𝑒𝑎𝑟 + 𝐿 cos(𝜃) (2) 

𝑦𝑓𝑟𝑜𝑛𝑡 = 𝑦𝑟𝑒𝑎𝑟 + 𝐿 sin(𝜃) (3) 

 
As can be seen in Equation 4 and 5, by derivation of 
these equations with respect to time, evolutions of 
states in time are obtained. 
 

�̇�𝑓𝑟𝑜𝑛𝑡 = �̇�𝑟𝑒𝑎𝑟 − �̇�𝐿 sin(𝜃) (4) 

�̇�𝑓𝑟𝑜𝑛𝑡 = �̇�𝑟𝑒𝑎𝑟 + �̇�𝐿 cos(𝜃) (5) 

 

 
Figure 1. Kinematic Rear Wheel Reference Bicycle 

Model 
 
 
If this new representation is used for writing the wheel 
constraints equation, the input vector fields can be 
obtained by Equation 6 and 7. 
 
�̇�𝑟𝑒𝑎𝑟 sin(𝜃) − �̇�𝑟𝑒𝑎𝑟 cos(𝜃) = 0  (6) 
�̇�𝑓𝑟𝑜𝑛𝑡 sin(𝜃 + 𝜑) − �̇�𝑓𝑟𝑜𝑛𝑡 cos(𝜃 + 𝜑) = 0 (7) 
 
It is possible to rewrite this in matrix form. Integrability 
of the input vector fields will be guaranteed by this way. 
For simplicity of notation, rear subindices are dropped. 
Hence, coordinates are changed to a vector containing 
only one pair of cartesian coordinates of rear wheel and 
two angular coordinates with orientation angle of the 
body and steering angle. Matrix form of the constraints 
on the wheels can be seen in Equation 8. 
 

[
sin(𝜃) −cos(𝜃) 0               0

sin(𝜃 + 𝜑) −cos(𝜃 + 𝜑) −𝐿 cos(𝜑) 0
](

�̇�
�̇�

�̇�
�̇�

) = 0  (8) 

 
The vector fields which satisfy these constraints are 
found and can be used for determination of input vector 
fields. Non-holonomy condition is satisfied for this 
model by a null space solution. 
 
Obtained vectors can be seen below in mathematically 
defined rear wheel kinematic bicycle model. By this 
knowledge it is possible to write the rear wheel 
reference kinematic bicycle model in state space form 
as in Equation 9. 
 

�̇� = (

�̇�
�̇�

�̇�
φ̇

) = (

𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)
𝑡𝑎𝑛(φ)/𝐿

0

)𝑢1 + (

0
0
0
1

)𝑢2 (9) 
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Inputs are chosen to be linear velocity of body and 
angular velocity (10) as rate of change of steering angle 
(11) and can be written as: 
 

𝑣 = √�̇�2 + �̇�2 (10) 

𝑤 = �̇� (11) 
 
However, the resulting model is highly nonlinear and a 
direct linearization by derivation gives a set of 
equations which do not represent the robot motion. 
Therefore, a feedback linearization through coordinate 
transformation is done. Then control approaches are 
applied for this new system representation. To get this 
new system, a reference state vector must be defined as 
in Equation 12. Ref subindices represent reference. 
 

𝑝𝑟𝑒𝑓 = (

𝑥𝑟𝑒𝑓

𝑦𝑟𝑒𝑓

𝜃𝑟𝑒𝑓

𝜑𝑟𝑒𝑓

)  (12) 

 
By the measured states, the error vector is obtained and 
represented in a rotated coordinate system attached to 
the rear wheel of the kinematic bicycle type model. Full 
state measurement is assumed to be available. Error 
system can be defined as in Equation 13. 
 

(

𝑒1

𝑒2
𝑒3

𝑒4

) = [

cos(𝜃) sin(𝜃) 0 0
− sin(𝜃) cos(𝜃) 0 0

0
0

0
0

1
0

0
1

](

𝑥𝑟𝑒𝑓 − 𝑥
𝑦𝑟𝑒𝑓 − 𝑦

𝜃𝑟𝑒𝑓 − 𝜃
φ𝑟𝑒𝑓 − φ

)  (13) 

 
The transformation matrix in Equation 13 has the form 
of a planar rotation by the orientation angle of the 
model. This rotation is applied to x and y coordinates of 
model. However, angular states are expressed in their 
natural form. Followed procedure is allowing a 
definition of an error system which is described on 
longitudinal and lateral dynamics of the model. By 
rewriting the reference states like the model’s 
kinematic equations, the error system is rewritten 
clearly. Equations 14, 15, 16 and 17 show time 
derivatives of the reference states. 
 

�̇�𝑟𝑒𝑓 = 𝑣𝑟𝑒𝑓 cos(𝜃𝑟𝑒𝑓) (14) 

�̇�𝑟𝑒𝑓 = 𝑣𝑟𝑒𝑓𝑠𝑖𝑛(𝜃𝑟𝑒𝑓)   (15) 

�̇�𝑟𝑒𝑓 =
𝑣𝑟𝑒𝑓𝑡𝑎𝑛(𝜑𝑟𝑒𝑓)

𝐿
 (16) 

�̇�𝑟𝑒𝑓 = 𝑤𝑟𝑒𝑓  (17) 
 
Thanks to the differential flatness and constant 
parameters of the model, it is possible to obtain these 
reference states of the system. However, an additional 
calculation is necessary to express the curvature of 
desired trajectory. By this way it is possible to represent  
 

 
reference steering angle change rate and therefore rate 
of change of steering angle. 
 
Reference orientation of the trajectory is calculated in 
Equation 18. 
 

𝜃𝑟𝑒𝑓 = tan−1 (
�̇�𝑟𝑒𝑓

�̇�𝑟𝑒𝑓

) (18) 

 
Reference linear velocity of the trajectory is calculated 
in Equation 18. 
 

𝑣𝑟𝑒𝑓 = √�̇�𝑟𝑒𝑓
2 + �̇�𝑟𝑒𝑓

2 (19) 

 
Reference curvature and instantaneous center of 
rotation of the trajectory are calculated in Equation 20 
and 21. 
 

𝜅𝑟𝑒𝑓 =
�̈�𝑟𝑒𝑓�̇�𝑟𝑒𝑓 − �̈�𝑟𝑒𝑓�̇�𝑟𝑒𝑓

(�̇�𝑟𝑒𝑓
2 + �̇�𝑟𝑒𝑓

2)
3

2⁄
 (20) 

𝑅𝑟𝑒𝑓 =
1

𝜅𝑟𝑒𝑓

 (21) 

 
Reference steering angle and its rate of change can be 
directly found by derivation of Equation 22. 
 

𝜑𝑟𝑒𝑓 = tan−1 (
𝐿

𝑅𝑟𝑒𝑓

) (22) 

 
Where, Rref is the distance between instantaneous 
center of rotation and rear wheel. L is the wheelbase of 
the robot. By this way, the rotated error equations are 
derived for cartesian coordinates. Then, reference 
expressions are used. Note that angular states are kept 
the same for error system generation. 
 
Evolution of error states with respect to time can be 
seen in Equation 23, 24, 25 and 26. This procedure is 
done by calculating Equation 13 with the terms 
calculated in Equations 14, 15, 16, 17, 18, 19, 20, 21 and 
22. 
 

�̇�1 = 𝑣𝑟𝑒𝑓𝑐𝑜𝑠(𝑒3) − 𝑣 +
𝑣 tan(𝜑)

𝐿
𝑒2 (23) 

�̇�2 = 𝑣𝑟𝑒𝑓𝑠𝑖𝑛(𝑒3) −
𝑣 tan(𝜑)

𝐿
𝑒1  (24) 

�̇�3 =
𝑣𝑟𝑒𝑓𝑡𝑎𝑛(𝜑𝑟𝑒𝑓)

𝐿
−

𝑣 tan(𝜑)

𝐿
 (25) 

�̇�4 = �̇�𝑟𝑒𝑓 − φ̇ (26) 
 
This form still has a highly nonlinear relation. Small 
angle assumption is made and artificial inputs are 
introduced by redefining original inputs. Redefined 
inputs are given in Equation 27, 28 and 29. 
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𝑢1 = 𝑣𝑟𝑒𝑓𝑐𝑜𝑠(𝑒3) − 𝑣 (27) 
𝑢2 = �̇�3 (28) 
𝑢3 = �̇�4 (29) 
 
New error system can be represented in linear time-
invariant form if and only if reference linear speed and 
reference steering angle are constants. This is shown in 
Equation 30.  
 

[

�̇�1

�̇�2

�̇�3

�̇�4

] =

[
 
 
 
 
 0

𝑣𝑟𝑒𝑓𝑡𝑎𝑛(𝜑𝑟𝑒𝑓)

𝐿
0 0

−
𝑣𝑟𝑒𝑓𝑡𝑎𝑛(𝜑𝑟𝑒𝑓)

𝐿
0 𝑣𝑟𝑒𝑓 0

0 0 0 0
0 0 0 0]

 
 
 
 
 

[

𝑒1

𝑒2
𝑒3

𝑒4

] + [

1 0 0
0 0 0
0
0

1
0

0
1

] [

𝑢1

𝑢2

𝑢3

] (30) 

 
To avoid dynamic effects which can occur on tires and 
therefore on lateral motion, motion of the model has 
been investigated using relatively smaller velocities. In 
this work a constant radius circular path is considered 
and details are presented in next sections. 
 
3. Control Methods 
 
In this study two control approaches are applied and 
simulation results are compared. These are Linear 
Quadratic Regulator and a Lyapunov based controller. 
 
3.1. Linear Quadratic Regulator (LQR) 
 
In LQR design, linear quadratic cost function is used and 
shown in Equation 31. 
 

𝐽 = ∫(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (31) 

 
Where Q and R matrices are diagonal weights matrices 
for the states and inputs. In this case, states correspond 
to errors and inputs are the artificial ones shown in 
Equations 27, 28 and 29. The feedback is obtained in a 
static manner. Thus, standard form can be rewritten as 
in Equation 32. 
 

𝐽 = ∫(𝑒𝑇𝑄𝑒 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (32) 

 
In this research, the inputs are not penalized but states 
are weighted differently. State and input weights are 
expressed in Equation 33 and 34. The selection of 
weights are done by inspecting the Equations 27, 28, 29 
and 30. Since e3 and e4 represent the error on angular 
states in the original system and the rotation is done by 
the orientation angle itself, more weights are given to 
those states. Another supporting observation can be 
pointed out by the fact that e1 and e2 are highly 
dependent on both angular error states. Input 
weighting is not done and all virtual inputs are taken 
with the same weights. Therefore, Equations 32 and 33 
would be a viable selection for weights matrices. 

 

𝑄 = [

10 0 0        0
0 10 0        0
0
0

0
0

1000 0
     0 1000

] (33) 

𝑅 = [
1 0 0
0 1 0
0 0 1

] (34) 

 
Free system has two eigenvalues at origin and two 
complex eigenvalues at 0±0.6283i. LQR strategy places 
the eigenvalues to -31.6228, -31.6212, -2.9531, -0.7670. 
Corresponding gain matrix can be seen in Equation 35. 
 

𝐾 = [
3.5604 −2.1689 −0.2213           0

−0.2213 1.6032 31.7809           0
0 0 0            31.6228

] (35) 

 
3.2. Lyapunov Based Controller 
 
Lyapunov functions are widely used in many fields of 
nonlinear control application. This paper follows a 
control approach with a storage function which is semi-
positive definite for any time while its derivative is 
negative semi-definite for any time instant. At the origin 
the storage function is equal to zero. Considered storage 
function is constructed by quadratic terms and a 
trigonometric term. Main reason behind this selection 
of structure is to stress out the property of boundaries 
of each function type. While quadratic functions have a 
lower bound at zero, trigonometric functions are 
defined in the range of ±1. Storage function and its 
derivative can be found in Equation 36 and 37. 
 

𝑉 =
1

2
(𝑒1

2 + 𝑒2
2 + 𝑒4

2) +
1 − 𝑐𝑜𝑠(𝑒3)

𝑘2

 (36) 

�̇� = 𝑒1�̇�1 + 𝑒2�̇�2 + 𝑒4�̇�4 +
𝑠𝑖𝑛(𝑒3)

𝑘2

�̇�3 (37) 

 
For this approach, error system can be rewritten by 
releasing the small angle approximation and keeping 
the input transformation the same. A non-linear system 
is defined in Equation 38, 39, 40 and 41. 
 

�̇�1 = 𝑢1 + (
𝑣𝑟𝑒𝑓𝑡𝑎𝑛(𝜑𝑑)

𝑙
− 𝑢2) 𝑒2 (38) 

�̇�2 = 𝑣𝑟𝑒𝑓𝑠𝑖𝑛(𝑒3) − (
𝑣𝑟𝑒𝑓𝑡𝑎𝑛(𝜑𝑑)

𝑙
− 𝑢2) 𝑒1 (39) 

�̇�3 = 𝑢2 (40) 
�̇�4 = 𝑢3 (41) 
 
Finally, the Lyapunov criteria are checked and the 
controller performance is simulated. In order to have a 
negative semi-definite derivative for storage function, 
following feedback terms in Equation 42, 43 and 44 are 
used. 
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𝑢1 = −𝑘1𝑒1 (42) 
𝑢2 = −𝑘2𝑣𝑟𝑒𝑓𝑒2 (43) 
𝑢3 = −𝑘3𝑒4 (44) 
 
After adding the error system and feedback terms 
together, the resultant derivative function became 
negative semi-definite for all values of states. This 
operation is shown in Equation 45 and its simplified 
version in 46. 
 

�̇� = −𝑘1𝑒1
2 + 𝑒2𝑣𝑟𝑒𝑓𝑠𝑖𝑛(𝑒3) +

𝑠𝑖𝑛(𝑒3)

𝑘2

(−𝑘2𝑣𝑟𝑒𝑓𝑒2) − 𝑘3𝑒4
2 (45) 

�̇� = −𝑘1𝑒1
2 − 𝑘3𝑒4

2 (46) 
 
Controller gains are selected as follows in Equation 47, 
48 and 49. 
 
𝑘1 = 40 (47) 
𝑘2 = 40 (48) 
𝑘3 = 50 (49) 
 
Note that any positive value of Lyapunov gains will 
result a satisfactory result for Lyapunov Stability 
Theorem. Controller gains are selected by trial and 
error. Starting from a small positive value and slowly 
increasing each value resulted these gains. Greater 
values would result more aggressive results. 
 
 
 

4. Simulation Results and Discussion 
 
MATLAB/Simulink environment is utilized to simulate 
the trajectory and the motion of the WMR. The selected 
task is to follow a circular reference trajectory with a 
diameter of 10 meters in 10 seconds. Therefore, the 
reference linear and angular speed inputs are constant 
π m/s and 0.2π rad/s. Necessary references can be 
obtained directly. These references are expressed in 
Equation 50 and 51. 
 

𝑥(𝑡) = 5 cos (
𝜋

5
𝑡) (50) 

𝑦(𝑡) = 5 sin (
𝜋

5
𝑡) (51) 

 
The single important parameter of bicycle is its 
wheelbase of 1.5 meters. This parameter selected by 
considering an average bicycle/scooter. Steering angle 
is saturated in ±1.07 radians. 
 
Initial conditions are picked the same for both cases as 
shown in Equation 52. Which is the starting point on the 
trajectory. The goal is to follow the exact trajectory. 
 

𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [5 0
 𝜋 

2
0]

𝑇

 (52) 

 
 
  

 
Figure 2. LQR Control Scheme 
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Figure 3. Lyapunov Control Scheme 

 
Figure 2 shows the Simulink scheme of kinematic 
bicycle model controlled via LQR technique. A similar 
block scheme is created for Lyapunov based control 
technique in Simulink environment and can be seen in 
Figure 3. 

 
Simulations are done for 10 seconds with fixed step of 
0.001 seconds. Solver selection is ODE4(Runge-Kutta). 
Results are plotted together with the reference 
trajectory and can be seen in Figure 4. 
 

 
Figure 4. Tracking Comparison of Two Controllers 
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Table 1. Performance Comparison Through Indicators 
Indicator Lyapunov Based 

Controller 
Linear Quadratic 
Regulator (LQR) 

Cumulative Deviation 4.5506 m 9.0552 m 
Mean Deviation on x-axis -3.0346×10-4 m -0.0378 m 
Mean Deviation on y-axis -0.0322 m -0.0570 m 

Variance of Deviation on x-axis 5.1747×10-4 m 0.0017 m 
Variance of Deviation on y-axis 5.1758×10-4 m 0.0018 m 

From first inspection of Figure 4 it is hard to evaluate 
performance of both control approaches. Therefore, a 
deviation metric is defined and considered as 
performance indicator. This deviation metric is 
measuring distance between reference trajectory point 
and kinematic bicycle model’s rear wheel contact point 
to the ground and the performances of both controllers 
can be seen in Table 1. Deviation metric is expressed in 
Equation 53. 
 

𝑑 = √(𝑥𝑟 − 𝑥)2 + (𝑦𝑟 − 𝑦)2 (53) 

 
For evaluation of performance, deviation from 
trajectory on each time step is collected. Then, 
cumulative deviation from reference trajectory is 
calculated together with mean and variance on x and y 
axes. These values are shared to the reader in previous 
table. Evolution of deviations in both axes for each 
control strategy can be seen in Figure 5. 
 
Table 1 and Figure 5 give the meaningful performance 
differences. Importance of every single indicator can be 

clarified. First indicator is the cumulative deviation. 
Since Equation 53 collects the deviation value from 
reference trajectory for every time step, summed 
deviation is the most important indicator of the 
tracking performance. As this indicator goes to zero, 
performance is to be said get better. However, this 
indicator is not the single performance indicator 
because of time dependency of this deviation. As shown 
in Figure 5, the deviation from reference trajectory 
changes over time along both axes of the cartesian 
coordinate system. Minimized variation around zero 
deviation from reference trajectory is the best 
expression of the performance analysis. Therefore, 
minimum deviation from reference trajectory can be 
defined statistically. 
 
Both control techniques have very small mean 
deviations on both cartesian coordinate axes. However, 
variances around this mean value separates two 
scenarios. In Figure 5 this consideration becomes more 
visible. While oscillations around zero are similar in 
terms of frequency, their amplitude show how 
cumulative error gets greater for LQR control approach.

 
Figure 5. Tracking Deviations on Each Axis for Both Controllers
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Another perspective which is compared in this paper is 
the performance difference of a linear and a nonlinear 
controller approach on kinematic bicycle model. Both 
techniques are well known and widely used approaches. 
Lyapunov based controller action needs an additional 
term other than the states of the system which is the 
reference speed input. However, LQR only utilizes a 
predefined gain matrix for a simpler feedback action. 
This situation gives another conclusion for the 
compared control approaches. Since Lyapunov based 
control action utilizes reference linear velocity in its 
feedback calculation, it is possible to define a time- 
varying positive term and apply this controller for time 
dependent cases. To be more clear, this controller 
would be able to track varying radius trajectories. On 
the other hand, LQR control strategy would not be able 
to calculate such a feedback matrix because of variable 
system matrix entities. 
 
4. Conclusion 
 
In this research two different types of control strategies 
are derived and applied to kinematic bicycle model. 
Control strategies rely on Linear Quadratic Regulator 
and Lyapunov Stability Theorem. For both control 
strategies, stability is searched and guaranteed by 
designed feedback actions. Reference trajectory was a 
circle with radius of 5 meters, which had to be 
completed in 10 seconds. Reference speed inputs were 
decided to be constants. Kinematic bicycle model was 
able to follow the reference trajectory with small 
deviations for suggested control settings. Performance 
comparison is made and seen that Lyapunov based 
control strategy performed a better tracking result. 
Future work can be done for obstacle avoidance and 
globally asymptotically controllers. As a future work, 
for testing the performance of the developed controller 
in real environment, an experimental study on a 
wheeled robot model is planned. Noise cancellation, 
sensor measurement and data filtering would be 
another challenging task for realization. 
 
It is evident that Lyapunov based control strategy 
performed better than LQR approach. Both techniques 
have at least a mean deviation of order 10-2 from 
reference trajectory. Hence, both strategies are 
resulting reliably good performance. Moreover, LQR 
strategy should have a better performance under noisy 
measurement application or uncertainties due to its 
lower dependency on variables. Future studies can be 
constructed under this idea. 
 
However, both techniques need to be applied around 
reference trajectory and a preliminary system matrix 
analysis and design is necessary. Moreover, an obstacle 
avoidance strategy and a global planner must be added 

before deploying such controller. By this way it would 
be possible to get a global control approach. 
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