

STCR-Lightlike Product Manifolds of an Indefinite Kaehler Statistical Manifold with a Quarter Symmetric Non-Metric Connection

Vandana Rani and Jasleen Kaur*

(Communicated by Kazım İlarslan)

ABSTRACT

The present work aims to introduce a novel class of submanifolds, namely STCR-lightlike submanifolds, for an indefinite Kaehler statistical manifold with a quarter symmetric non-metric connection. The characterization theorems on totally umbilical and totally geodesic STCR-lightlike submanifolds with respect to the integrability of distributions have been established. Some conditions for a STCR-lightlike submanifold to be a STCR-lightlike product manifold have been derived.

Keywords: STCR lightlike submanifolds, indefinite Kaehler statistical manifold, totally geodesic foliation, integrability. *AMS Subject Classification (2020):* Primary: 53C15 ; Secondary: 53C40; 53C55; 53B05;

1. Introduction

The geometry of lightlike submanifolds of semi-Riemannian manifold introduced by Duggal and Bejancu [8] is a prime field of study. Various classes like CR-lightlike submanifolds, SCR-lightlike submanifolds and GCR lightlike submanifolds of an indefinite Kaehler manifold have been studied extensively by many geometers [21], [10], [11], [9] et al. But these classes do not contain real lightlike curves. So, [22], [23] introduced transversal lightlike submanifolds and screen transversal lightlike submanifolds of an indefinite Kaehler manifold and also the subclasses called radical ST-lightlike submanifolds and ST-anti invariant lightlike submanifolds. Further, as a generalization of CR-lightlike submanifolds and screen transversal lightlike submanifolds was introduced by [7].

Statistical manifolds, which analyze the geometric structures on sets of certain probability distributions were initiated by [20] and thereafter developed by various researchers [1], [2], [12] and [17] et al. In this context, the lightlike theory of statistical manifolds has been investigated by [3], [4], and many others. Further, by consolidating the notion of statistical manifold with an indefinite Kaehler manifold, several findings have been demonstrated for the CR-lightlike submanifolds and hypersurfaces of an indefinite Kaehler statistical manifold by [15], [18], [19].

[13] introduced a quarter symmetric linear connection as: A linear connection $\overline{\nabla}$ on a Riemannian manifold (\tilde{M}, \tilde{g}) is said to be a quarter symmetric connection if its torsion tensor \tilde{T} satisfies

$$\tilde{T}(X,Y) = \pi(Y)\phi(X) - \pi(X)\phi(Y), \tag{1.1}$$

where ϕ is a (1,1)-tensor field and π is a 1-form associated with a smooth unit vector field ζ , called the characteristic vector field, by $\pi(X) = \tilde{g}(X, \zeta)$. If the linear connection $\bar{\nabla}$ is not a metric connection, then

Received : 18-06-2022, Accepted : 09-09-2022

^{*} Corresponding author

 $\overline{\nabla}$ is called a quarter symmetric non-metric connection. A significant number of properties on lightlike submanifolds of an indefinite Kaehler manifold with quarter symmetric non-metric connection have been developed by [5], [6], [14], [16].

Keeping the aforementioned theory in focus, this paper introduces the concept of STCR-lightlike submanifolds for an indefinite Kaehler statistical manifold with a quarter symmetric non-metric connection . Some charaterizations pertaining to the integrability of distributions for totally umbilical and totally geodesic STCR lightlike submanifolds have been developed. Various results related to the geometry of STCR-lightlike product manifolds have been given.

2. Preliminaries

Definition 2.1. A pair $(\bar{\nabla}, \tilde{g})$ is called a **statistical structure** on a semi-Riemannian manifold \tilde{M} such that for all $X, Y, Z \in \Gamma(\tilde{TM})$

- 1. $\overline{\nabla}_X Y \overline{\nabla}_Y X = [X, Y];$
- 2. $(\overline{\nabla}_X \tilde{g})(Y, Z) = (\overline{\nabla}_Y \tilde{g})(X, Z)$ hold.

Then $(\tilde{M}, \tilde{g}, \bar{\nabla})$ is said to be an **indefinite statistical manifold**. Moreover, there exists $\bar{\nabla}^*$ which is a dual connection of $\bar{\nabla}$ with respect to \tilde{g} , satisfying

$$X\tilde{g}(Y,Z) = \tilde{g}(\bar{\nabla}_X Y,Z) + \tilde{g}(Y,\bar{\nabla}_X^* Z).$$

Also $(\bar{\nabla}^*)^* = \bar{\nabla}$. If $(\tilde{M}, \tilde{g}, \bar{\nabla})$ is an indefinite statistical manifold, then $(\tilde{M}, \tilde{g}, \bar{\nabla}^*)$ is also a statistical manifold. Hence, the indefinite statistical manifold is denoted by $(\tilde{M}, \tilde{g}, \bar{\nabla}, \bar{\nabla}^*)$.

Following [8], some basic facts about the lightlike theory of submanifolds are as as below:

Consider (\tilde{M}, \tilde{g}) as an (m + n)-dimensional semi-Riemannian manifold with semi-Riemannian metric \tilde{g} and of constant index q such that $m, n \ge 1$, $1 \le q \le m + n - 1$.

Let (M,g) be a *m*-dimensional lightlike submanifold of \tilde{M} . In this case, there exists a smooth distribution Rad(TM) on M of rank r > 0, known as Radical distribution on M such that $Rad(TM_p) = TM_p \cap TM_p^{\perp}, \forall p \in M$ where TM_p and TM_p^{\perp} are degenerate orthogonal spaces but not complementary. Then M is called an r-lightlike submanifold of \tilde{M} . Now, consider S(TM), known as Screen distribution, as a complementary distribution of radical distribution in TM i.e., $TM = Rad(TM) \perp S(TM)$ and $S(TM^{\perp})$, called screen transversal vector bundle, as a complementary vector subbundle to Rad(TM) in TM^{\perp} i.e., $TM^{\perp} = Rad(TM) \perp S(TM^{\perp})$. As S(TM) is non degenerate vector subbundle of $T\tilde{M}|_M$, we have $T\tilde{M}|_M = S(TM) \perp S(TM)^{\perp}$ where $S(TM)^{\perp}$ is the complementary orthogonal vector subbundle of S(TM) in $T\tilde{M}|_M$. Let tr(TM) and ltr(TM) be complementary vector bundles to TM in $T\tilde{M}|_M$ and to Rad(TM) in $S(TM^{\perp})^{\perp}$. Then we have $tr(TM) = ltr(TM) \perp S(TM^{\perp})$, $T\tilde{M}|_M = TM \oplus tr(TM) = (Rad(TM) \oplus ltr(TM)) \perp S(TM) \perp S(TM^{\perp})$.

Theorem 2.1. [8] Let $(M, g, S(TM), S(TM^{\perp}))$ be an *r*- lightlike submanifold of a semi-Riemannian manifold (\tilde{M}, \tilde{g}) . Then there exists a complementary vector bundle ltr(TM) called a lightlike transversal bundle of Rad(TM) in $S(TM^{\perp})^{\perp}$ and basis of $\Gamma(ltr(TM)|_U)$ consisting of smooth sections $\{N_1, \dots, N_r\} S(TM^{\perp})^{\perp}|_U$ such that

$$\bar{g}(N_i,\xi_j) = \delta_{ij}, \quad \bar{g}(N_i,N_j) = 0, \quad i,j = 0, 1, \cdots, r$$

where $\{\xi_1, \dots, \xi_r\}$ is a lightlike basis of $\Gamma(RadTM)|_U$.

Let (M, g) be a lightlike submanifold of an indefinite statistical manifold $(\tilde{M}, \tilde{g}, \nabla, \nabla^*)$. From the theory of lightlike submanifolds of an indefinite statistical manifold, the Gauss and Weingarten formulae developed on its structure are as below:

$$\bar{\nabla}_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y), \quad \bar{\nabla}_X^* Y = \nabla_X^* Y + h^{*l}(X, Y) + h^{*s}(X, Y), \tag{2.1}$$

$$\bar{\nabla}_X V = -A_V X + D_X^l V + D_X^s V, \quad \bar{\nabla}_X^* V = -A_V^* X + D_X^{*l} V + D_X^{*s} V, \tag{2.2}$$

$$\bar{\nabla}_X N = -A_N X + \nabla_X^l N + D^s(X, N), \quad \bar{\nabla}_X^* N = -A_N^* X + \nabla_X^{*l} N + D^{*s}(X, N),$$
(2.3)

$$\bar{\nabla}_X W = -A_W X + \nabla_X^s W + D^l(X, W), \quad \bar{\nabla}_X^* W = -A_W^* X + \nabla_X^{*s} W + D^{*l}(X, W). \tag{2.4}$$

for any $X, Y \in \Gamma(TM)$, $V \in \Gamma(tr(TM))$, $N \in \Gamma(ltr(TM))$ and $W \in \Gamma(S(TM^{\perp}))$.

Now, the concept of indefinite statistical manifold and (2.1), (2.2), (2.3), (2.4), implies

$$\tilde{g}(h^{s}(X,Y),W) + \tilde{g}(Y,D^{*l}(X,W)) = \tilde{g}(Y,A_{W}^{*}X),$$

$$\tilde{g}(h^{l}(X,Y),\xi) + \tilde{g}(Y,\nabla_{X}^{*}\xi) + \tilde{g}(Y,h^{*l}(X,\xi)) = 0,$$

$$\tilde{g}(D^{s}(X,N),W) = \tilde{g}(N,A_{W}^{*}X),$$

$$\tilde{g}(A_{N}X,PY) = \tilde{g}(N,\bar{\nabla}_{X}^{*}PY),$$
(2.5)

and

 $\tilde{g}(A_N X, N') + \tilde{g}(A_{N'}^* X, N) = 0.$

From the theory of non-degenerate submanifolds of a statistical manifold, it is known that submanifold of a statistical manifold is a statistical manifold but this is not true for lightlike submanifolds since the definition of statistical manifold and (2.1) implies

$$(\nabla_X g)(Y,Z) - (\nabla_Y g)(X,Z) = \tilde{g}(Y,h^l(X,Z)) - \tilde{g}(X,h^l(Y,Z)),$$

and

$$Xg(Y,Z) - g(\nabla_X Y,Z) - g(Y,\nabla_X^* Z) = \tilde{g}(h^l(X,Y),Z) + \tilde{g}(Y,h^{*l}(X,Z)).$$

Considering the projection morphism *P* of the tangent bundle *TM* to the screen distribution, we have the following decomposition w.r.t ∇ and ∇^* :

$$\nabla_X PY = \nabla'_X PY + h'(X, PY), \quad \nabla^*_X PY = \nabla^{*'}_X PY + h^{*'}(X, PY), \tag{2.6}$$

$$\nabla_X \xi = -A'_{\xi} X + \nabla''_X \xi, \quad \nabla^*_X \xi = -A^{*'}_{\xi} X + \nabla^{*'t}_X \xi,$$
(2.7)

for any $X, Y \in \Gamma(TM)$, $\xi \in \Gamma(Rad(TM))$. Using (2.1),(2.2),(2.5) and (2.7), we obtain

$$\tilde{g}(h^{l}(X, PY), \xi) = g(A_{\xi}^{*'}X, PY), \quad \tilde{g}(h^{*l}(X, PY), \xi) = g(A_{\xi}^{'}X, PY),$$
(2.8)

$$\tilde{g}(h'(X, PY), N) = g(A_N^*X, PY), \quad \tilde{g}(h^{*'}(X, PY), N) = g(A_NX, PY),$$
(2.9)

for any $X, Y \in \Gamma(TM)$, $\xi \in \Gamma(Rad(TM))$ and $N \in \Gamma(ltr(TM))$. As h^l and h^{*l} are symmetric, so from (2.8), we obtain

$$g(A'_{\xi}PX,PY) = g(PX,A'_{\xi}PY), \quad g(A^{*\prime}_{\xi}PX,PY) = g(PX,A^{*\prime}_{\xi}PY)$$

Let $\overline{\nabla}^{\circ}$ be the Levi-Civita connection w.r.t \tilde{g} . Then, we have $\overline{\nabla}^{\circ} = \frac{1}{2}(\overline{\nabla} + \overline{\nabla}^*)$.

For a statistical manifold $(\tilde{M}, \tilde{g}, \bar{\nabla}, \bar{\nabla}^*)$, the difference (1, 2) tensor \bar{K} of a torsion free affine connection $\bar{\nabla}$ and Levi-Civita connection $\bar{\nabla}^\circ$ is defined as

$$K(X,Y) = K_X Y = \bar{\nabla}_X Y - \bar{\nabla}_X^\circ Y, \qquad (2.10)$$

Since $\bar{\nabla}$ and $\bar{\nabla}^{\circ}$ are torsion free, we have

$$K(X,Y) = K(Y,X), \quad \tilde{g}(K_XY,Z) = \tilde{g}(Y,K_XZ),$$
(2.11)

for any $X, Y, Z \in \Gamma(TM)$. Also, from (2.10), we have

$$\tilde{g}(\bar{\nabla}_X Y, Z) = \tilde{g}(K(X, Y), Z) + \tilde{g}(\bar{\nabla}^\circ_X Y, Z).$$

Definition 2.2. [15] A triplet $(\bar{\nabla} = \bar{\nabla}^\circ + K, \tilde{g}, \bar{J})$ is called an indefinite Kaehler statistical structure on \tilde{M} if (i) (\tilde{g}, \bar{J}) is an indefinite Kaehler structure on \tilde{M} (ii) $(\bar{\nabla}, \tilde{g})$ is a statistical structure on \tilde{M} and the condition

 $K(X, \bar{J}Y) = -\bar{J}K(X, Y),$

holds for any $X, Y \in \Gamma(T\tilde{M})$.

Then $(\tilde{M}, \bar{\nabla}, \tilde{g}, \bar{J})$ is called an indefinite Kaehler statistical manifold. If $(\tilde{M}, \bar{\nabla}, \tilde{g}, \bar{J})$ is an indefinite Kaehler statistical manifold, then so is $(\tilde{M}, \bar{\nabla}^*, \tilde{g}, \bar{J})$.

(2.12)

3. STCR-lightlike submanifold

Sahin et.al [7] introduced screen transversal Cauchy Riemann lightlike submanifolds of an indefinite Kaehler manifold. So motivated, we introduce a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold and elaborate its structure with an example.

Definition 3.1. A real lightlike submanifold M of an indefinite Kaehler statistical manifold \tilde{M} is a *STCR* (Screen transversal Cauchy Riemann) lightlike submanifold if the following conditions are satisfied:

1. There exist two subbundles E_1 and E_2 of Rad(TM) such that

$$Rad(TM) = E_1 \oplus E_2, \ \bar{J}(E_1) \subset S(TM), \ \bar{J}(E_2) \subset S(TM^{\perp}),$$
(3.1)

2. There exist two subbundles E_{\circ} and E' of S(TM) such that

$$S(TM) = \{ \bar{J}E_1 \oplus E' \} \perp E_{\circ}, \ \bar{J}(E_{\circ}) = E_{\circ}, \ \bar{J}(E') = L_1 \perp S,$$
(3.2)

where E_{\circ} is a non-degenerate distribution on M, L_1 and S are vector subbundles of ltr(TM) and $S(TM^{\perp})$ respectively.

Thus we have following decomposition

$$\Gamma M = E \oplus \bar{E},\tag{3.3}$$

where

$$E = E_{\circ} \oplus E_1 \oplus \bar{J}E_1, \tag{3.4}$$

and

$$\bar{E} = E_2 \oplus \bar{J}L_1 \oplus \bar{J}S. \tag{3.5}$$

It is clear that *E* is invariant and \overline{E} is anti-invariant. Thus, we have

$$ltr(TM) = L_1 \oplus L_2, \ \bar{J}L_1 \subset S(TM), \ \bar{J}L_2 \subset S(TM^{\perp}),$$

and

$$S(TM^{\perp}) = \{ \bar{J}E_2 \oplus \bar{J}L_2 \} \perp S$$

We denote the projections from $\Gamma(TM)$ to $\Gamma(E_{\circ})$, $\Gamma(\overline{J}E_{1})$, $\Gamma(\overline{J}L_{1})$, $\Gamma(\overline{J}S)$, $\Gamma(E_{1})$ and $\Gamma(E_{2})$ by P_{\circ} , P_{1} , P_{2} , P_{3} , S_{1} and S_{2} respectively. Also, the projections from $\Gamma(tr(TM))$ to $\Gamma(\overline{J}E_{2})$, $\Gamma(\overline{J}L_{2})$, $\Gamma(S)$, $\Gamma(L_{1})$ and $\Gamma(L_{2})$ are denoted by R_{1} , R_{2} , R_{3} , Q_{1} and Q_{2} , respectively. Therefore

$$X = PX + QX = P_{\circ}X + P_{1}X + P_{2}X + P_{3}X + S_{1}X + S_{2}X,$$
(3.6)

and

$$\bar{J}X = TX + wX,\tag{3.7}$$

for $X \in \Gamma(TM)$, where $PX \in \Gamma(E)$, $QX \in \Gamma(\overline{E})$ and TX and wX are respectively the tangential and transversal parts of $\overline{J}X$. Applying \overline{J} to (3.6) and denoting $\overline{J}P_{\circ}$, $\overline{J}P_{1}$, $\overline{J}P_{2}$, $\overline{J}P_{3}$, $\overline{J}S_{1}$, $\overline{J}S_{2}$ by T_{\circ} , T_{1} , w_{L} , w_{S} , $T_{\overline{1}}$, $w_{\overline{2}}$, respectively, we have

$$\bar{J}X = T_{\circ}X + T_{1}X + T_{\bar{1}}X + w_{L}X + w_{S}X + w_{\bar{2}}X,$$
(3.8)

for $X \in \Gamma(TM)$, where $T_{\circ}X \in \Gamma(E_{\circ})$, $T_{1}X \in \Gamma(E_{1})$, $T_{\bar{1}}X \in \Gamma(\bar{J}E_{1})$, $w_{L}X \in \Gamma(L_{1})$, $w_{S}X \in \Gamma(S)$, and $w_{\bar{2}}X \in \Gamma(\bar{J}E_{2})$. Also, for any $V \in \Gamma(tr(TM))$,

$$V = R_1 V + R_2 V + R_3 V + Q_1 V + Q_2 V, (3.9)$$

Denote $\bar{J}R_1$, $\bar{J}R_2$. $\bar{J}R_3$, $\bar{J}Q_1$, $\bar{J}Q_2$ by B_2 , C_1 , $B_{\bar{S}}$, $B_{\bar{L}}$, C_2 , respectively so that

$$\bar{J}V = B_2 V + B_{\bar{S}}V + B_{\bar{L}}V + C_1 V + C_2 V.$$
(3.10)

where BV and CV are sections of TM and tr(TM), respectively.

Inspired by [7], we consider the following example:

Example Let $\tilde{M} = (R_4^{12}, \tilde{g})$ Kaehler 3.1. be an indefinite manifold, where of signature (-, -, -, -, +, +, +, +, +, +, +, +) \tilde{g} is with respect to the basis $\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial x_5, \partial x_6, \partial x_7, \partial x_8, \partial x_9, \partial x_{10}, \partial x_{11}, \partial x_{12}\}. \quad \text{If} \quad (\underline{x}_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}) \quad \text{is}$ the standard coordinate sysytem of R_4^{12} , then by setting $\bar{J}(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}) =$ $(-x_2, x_1, -x_4, x_3, -x_6, x_5, -x_8, x_7, -x_{10}, x_9, -x_{12}, x_{11})$, we have $\bar{J}^2 = -I$.

Following definition (2.2), the triplet $(\bar{\nabla} = \bar{\nabla}^\circ + K, \tilde{g}, \bar{J})$ where *K* satisfies (2.11), defines an indefinite Kaehler statistical structure on \tilde{M} .

Consider a submanifold *M* of R_4^{12} given by the equations:

$$x_1 = \sin u_2, \quad x_2 = -\cos u_2, \quad x_3 = u_1, \quad x_4 = u_3 - \frac{u_4}{2}, \quad x_5 = u_2,$$

$$x_6 = 0, \quad x_7 = u_1, \quad x_8 = u_3 + \frac{u_4}{2}, \quad x_9 = u_5 + u_7, \\ x_{10} = u_6 - u_7,$$

$$x_{11} = u_5 - u_7, \quad x_{12} = u_6 + u_7.$$

Here *TM* is spanned by $Z_1, Z_2, Z_3, Z_4, Z_5, Z_6, Z_7$ where

$$Z_1 = \partial x_3 + \partial x_7, \quad Z_2 = \cos u_2 \ \partial x_1 + \sin u_2 \ \partial x_2 + \partial x_5, \quad Z_3 = \partial x_4 + \partial x_8,$$
$$Z_4 = \frac{1}{2} \{ -\partial x_4 + \partial x_8 \}, \quad Z_5 = \partial x_9 + \partial x_{11}, \quad Z_6 = \partial x_{10} + \partial x_{12},$$
$$Z_7 = \partial x_9 - \partial x_{10} - \partial x_{11} + \partial x_{12},$$

We see that M is 2-lightlike with $RadTM = Span\{Z_1, Z_2\}$ and $\overline{J}Z_1 = Z_3$. Thus, $E_1 = Span\{Z_1\}$ and $E_2 = Span\{Z_2\}$. Also, $\overline{J}Z_5 = Z_6 \in \Gamma(S(TM))$ implies that $E_\circ = Span\{Z_5, Z_6\}$.

Further, the lightlike transversal bundle ltr(TM) is spanned by

$$N_1 = \frac{1}{2} \{ -\partial x_3 + \partial x_7 \}, \quad N_2 = \frac{1}{2} \{ -\cos u_2 \partial x_1 - \sin u_2 \partial x_2 + \partial x_5 \}.$$

Hence, $L_1 = Span\{N_1\}$, $L_2 = Span\{N_2\}$, $S(TM^{\perp}) = Span\{\bar{J}Z_2, \bar{J}N_2, \bar{J}Z_7\}$, $S = Span\{\bar{J}Z_7 = W\}$ and $E' = Span\{\bar{J}N_1 = Z_4, \bar{J}Z_7 = W\}$.

Therefore *M* is a proper *STCR*-lightlike submanifold of the indefinite Kaehler statistical manifold R_4^{12} .

4. Quarter symmetric non-metric connection

For a Levi-Civita connection $\overline{\nabla}^{\circ}$ on an indefinite Kaehler statistical manifold $(\tilde{M}, \bar{J}, \tilde{g})$ where $\overline{\nabla}^{\circ} = \frac{1}{2} \{\overline{\nabla} + \overline{\nabla}^{*}\}$, we set

$$D_X Y = \overline{\nabla}_X Y - K(X, Y) + \pi(Y) \overline{J} X, \tag{4.1}$$

and

$$\tilde{D}_X Y = \bar{\nabla}_X^* Y + K(X, Y) + \pi(Y) \bar{J} X, \qquad (4.2)$$

for any $X, Y \in \Gamma(T\tilde{M})$. Since $\overline{\nabla}$ and $\overline{\nabla}^*$ are torsion free, therefore from the relationship between dual connections, we obtain

$$(\tilde{D}_X\tilde{g})(Y,Z) = -\pi(Y)\tilde{g}(\bar{J}X,Z) - \pi(Z)\tilde{g}(Y,\bar{J}X),$$
(4.3)

and

$$\tilde{T}^{\tilde{D}}(X,Y) = \pi(Y)\bar{J}X - \pi(X)\bar{J}Y,$$
(4.4)

for any $X, Y, Z \in \Gamma(T\tilde{M})$ where $\tilde{T}^{\tilde{D}}$ is a torsion tensor of the connection \tilde{D} and π is a 1-form associated with the vector field U on \tilde{M} by $\pi(X) = \tilde{g}(X, U)$. So, \tilde{D} becomes a quarter symmetric non-metric connection. Since \tilde{M} admits a tensor field \tilde{J} of type (1,1), therefore for any $X, Y \in \Gamma(T\tilde{M})$, we have

$$\tilde{D}_X \bar{J}Y = \bar{J}\tilde{D}_X Y + \pi(Y)X + \pi(\bar{J}Y)\bar{J}X,$$
(4.5)

Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold (\tilde{M}, \tilde{g}) with quarter symmetric non-metric connection \tilde{D} . Let D be the induced linear connection on M from \tilde{D} . Therefore the Gauss formula is as follows:

$$\tilde{D}_X Y = D_X Y + \tilde{h}^l(X, Y) + \tilde{h}^s(X, Y),$$
(4.6)

for any $X, Y \in \Gamma(TM)$, where $D_X Y \in \Gamma(TM)$ and \tilde{h}^l , \tilde{h}^s are lightlike second fundamental form and the screen second fundamental form of M, respectively. Now from (2.1), (4.6) in (4.1), we get

$$D_X Y = \nabla_X Y + \pi(Y) T X - K(X, Y), \tag{4.7}$$

$$\tilde{h}^{l}(X,Y) = h^{l}(X,Y) + w_{L}X\pi(Y),$$
(4.8)

$$\hat{h}^{s}(X,Y) = h^{s}(X,Y) + w_{s}X\pi(Y) + w_{\bar{2}}X\pi(Y).$$
(4.9)

Further, using (4.3), (3.8), (4.6) we have

$$(D_X g)(Y, Z) = g(\tilde{h}^l(X, Y), Z) + g(Y, \tilde{h}^l(X, Z)) - \pi(Y)g(TX, Z) - \pi(Z)g(TX, Y),$$
(4.10)

and

$$T^D(X,Y) = \pi(Y)TX - \pi(X)TY$$

for any $X, Y, Z \in \Gamma(TM)$, where T^D is torsion tensor of the induced connection D on M. Hence, the following result holds:

Theorem 4.1. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . Then the induced connection D on the lightlike submanifold M is also a quarter symmetric non-metric connection.

Suppose that \tilde{h}^l vanishes identically on *M*. Therefore

$$(D_Xg)(Y,Z) = -\pi(Y)g(TX,Z) - \pi(Z)g(TX,Y).$$

follows from (4.10).

Consequently, we arrive to the following outcome:

Theorem 4.2. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . Then the induced connection D on the lightlike submanifold M is also a quarter symmetric metric connection if and only if \tilde{h}^l vanishes identically on M and the characteristic vector field $\zeta \in \Gamma(S(TM^{\perp}))$ such that $\pi(X) = g(X, \zeta)$.

Corresponding to quarter symmetric non-metric connection \hat{D} , the Weingarten formulae are as below:

$$\tilde{D}_X N = -\tilde{A}_N X + \tilde{\nabla}_X^l N + \tilde{D}^s(X, N),$$
(4.11)

$$\tilde{D}_X W = -\tilde{A}_W X + \tilde{\nabla}^s_X W + \tilde{D}^l(X, W), \qquad (4.12)$$

for any $X, Y \in \Gamma(TM)$, $N \in \Gamma(ltr(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. Using (2.3),(2.4) (4.11),(4.12) and (4.1) and then equating the tangential and transversal parts, we derive

$$\hat{A}_N X = A_N X - \pi(N)TX + K(X, N), \quad \hat{A}_W X = A_W X - \pi(W)TX + K(X, W),$$
(4.13)

$$\hat{\nabla}_X^l N = \nabla_X^l N + \pi(N) w_L X, \quad \hat{\nabla}_X^s W = \nabla_X^s W + \pi(W) w_s X + \pi(W) w_{\bar{2}} X, \tag{4.14}$$

$$\tilde{D}^{s}(X,N) = D^{s}(X,N) + \pi(N)w_{s}X + \pi(N)w_{\bar{2}}X, \quad \tilde{D}^{l}(X,W) = D^{l}(X,W) + \pi(W)w_{L}X.$$
(4.15)

Consider *P* as the projection of *TM* on *S*(*TM*) so that any $X \in \Gamma(TM)$ can be written as $X = PX + \sum_{i=1}^{r} \eta_i(X)\xi_i$, where $\{\xi_i\}_{i=1}^{r}$ is a basis for Rad(TM). Therefore, for any $X, Y \in \Gamma(TM), \xi \in \Gamma(RadTM)$, we have

$$D_X PY = D'_X PY + \tilde{h}'(X, PY), \quad D_X \xi = -\tilde{A}'_{\xi} X + \tilde{\nabla}'^t_X \xi, \tag{4.16}$$

where $(D'_X PY, \tilde{A}'_{\xi}X)$ and $(\tilde{h}'(X, PY), \tilde{\nabla}'^t_X \xi)$ belong to S(TM) and Rad(TM) respectively. Thus we have

$$D'_X PY = \nabla'_X PY + \pi(PY) PTX - K(X, PY), \tag{4.17}$$

dergipark.org.tr/en/pub/iejg

$$\tilde{h}'(X, PY) = h'(X, PY) + \pi(PY) \sum_{i=1}^{r} \eta_i(TX)\xi,$$
(4.18)

and

$$\tilde{A}'_{\xi}X = A'_{\xi}X - \pi(\xi)PTX + K(X,\xi),$$
(4.19)

$$\tilde{\nabla}_X'^t \xi = \nabla_X'^t \xi + \pi(\xi) \sum_{i=1}' \eta_i(TX)\xi_i,$$
(4.20)

where $\eta_i(X) = \tilde{g}(X, N_i)$. Further, using (2.9),(4.18) and (4.13), we derive

$$\tilde{g}(h'(X, PY), N_j) = g(A'_{N_j}X, PY) + \pi(N_j)g(PTX, PY) + \tilde{g}(K(X, N), PY) + \pi(PY)\eta_j(TX),$$
$$\tilde{g}(\tilde{h}^l(X, PY), \xi) = g(\tilde{A}'_{\xi}X, PY) - \pi(\xi)g(PTX, PY) - \tilde{g}(K(X, \xi), PY) + \pi(Y)g(w_LX, \xi),$$

$$\hat{g}(h^{*}(X, PY), \xi) = g(A'_{\xi}X, PY) - \pi(\xi)g(PTX, PY) - \hat{g}(K(X, \xi), PY) + \pi(Y)g(w_{L})$$

Also, for induced connection D' of D, we get

$$(D'_Xg)(PY,PZ) = -\pi(PY)g(PTX,PZ) - \pi(PZ)g(PY,PTX).$$

Since \overline{M} is an indefinite Kaehler statistical manifold, the ensuing lemmas are obtained using (4.5), (3.8), (3.10) and (4.6).

Lemma 4.1. For a STCR-lightlike submanifold M of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} , we have

$$D_X TY - TD_X Y = \tilde{A}_{w_L Y} X + \tilde{A}_{w_s Y} X + \tilde{A}_{w_{\bar{2}} Y} X + \pi(\bar{J}Y) TX + B\tilde{h}^l(X,Y) + B\tilde{h}^s(X,Y) + \pi(Y) X,$$
(4.21)

$$\tilde{D}^{l}(X, w_{s}Y) + \tilde{D}^{l}(X, w_{\bar{2}}Y) = w_{L}(D_{X}Y) - \tilde{\nabla}^{l}_{X}(w_{L}Y) - \tilde{h}^{l}(X, TY) + C_{1}\tilde{h}^{s}(X, Y) + C_{1}\tilde{h}^{l}(X, Y) + \pi(\bar{J}Y)w_{L}X,$$
(4.22)

$$\tilde{D}^{s}(X, w_{L}Y) = w_{s}(D_{X}Y) + w_{\bar{2}}(D_{X}Y) - \tilde{\nabla}^{s}_{X}(w_{s}Y) - \tilde{\nabla}^{s}_{X}(w_{\bar{2}}Y) - \tilde{h}^{s}(X, TY) + C_{2}\tilde{h}^{s}(X, Y) + C_{2}\tilde{h}^{l}(X, Y) + \pi(\bar{J}Y)w_{s}X + \pi(\bar{J}Y)w_{\bar{2}}X,$$
(4.23)

for any $X, Y \in \Gamma(TM)$.

Lemma 4.2. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . Then

$$D_X BV - B\tilde{\nabla}_X^t V = -T\tilde{A}_V X + \tilde{A}_{C_1 V} X + \tilde{A}_{C_2 V} X + \pi(\bar{J}V) TX + \pi(V) X,$$
(4.24)

$$\tilde{h}^{l}(X, BV) = -\tilde{\nabla}^{l}_{X}C_{1}V - \tilde{D}^{l}(X, C_{2}V) + C_{1}\tilde{\nabla}^{t}_{X}V - w_{L}\tilde{A}_{V}X + \pi(\bar{J}V)w_{L}X,$$
(4.25)

$$\tilde{h}^s(X, BV) = -w_s \tilde{A}_V X - w_{\bar{2}} \tilde{A}_V X + C_2 \tilde{\nabla}^t_X V + \pi(\bar{J}V) w_s X + \pi(\bar{J}V) w_{\bar{2}} X \tag{4.26}$$

$$-\tilde{\nabla}_X^s C_2 V - \tilde{D}^s (X, C_1 V), \tag{1.20}$$

for any $X, Y \in \Gamma(TM), V \in \Gamma(tr(TM))$.

Definition 4.1. Let *M* be a lightlike submanifold of a indefinite Kaehler statistical manifold \tilde{M} . Then *M* is said to be a totally umbilical with respect to $\overline{\nabla}$ (resp. $\overline{\nabla^*}$) if $h(X,Y) = H\overline{g}(X,Y)$ (resp. $h^*(X,Y) = H^*\overline{g}(X,Y)$) for all $X, Y \in \Gamma(TM)$, where $H \in \Gamma(tr(TM))$ (resp. $H^* \in \Gamma(tr(TM))$) stands for transversal curvature vector fields of M in \overline{M} with respect to $\overline{\nabla}$ (resp. $\overline{\nabla^*}$).

Also, *M* is totally umbilical with respect to $\overline{\nabla}$ (respectively $\overline{\nabla^*}$) if and only if on each co-ordinate neighbourhood, there exist smooth vector fields $H^l \in \Gamma(ltr(TM))$ and $H^s \in \Gamma(S(TM^{\perp}))$ $(H^{*l} \in \Gamma(ltr(TM)))$ and $H^{*s} \in \Gamma(S(TM^{\perp}))$ respectively) such that $h^{l}(X,Y) = H^{l}\bar{g}(X,Y)$, $h^{s}(X,Y) = H^{s}\bar{g}(X,Y)$ and $h^{*l}(X,Y) = H^{*l}\bar{g}(X,Y)$, $h^{*s}(X,Y) = H^{*s}\bar{g}(X,Y)$ respectively with respect to $\bar{\nabla}(respectively \ \bar{\nabla^*})$.

Also, a *STCR* lightlike submanifold of a indefinite Kaehler statistical manifold \tilde{M} with quarter symmetric non-metric connection is said to be a totally umbilical if there exist smooth vector fields $\tilde{H}^l \in \Gamma(ltr(TM))$ and $\tilde{H}^s \in \Gamma(S(TM^{\perp}))$ such that $\tilde{h}^l(X, Y) = \tilde{H}^l g(X, Y)$ and $\tilde{h}^s(X, Y) = \tilde{H}^s g(X, Y)$.

Definition 4.2. A *STCR* lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection is said to be a totally geodesic if $\tilde{h}(X, Y) = 0$. It is simple to verify that M is totally geodesic if $\tilde{h}^l(X, Y) = 0$, $\tilde{h}^s(X, Y) = 0$ for any $X, Y \in \Gamma(TM)$.

Theorem 4.3. Let *M* be a totally umbilical STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} such that \tilde{H}^s has no component in $\bar{J}E_2$. Then E_\circ is integrable.

Proof. Let $X, Y \in \Gamma(E_{\circ})$ and $N \in \Gamma(L_2)$, then

$$\tilde{g}([X,Y],N) = \tilde{g}(\bar{\nabla}_X Y - \bar{\nabla}_Y X, N),$$

The symmetric property of difference (1,2) tensor *K* and (4.1) give

$$\tilde{g}([X,Y],N) = \tilde{g}(\bar{J}\tilde{D}_XY - \pi(Y)\bar{J}^2X - \bar{J}\tilde{D}_YX + \pi(X)\bar{J}^2Y,\bar{J}N),$$

Further from the definition of *STCR* lightlike submanifold and using (4.5), we obtain

$$\tilde{g}([X,Y],N) = \tilde{g}(\tilde{h}^s(X,\bar{J}Y) - \tilde{h}^s(Y,\bar{J}X),\bar{J}N),$$

M being totally umbilical lightlike submanifold implies that

$$\tilde{g}([X,Y],N) = (g(X,\bar{J}Y) - g(Y,\bar{J}X))\tilde{g}(\tilde{H}^s,\bar{J}N).$$

Hence, the concept of *STCR* lightlike submanifolds and the hypothesis leads to the required result.

Theorem 4.4. Let \tilde{M} be an indefinite Kaehler statistical manifold with a quarter symmetric non-metric connection \tilde{D} and M be a totally umbilical STCR-lightlike submanifold of \tilde{M} . If the distribution E_{\circ} is integrable, then M is totally geodesic STCR lightlike submanifold of \tilde{M} with respect to \tilde{D} .

Proof. For any $X, Y \in \Gamma(E_{\circ})$ and from (4.23), we obtain

$$w_s(D_XY) + w_{\bar{2}}(D_XY) - w_s(D_YX) - w_{\bar{2}}(D_YX) = \tilde{h}^s(X, TY) - \tilde{h}^s(Y, TX),$$

Using the fact that *M* is a totally umbilical lightlike submanifold, we get

$$w_s[X,Y] + w_{\bar{2}}[X,Y] = (\tilde{g}(X,\bar{J}Y) - \tilde{g}(Y,\bar{J}X))\tilde{H}^s,$$

Since E_{\circ} is integrable and if we take $X = \overline{J}Y$, then $2\tilde{g}(Y,Y)\tilde{H}^s = 0$. Using the non-degeneracy of E_{\circ} , we get $\tilde{H}^s = 0$. Now, for any $X, Y \in \Gamma(E_{\circ})$, we have

$$w_L(D_XY) - w_L(D_YX) = \hat{h}^l(X,TY) - \hat{h}^l(Y,TX),$$

from (4.22).

As M is a totally umbilical lightlike submanifold, it follows that

$$w_L[X,Y] = (\tilde{g}(X,\bar{J}Y) - \tilde{g}(Y,\bar{J}X))\tilde{H}^l.$$

The non-degeneracy of E_{\circ} implies $\tilde{H}^l = 0$. Hence the result.

Theorem 4.5. Let M be a totally umbilical STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . If M is totally geodesic, then $\tilde{h}' = 0$ for any $X, Y \in \Gamma(E_{\circ})$ and $N \in \Gamma(L_2)$.

Proof. From (4.6), we have

$$\tilde{g}(\tilde{h}^s(X, \bar{J}Y), \bar{J}N) = \tilde{g}(\tilde{D}_X \bar{J}Y, \bar{J}N),$$

for any $X, Y \in \Gamma(E_\circ)$. Then (4.5),(4.6) and (4.16) imply

 $\tilde{g}(\tilde{h}^s(X, \bar{J}Y), \bar{J}N) = \tilde{g}(\tilde{h}'(X, Y), N).$

Thus, the result follows using the given hypothesis.

Theorem 4.6. For a totally umbilical STCR-lightlike submanifold M of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} , the subbundle E_2 of Rad(TM) is always integrable for any $X \in \Gamma(E_\circ)$.

Proof. For any $\xi_1, \xi_2 \in \Gamma(E_2)$ and $X \in \Gamma(E_\circ)$, we have

$$\begin{split} \tilde{g}([\xi_1, \xi_2], X) &= \tilde{g}(\nabla_{\xi_1} \xi_2 - \nabla_{\xi_2} \xi_1, X), \\ &= \tilde{g}(\bar{J} \bar{\nabla}_{\xi_1} \xi_2, \bar{J} X) - (\bar{J} \bar{\nabla}_{\xi_2} \xi_1, \bar{J} X), \end{split}$$

From definition (2.2), we get

$$\tilde{g}([\xi_1, \xi_2], X) = \tilde{g}(\bar{\nabla}_{\xi_1}^* \bar{J}\xi_2, \bar{J}X) - (\bar{\nabla}_{\xi_2}^* \bar{J}\xi_1, \bar{J}X),$$

Now (4.1) and (2.11) imply

 $\tilde{g}([\xi_1,\xi_2],X) = -\tilde{g}(\bar{J}\xi_2,\tilde{D}_{\xi_1}\bar{J}X) + \tilde{g}(\bar{J}\xi_1,\tilde{D}_{\xi_2}\bar{J}X),$

Further, using (4.6), we derive

$$\tilde{g}([\xi_1,\xi_2],X) = -\tilde{g}(\bar{J}\xi_2,\tilde{h}^s(\xi_1,\bar{J}X)) + \tilde{g}(\bar{J}\xi_1,\tilde{h}^s(\xi_2,\bar{J}X)),$$

Since M is totally umbilical, therefore

$$\tilde{g}([\xi_1,\xi_2],X) = -\tilde{g}(\xi_1,\bar{J}X)\tilde{g}(\bar{J}\xi_2,\tilde{H}^s) + \tilde{g}(\xi_2,\bar{J}X)\tilde{g}(\bar{J}\xi_1,\tilde{H}^s),$$

As $\xi_1, \xi_2 \in \Gamma(E_2)$ and $X \in \Gamma(E_\circ)$, we obtain

$$\tilde{g}([\xi_1, \xi_2], X) = 0.$$

Thus our assertion follows.

Theorem 4.7. Let M be a proper totally umbilical STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . Then $\bar{J}\tilde{H}^s = U$ for any $X, Y \in \bar{J}S$.

Proof. Let $X, Y \in \overline{JS}$. Then using (4.21)

$$-TD_XY = \tilde{A}_{wY}X + B\tilde{h}^l(X,Y) + B\tilde{h}^s(X,Y) + \pi(Y)X,$$

Taking the inner product on both sides with respect to X, we have

$$\tilde{g}(\tilde{A}_{\bar{J}Y}X,X) = \tilde{g}(\tilde{h}^s(X,Y),\bar{J}X) - \tilde{g}(X,X)\pi(Y),$$

Now, (4.9) and (4.13) imply

$$\tilde{g}(A_{\bar{J}Y}X,X) + \tilde{g}(K(X,\bar{J}Y),X) = \tilde{g}(h^s(X,Y),\bar{J}X),$$
(4.27)

Further, using (2.5), (4.9) for dual connections of the indefinite Kaehler statistical manifold \tilde{M} , we have $\tilde{g}(h^{*s}(X,X), \bar{J}Y) = \tilde{g}(X, A_{\bar{J}Y}X)$,

$$\begin{split} \tilde{g}(\tilde{h}^s(X,X),\bar{J}Y)) &- \pi(X)\tilde{g}(X,Y) + \tilde{g}(K(X,\bar{J}Y),X) = \tilde{g}(\tilde{h}^s(X,Y),\bar{J}X) \\ &- \tilde{g}(X,X)\pi(Y), \end{split}$$

From the concept of a totally umbilical lightlike submanifold, we get

$$\tilde{g}(X,X)\tilde{g}(\tilde{H}^s,\bar{J}Y) - \pi(X)\tilde{g}(X,Y) + \tilde{g}(K(X,\bar{J}Y),X) = \tilde{g}(X,Y)\tilde{g}(\tilde{H}^s,\bar{J}X) -\tilde{g}(X,X)\pi(Y),$$

Interchanging *Y* by *X* and subtracting these equations, we obtain

$$\begin{split} \tilde{g}(\bar{J}\tilde{H}^s-U,X)(\tilde{g}(X,X)\tilde{g}(Y,Y)-\tilde{g}(X,Y)^2) &= \tilde{g}(X,X)\tilde{g}(K(Y,\bar{J}X),Y) \\ &-\tilde{g}(X,Y)\tilde{g}(K(X,\bar{J}Y),X), \end{split}$$

Since $X, Y \in \overline{JS}$ and M is a Kaehler statistical manifold, it follows that

$$\tilde{g}(\bar{J}H^s - U, X)(\tilde{g}(X, X)\tilde{g}(Y, Y) - \tilde{g}(X, Y)^2) = 0.$$

So, using the non-degeneracy of \boldsymbol{S} , we get the desired result.

5. STCR-lightlike product manifolds

Definition 5.1. A *STCR* lightlike submanifold *M* of an indefinite Kaehler statistical manifold \tilde{M} is called a *STCR*-lightlike product manifold if *E* and \bar{E} define totally geodesic foliations in *M*.

Theorem 5.1. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . Then the distribution E defines a totally geodesic foliation in M if and only if $\tilde{h}(X, \bar{J}Y) = 0$ for any $X, Y \in \Gamma(E)$.

Proof. From the concept of *STCR*-lightlike submanifold, the distribution *E* defines a totally geodesic foliation in *M*, if and only if, $D_X Y \in \Gamma(E)$ for $X, Y \in \Gamma(E)$ or $\tilde{g}(D_X Y, \bar{J}\xi) = \tilde{g}(D_X Y, \bar{J}W) = \tilde{g}(D_X Y, N_2) = 0$ for $\xi_1 \in \Gamma(E_1), N_2 \in \Gamma(L_2), W \in \Gamma(S)$. Thus from definition (3.1) and equations (4.5), (4.6), we have

$$\tilde{g}(D_X Y, \bar{J}\xi_1) = \tilde{g}(\tilde{D}_X Y, \bar{J}\xi_1) = -\tilde{g}(\tilde{D}_X \bar{J}Y), \xi_1),$$

$$\tilde{g}(D_X Y, \bar{J}\xi) = -\tilde{g}(\tilde{h}^l(X, \bar{J}Y), \xi_1),$$

Also,

$$\tilde{g}(D_XY, N_2) = \tilde{g}(\tilde{D}_X\bar{J}Y), \bar{J}N_2) = \tilde{g}(\tilde{h}^s(X, \bar{J}Y), \bar{J}N_2),$$

Similarly,

$$\tilde{g}(D_XY,\bar{J}W) = \tilde{g}(\tilde{D}_XY,\bar{J}W) = -\tilde{g}(\tilde{D}_X\bar{J}Y),W) = -\tilde{g}(\tilde{h}^s(X,\bar{J}Y),W).$$

Therefore, the distribution *E* defines a totally geodesic foliation in *M*, if and only if, $\tilde{h}(X, \bar{J}Y) = 0$ for $X, Y \in \Gamma(E)$.

Theorem 5.2. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . Then the distribution \bar{E} defines a totally geodesic foliation in M if and only if $\tilde{A}_{wY}X + \pi(Y)X \in \Gamma(\bar{E})$ for any $X, Y \in \Gamma(\bar{E})$.

Proof. Since M is a *STCR*-lightlike submanifold of \tilde{M} , the distribution \bar{E} defines a totally geodesic foliation in M, if and only if, $D_X Y \in \Gamma(\bar{E})$ for $X, Y \in \Gamma(\bar{E})$. From (4.21), we get

$$-B\tilde{h}^{l}(X,Y) - B\tilde{h}^{s}(X,Y) = A_{w_{L}Y}X + A_{w_{\bar{s}}Y}X + A_{w_{\bar{2}}Y}X + \pi(Y)X,$$

which implies

 $-B\tilde{h}(X,Y) = \tilde{A}_{wY}X + \pi(Y)X.$

Thus, the proof is completed.

Theorem 5.3. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . Then M is STCR lightlike product manifold if the tensor field T is parallel with respect to the induced connection i.e. $(D_X T)Y = 0$ for any $X, Y \in \Gamma(TM)$.

Proof. For $X, Y \in \Gamma(E)$ and from (4.21)

$$\pi(\bar{J}Y)TX + B\tilde{h}^l(X,Y) + B\tilde{h}^s(X,Y) + \pi(Y)X = 0,$$

using the hypothesis. Therefore, we get

$$\tilde{g}(B\tilde{h}^s(X,Y),N_2) = 0,$$

Also,

$$\tilde{g}(B\tilde{h}^{l}(X,Y),\xi_{1}) = 0, \ \tilde{g}(B\tilde{h}^{s}(X,Y),W) = 0.$$

for $N_2 \in \Gamma(L_2), \xi \in \Gamma(E_1)$ and $W \in \Gamma(S)$. This implies that *E* defines a totally geodesic foliation in *M*. As per the supposition and (4.21), we derive

$$-B\tilde{h}(X,Y) = \tilde{A}_{wY}X + \pi(Y)X.$$

Thus \overline{E} defines a totally geodesic foliation in *M*. Accordingly, *M* is a *STCR* lightlike product manifold.

However the converse does not hold.

If \overline{E} defines a totally geodesic foliation in M, then $TD_XY = 0$ for $X, Y \in \Gamma(\overline{E})$. Now for $Y \in \Gamma(\overline{E})$, we have TY = 0 which implies that $D_XTY = 0$. Hence $(D_XT)Y = 0$, for any $X, Y \in \Gamma(\overline{E})$. Also, since E defines totally geodesic foliation in M, therefore from equation (4.21), we get $(D_XT)Y = \pi(\overline{J}Y)TX + \pi(Y)X \neq 0$. This is the claimed result.

Theorem 5.4. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} such that $w(D_XY) = 0$ for any $X, Y \in \Gamma(TM)$. Then M is STCR-lightlike product manifold if M is a totally geodesic STCR-lightlike submanifold of \tilde{M} .

Proof. For any $X, Y \in \Gamma(E)$, we have

 $\tilde{h}^{s}(X, TY) - C_{2}\tilde{h}^{s}(X, Y) - C_{2}\tilde{h}^{l}(X, Y) = 0,$

using (4.23). As M is totally geodesic STCR-lightlike submanifold, then

 $\tilde{g}(\tilde{h}^s(X,TY),W) = \tilde{g}(\tilde{h}^s(X,TY),\bar{J}N_2) = 0,$

for any $W \in \Gamma(S)$ and $N_2 \in \Gamma(L_2)$. Also, from (4.22), we derive

$$\tilde{g}(\tilde{h}^l(X,TY),\xi) = 0,$$

for any $\xi \in \Gamma(E_1)$. This implies that *E* defines a totally geodesic foliation in *M*. Further, from (2.11),(4.1), (4.2), we obtain

$$\tilde{g}(TD_XY,Z) = -\tilde{g}(Y,\bar{J}\tilde{h}(X,Z))$$

for any $X, Y \in \Gamma(\overline{E})$ and $Z \in \Gamma(E_{\circ})$. Since M is totally geodesic *STCR*-lightlike submanifold and the distribution E_{\circ} is non-degenerate, therefore $TD_XY = 0$ for $X, Y \in \Gamma(\overline{E})$. Thus, \overline{E} defines a totally geodesic foliation in M. This completes the proof.

Theorem 5.5. Let M be a totally umbilical STCR-lightlike submanifold of an indefinite Kaehler statistical manifold \tilde{M} with a quarter symmetric non-metric connection \tilde{D} . Then M is a STCR-lightlike product manifold if and only if $\tilde{h}(X, \bar{J}Y) = 0$ for any $X \in \Gamma(TM)$, $Y \in \Gamma(E)$.

Proof. Let *M* be *STCR*-lightlike product manifold it follows that $\tilde{h}(X, \bar{J}Y) = 0$ for any $X, Y \in \Gamma(E)$. Since *M* is a totally umbilical *STCR*-lightlike submanifold, therefore

$$\tilde{h}(X, \bar{J}Y) = \bar{g}(X, \bar{J}Y)\tilde{H} = 0,$$

for any $X \in \Gamma(\overline{E})$ and $Y \in \Gamma(E)$. So, we obtain $\tilde{h}(X, \overline{J}Y) = 0$ for any $X \in \Gamma(TM)$, $Y \in \Gamma(E)$. Conversely, if $\tilde{h}(X, \overline{J}Y) = 0$ for any $X, Y \in \Gamma(E)$, then *E* defines a totally geodesic foliation in *M*. Now, for $X, Y \in \Gamma(\overline{E})$ and $Z \in \Gamma(E_{\circ})$,

$$\tilde{g}(TD_XY,Z) = -\tilde{g}(\tilde{A}_{\bar{J}Y}X,Z) = \tilde{g}(\tilde{D}_X\bar{J}Y,Z),$$

Since \overline{M} is an indefinite Kaehler statistical manifold,

$$\tilde{g}(\bar{J}Y, \bar{\nabla}_X^*Z) - \tilde{g}(K(X, JY), Z),$$

follows from (4.1). Further from (4.2) and (2.11), we derive

$$\tilde{g}(TD_XY,Z) = -\tilde{g}(Y,\bar{J}\tilde{h}(X,Z)) = 0$$

Since *E* is non-degenerate, therefore $TD_XY = 0$, which shows that \overline{E} defines a totally geodesic foliation in *M*.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] Amari, S.: Differential geometrical methods in statistics, Lecture notes in statistics, 28, Springer, New York, 1985.
- [2] Amari, S.: Differential geometrical theory of statistics, Differential geometry in statistical inference, Institute of Mathematical statistics, Hayward, California, 10 (1987), 19-94.
- [3] Bahadir, O. and Tripathi, M.M.: Geometry of lightlike hypersurfaces of a statistical manifold, arXiv:1901.092526, 26 Jan 2019.
- [4] Bahadir, O.: On lightlike geometry of indefinite Sasakian statistical manifolds, arXiv:2004.01512, 10 Mar 2020.
- [5] Bahadir, O. and Kilic, E.: Lightlike submanifolds of indefinite Kaehler manifolds with quarter symmetric non-metric connection, Mathematical sciences and applications E-notes, 2 (2014), no. 2, 89-104.
- [6] Bahadir, O. and Kilic, E.: Lightlike Submanifolds of a Semi-Riemannian Product Manifold with Quarter Symmetric Non-Metric Connection, International electronic journal of geometry, 9 (2016), no. 1, 9-22.
- [7] Dogan, B., Sahin, B. and Yasar, E.: Screen transversal Cauchy Riemann lightlike submanifolds, Filomat 34:5 (2020), 1581-1599.
- [8] Duggal, K.L. and Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and its applications, Kluwer Academic, 1996.
- [9] Duggal, K.L. and Jin, D.H.: Totally umbilical lightlike submanifolds, Kodai Math.J, 26 (2003), 49-68.
- [10] Duggal, K.L. and Sahin, B.: Screen Cauchy Riemann lightlike submanifolds, Acta Math Hungar, 106 (2005), no. (1-2), 137-165.
- [11] Duggal, K.L. and Sahin, B.: Generalized Cauchy-Riemann lightlike submanifolds of Kaehler manifolds, Acta Mathematica Hungarica, 112 (2006), no.(1-2), 107–130.
- [12] Furuhata, H. and Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds, Geometry of Cauchy-Riemann submanifolds, Springer, Singapore, 179-215, 2016.
- [13] Golab, S.:On semi-symmetric and quarter-symmetric linear connections, Tensor, 29(1975), no.3, 249-254.
- [14] Gupta, G., Kumar, R. and Nagaich, R.K.: Geometry of semi-invariant lightlike product manifolds, New York J.Math, 26 (2020), 1338-1354.
- [15] Kaur, J. and Rani, V.: Distributions in CR-lightlike submanifolds of an indefinite Kaehler statistical manifold, Malaya Journal of Matematik, 8(2020), no. 4, 1346-1353.
- [16] Kilic, E. and Bahadir, O.: Lightlike Hypersurfaces of a Semi-Riemannian Product Manifold and Quarter- Symmetric Nonmetric Connections, International Journal of Mathematics and Mathematical Sciences, Volume 2012, Article ID 178390, 17 pages.
- [17] Milijevic, M.: CR-submanifolds in holomorphic statistical manifolds, Ph.D Thesis in Science, Department of Mathematics Graduates School of Science, Hokkaido University, 2015.
- [18] Rani, V. and Kaur, J.: Cauchy Riemann-lightlike submanifolds in the aspect of an indefinite Kaehler statistical manifold, Malaya Journal of Matematik, 9(2021), no. 1, 136-143.
- [19] Rani, V. and Kaur, J.: On structure of lightlike hypersurfaces of an indefinite Kaehler statistical manifold, Differential Geometry-Dynamical Systems, 23 (2021), 221-234.
- [20] Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters, Bulletin of Calcutta Mathematical Society, 37 (1945), 81-91.
- [21] Sahin, B. and Gunes, R.: Geodesic CR-lightlike submanifolds, Beitrage zur Algebra und Geometrie, Contribution to Algebra and Geometry, 42 (2001), no.2, 583-594.
- [22] Sahin, B.: Transversal lightlike submanifolds of indefinite Kaehler manifolds, An. Univ. Vest Timis. Ser. Mat.-Inform, 44 (2006),119-145.
- [23] Sahin, B.: Screen transversal lightlike submanifolds of Kaehler manifolds, Chaos, Solitons and Fractals, 38 (2008),1439-1448.

Affiliations

VANDANA RANI ADDRESS: Department of Mathematics, Punjabi University, Patiala, Punjab, India. E-MAIL: vgupta.87@rediffmail.com ORCID ID: 0000-0003-2190-0174 JASLEEN KAUR ADDRESS: Department of Mathematics, Punjabi University, Patiala, Punjab, India. E-MAIL: jass2381@gmail.com ORCID ID: 0000-0002-4284-2842

