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ABSTRACT

Objective: It is crucial to know the underlying causes of hepa-
tocellular carcinoma (HCC) for optimal management. This study 
aims to classify open access gene expression data of HCC pa-
tients who have an HBV or HCV infection using the XGboost 
method.

Material and Methods: This case-control study considered the 
open-access gene expression data of patients with HBV-related 
HCC and HCV-related HCC.  For this purpose, data from 17 
patients with HBV+HCC and 17 patients with HCV+HCC were 
included. XGboost was constructed for the classification via ten-
fold cross-validation. Accuracy, balanced accuracy, sensitivity, 
specificity, the positive predictive value, the negative predictive 
value, and F1 score performance metrics were evaluated for a 
model performance. 

Results: With the feature selection approach, 17 genes were 
chosen, and modeling was done using these input variables. 
Accuracy, balanced accuracy, sensitivity, specificity, positive 
predictive value, negative predictive value, and the F1 score 
obtained from the XGboost model were 97.1%, 97.1%, 94.1%, 
100%, 100%, 94.4%, and 97%, respectively. Based on the variable 
importance findings from the XGboost, the ALDOC, GLUD2, 
TRAPPC10, FLJ12998, RPL39, KDELR2, and KIAA0446 genes can 
be employed as potential biomarkers for HBV-related HCC. 

Conclusion: As a result of the study, two different etiological 
factors (HBV and HCV) causing HCC were classified using a ma-
chine learning-based prediction approach, and genes that could 
be biomarkers for HBV-related HCC were identified. After the 

ÖZET

Amaç: Hepatoselüler karsinomun (HCC) optimal yönetimi için 
altında yatan nedenleri bilmek çok önemlidir. Bu çalışma, HBV 
veya HCV enfeksiyonu olan HCC hastalarının açık erişim gen eks-
presyon verilerini XGboost yöntemini kullanarak sınıflandırmayı 
amaçlamaktadır.

Gereç ve Yöntem: Bu vaka-kontrol çalışmasında, HBV ve HCV 
ile ilişkili HCC’li hastaların açık erişimli gen ekspresyonu verile-
ri dikkate alınmıştır. Bu amaçla, 17 HBV+HCC ve 17 HCV+HCC 
hastadan elde edilen veriler çalışmaya dahil edildi. Sınıflandırma 
için on katlı çapraz geçerlilik kullanılarak XGboost modeli oluş-
turuldu. Model performansı için doğruluk, dengeli doğruluk, du-
yarlılık, özgüllük, pozitif tahmin değeri ve negatif tahmin değeri 
ve F1 skor performans metrikleri değerlendirildi. 

Bulgular: Özellik seçimi yaklaşımı ile 17 gen seçilmiş ve bu girdi 
değişkenleri kullanılarak modelleme yapılmıştır. XGboost mo-
delinden elde edilen doğruluk, dengeli doğruluk, duyarlılık, öz-
güllük, pozitif tahmin değeri, negatif tahmin değeri ve F1 skor 
sırasıyla %97,1, %97,1, %94,1, %100, %100, %94,4 ve %97 idi. 
XGboost’tan elde edilen değişken önemliliği bulgularına daya-
narak, ALDOC, GLUD2, TRAPPC10, FLJ12998, RPL39, KDELR2 
ve KIAA0446 genleri, HBV ile ilişkili HCC için potansiyel biyobe-
lirteçler olarak kullanılabilir.                                                                                                                                

Sonuç: Çalışma sonucunda, HCC’ye neden olan iki farklı etiyo-
lojik faktör (HBV ve HCV), makine öğrenimi tabanlı bir tahmin 
yaklaşımı kullanılarak sınıflandırıldı ve HBV ile ilişkili HCC için 
biyobelirteç olabilecek genler tanımlandı. Ortaya çıkan genler 
sonraki araştırmalarda klinik olarak doğrulandıktan sonra, bu 
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resulting genes have been clinically validated in subsequent re-
search, therapeutic procedures based on these genes can be 
established and their utility in clinical practice documented.

Keywords: Hepatocellular carcinoma, Hepatitis B infection, 
Hepatitis C infection, machine learning, classification

genlere dayalı terapötik prosedürler oluşturulabilir ve klinik uy-
gulamada kullanımları belgelenebilir.

Anahtar Kelimeler: Hepatosellüler kanser, Hepatit B enfeksiyo-
nu, Hepatit C enfeksiyonu, makine öğrenimi, sınıflandırma

INTRODUCTION

Primary liver cancer ranks as the sixth most prevalent kind 
of cancer that is diagnosed and the fourth most common 
cause of death from cancer globally (1). The great major-
ity of instances of primary liver cancer, which account for 
roughly 75-85 percent of all cases, are caused by hepa-
tocellular carcinoma (HCC) (1). The most important risk 
factors associated with HCC are Hepatitis B virus (HBV), 
Hepatitis C virus (HCV), alcohol abuse, non-alcoholic ste-
atohepatitis (NASH), and non-alcoholic fatty liver disease 
(NAFLD) (1-3). 

Hepatitis B virus contributes to the development of HCC 
via both direct and indirect mechanisms (4). Recent es-
timates demonstrate HBV is responsible for more than 
half of all HCC cases globally, ranking it second only to 
cigarettes as the most frequent carcinogen (5, 6). Chron-
ic HBV carriers are 10- to 25-fold more likely to develop 
HCC throughout their lifetime than people without HBV 
(7). Alcohol consumption has a synergistic effect, increas-
ing the carcinogenic risk of HBV by more than twofold. 
Tobacco use is also linked to an increased risk of HCC in 
patients with HBV-related cirrhosis, indicating a quantita-
tive link between smoking and a cancer risk. In some sub-
tropical areas of Asia and Africa, aflatoxin B1 exposure 
combined with HBV infection results in an exceptionally 
high HCC frequency (5, 8). Additionally, HBV replication, 
genotype, and HBV genomic mutations contribute to an 
increased likelihood of developing HCC. In the clinical 
environment, elevated levels of HBV DNA in the serum 
are linked to liver damage, the progression to cirrhosis, 
and the development of HCC (9, 10).

Hepatitis C virus is a hepatotropic RNA virus that only in-
fects the liver and is spread through the bloodstream. HCV 
infects around 71 million individuals worldwide, yet only 
20–30% of those infected develop liver cirrhosis, and only 
1–4% of cirrhotic patients develop HCC each year (11, 12). 
The HCC risk is raised 15 to 20-fold in HCV-infected individ-
uals, with the yearly incidence of HCC in cirrhotics estimat-
ed to be 1% to 4% over a 30-year period (13, 14). Over the 
last decade, mortality from HCV-related HCC has increased 
by 21.1%, whereas deaths from HCC caused by sources 
other than HCV and alcohol remained unchanged (14). 

The role of many demographic, socioeconomic and 
clinical variables in the development of HCC has been 

studied in detail. However, the underlying molecular 
pathogenesis of HCC development such as genetic mu-
tations and expression of gene products, has not been 
sufficiently clarified (15). The most important reasons for 
this are the popularity of genetic analyses in recent years, 
the lack of access to genetic tests, and the economic bur-
den of these analyses. It is known that the genes or gene 
products play a vital role in the development of HCC. 
However, the comprehensive understanding molecular 
mechanism of HCC carcinogenesis and tumor prognosis 
remains unclear (15).

In recent years, in parallel with the development of 
next-generation sequencing (NGS) technology, import-
ant developments have been made regarding the mo-
lecular pathogenesis of HCC. In this context, the molec-
ular mechanisms that play a role in the pathogenesis of 
HCC are roughly genomic, transcriptomic and, epigene-
tic alteration viral integration, tumor microenvironment, 
cancer stem cell, and cancer metabolism (16). Thanks to 
NGS, large-scale mutation screening and gene expres-
sion detection in HCCs has paved the way. However, 
instead of classical statistical analysis methods, it has 
become necessary to use artificial intelligence (AI) tech-
nology for their analysis and interpretation.  

Machine learning (ML) is a subfield of AI that aims to make 
predictions about new data by performing data-driven 
learning when exposed to new data. AI/ML methods are 
one of the most commonly utilized technologies in illness 
detection and clinical decision support systems in recent 
years, with a wide range of applications. In the last decade, 
with the availability of large datasets and greater comput-
ing power, ML methods have achieved high performance 
in various situations (17, 18). Today, it is crucial to diagnose 
HCC and determine/predict the genes that cause the 
presence of HCC as biomarkers and use them concerning 
the HCC stage. For this reason, many studies have used 
ML methods to identify genes that may be biomarkers re-
lated to HCC (19). A study studied Non-Coding RNAs for 
HCV-associated HCC (20). Another study used ML to diag-
nose HCC with HCV (21). One study used gene expression 
profiling and supervised ML to predict HBV-related met-
astatic HCC (22). This study aims to classify open-access 
gene expression data of patients with HBV-related HCC 
and HCV-related HCC using the XGboost method and re-
veal important genes that may cause HCC.
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MATERIAL AND METHODS

Data collection and variables
The present research originated from a case-control study 
published by Ueda et al. (23). The XGboost approach, 
one of the ML methods, was used to open-access gene 
expression data of HBV-related HCC and HCV-related 
HCC in the current investigation. For this purpose, data 
from 17 patients with HBV+HCC and 17 patients with 
HCV+HCC were included in the study. In the dataset, 
complementary DNA (cDNA) microarrays obtained from 
liver samples were used (23). cDNA is the double-strand-
ed DNA version of the mRNA molecule. Since introns are 
cut out, researchers prefer to work with cDNA rather than 
mRNA. RNA is inherently more unstable than DNA. In 
addition, no amplification and purification technique can 
be applied to the RNA molecule (24). The primary output 
of the study is to classify HBV and HCV-associated HCC 
using machine learning methods and identify genes that 
may be biomarkers for HBV-related HCC.

Feature selection
Variable selection is an essential step in predictive mod-
eling processes, and one of the most critical steps in 
developing a statistical model is deciding which data to 
include in the modeling. Feature selection identifies the 
most prominent features affecting a data set’s dependent 
variable. Too many explanatory variables can lead to long 
computation times and the risk of over-learning the data 
and obtaining biased results (25). Most ML and data min-
ing methods can produce ineffective results when working 
with extensive data. Therefore, these methods give more 
effective results when the dimensionality is reduced (26).

Gene expression data sets are pretty large. Modeling 
analyses take a long time because gene expression 
datasets are large, and these datasets can cause com-
putational inefficiency in the analysis. LASSO, one of 
the feature selection methods, was used to solve these 
problems in this study. The LASSO method requires 
that the sum of the model parameters’ absolute val-
ues be less than a fixed value (upper limit). The meth-
od achieves this by penalizing the coefficients of the 
regression variables, causing some of them to drop to 
zero. It is beneficial when the data set has a lot of vari-
ables and few observations. Furthermore, by removing 
irrelevant variables unrelated to the response variable, 
LASSO improves model interpretability and eliminates 
the problem of over-learning (27).

XGBoost
Gradient Boost is a powerful ML technique used for re-
gression and classification problems where weak predic-
tive models often produce ensemble forms of decision 
trees. Gradient Boost is based on boosting techniques 
(28, 29).

XGBoost, the abbreviation for Extreme Gradient Boost-
ing, is one of the applications of gradient boosting 
machines (GBM), one of the most effective supervised 
learning algorithms. Its basic structure is based on gra-
dient boosting and decision tree algorithms. Compared 
to other algorithms, it is in a very advantageous position 
regarding speed and performance. Gradient boosting 
is an ensemble method combining weak classifiers with 
boosting to create a strong classifier. The strong learner 
is trained iteratively, starting with a basic learner (29, 30).

Bioinformatics analysis 
For the samples of HBV-related HCC and HCV-related 
HCC patients whose gene expression profiles were ex-
amined, differential expression analyses were performed 
using the limma package in the R programming language 
(31). Differential expression analysis is the statistical analy-
sis of normalized read count data to find quantitative dif-
ferences in expression activities between treatment arms. 
A pipeline is designed for the relevant analyses via the R 
software environment. The achieved results are presented 
from a table of genes in order of importance and a graph 
to visualize differentially expressed genes. The result ta-
ble contains adjusted P and log2-fold change (log2FC) 
values, with genes with the smallest p values will be the 
most reliable. Log2FC>1 was used to identify up-regulat-
ed genes, and log2FC<-1 was used to identify down-reg-
ulated genes (32). A volcano plot was graphed to high-
light quickly large values regarding the relevant genes.

Study protocol and ethics committee approval
This study, which was prepared using the National Cen-
ter for Biotechnology Information Gene Expression Om-
nibus open-access dataset involving human participants, 
followed the ethical standards of the institutional and 
national research committee and with the 1964 Helsin-
ki Declaration and its later amendments or comparable 
ethical standards. Ethical approval was obtained from 
the Inonu University Institutional Review Board (IRB) for 
Non-Interventional Clinical Research (Date: 07.06.2022, 
No: 2022/3648). The STROBE (Strengthening the report-
ing of observational studies in epidemiology) guideline 
was utilized to assess the likelihood of bias and overall 
quality of this study (33).

Biostatistical analysis
The Shapiro Wilk test of normality was used to determine 
whether the variables had a normal distribution. Data 
were given as median (minimum-maximum) or mean± 
standard deviation. The Mann-Whitney U test was em-
ployed to compare non-normally distributed data, and 
an independent-sample t-test was utilized to compare 
non-normally distributed data where appropriate. Logis-
tic regression analysis was performed to estimate each 
gene’s odds ratio (a measure of effect size). Hosmer & 
Lemeshow’s test for the goodness of fit and an omnibus 



535

Artificial intelligence in hepatocellular cancer
İstanbul Tıp Fakültesi Dergisi • J Ist Faculty Med 2022;85(4):532-40

test of model coefficients were calculated for logistic re-
gression. A P-value <0.05 was considered statistically sig-
nificant. The IBM SPSS Statistics 25.0 program was used 
in the analysis. 

Modeling process
The XGBoost, one of the ML methods, was used in the 
modeling. Analyses were carried out using the n-fold 
cross-validation method. In the n-fold cross-validation 
method, the data is first divided into n parts, and the 
model is applied to n parts. One of the n parts is used 
for testing, while the other n-1 parts are used for training 
the model. The mean of the obtained values is evaluat-
ed for the cross-validation method. In this study, 10-fold 
cross-validation was employed for the modeling process. 
Accuracy, balanced accuracy, sensitivity, selectivity, a pos-
itive predictive value, a negative predictive value, and an 
F1-score were used as performance evaluation criteria. 
In addition, variable importances were calculated, which 
gives information about how much the input variables ex-
plain to the output variable.

RESULTS

In the study, 34 HCC patients were used, of which 28 were 
male and six were female. The mean age of the patients 
was 61.7±9.4 years. While 15 of the HBV+HCC patients 
were male and two were female, 13 of the HCV+HCC pa-
tients were male, and four were female. The mean age of 

HBV+HCC patients is 60.5±9.0 years, and the mean age 
of HCV+HCC patients is 62.9±9.9 years. The dataset used 
contains 8516 expressions. According to the bioinformat-
ics analysis, the first ten results are summarized concern-
ing minimum adjusted-p values in Table 1. Based on the 
statistics from Table 1, two genes (ID: 7109 and 9136) were 
down-regulation, one gene (ID: 6412) was up-regulation, 
and the other seven genes were unregulated. According to 
Table 1, Log2FC values for the ID=7179, ALDOC, RPL39, IF-
ITM3, FLJ12998, KIAA0446, GLUD1, TNIP1, FLJ30092, and 
MRPS21 genes were -1,6096623, -0,8756088, -1,1163435, 
-0,8729706, -0,7040085, -0,9362293, 1,0475908, -0,7960824, 
-0,9509129, and -0,7807535, respectively. The volcano plot 
used to visualize differentially expressed genes is given in 
Figure 1. On the y- and x-axes, the volcano graph plots 
significance versus fold-change in log 2 base to observe 
differentially expressed genes quickly.

Seventeen expression results were obtained by applying 
the LASSO feature selection method to 8516 expression 
results. Table 2 presents descriptive statistics for the se-
lected genes concerning the groups. The explanations of 
the data set with the selected expressions, the examined 
target variable, and the odds ratio per gene for the target 
variable are presented in Table 2. Based on the statistics 
in Table 2, significant differences were detected between 
groups in all genes (p<0.05). The findings of the perfor-
mance metrics from the XGboost model are given in Ta-

Table 1: The results of the bioinformatics analysis

Gene ID Gene Gene product
Adj P 
value

p value t B Log2FC
diffex-

pressed

7109 GML
glycosylphosphati-
dylinositol anchored 
molecule like

0.0000215 3.60E-09 -7.57217 10.3385 -1.60966 Down

2765 ALDOC Aldolase C, fructose-bis-
phosphate

0.0006396 2.59E-07 -6.21883 6.59 -0.87561 No

9136 RPL39 Ribosomal protein L39 0.0006396 3.22E-07 -6.15147 6.3996 -1.11634 Down

4853 IFITM3
Interferon-induced 
transmembrane protein 
3 (1-8U)

0.0021807 2.06E-06 -5.56952 4.7487 -0.87297 No

9176 FLJ12998 Hypothetical protein 
FLJ12998

0.0021807 2.13E-06 -5.55998 4.7216 -0.70401 No

7556 KIAA0446 KIAA0446 gene product 0.0021807 2.19E-06 -5.55042 4.6945 -0.93623 No

6412 GLUD1 Glutamate dehydroge-
nase 1

0.0022021 2.58E-06 5.498999 4.5485 1.047591 Up

3752 TNIP1 TNFAIP3 interacting 
protein 1

0.0040048 5.37E-06 -5.26902 3.8962 -0.79608 No

5909 FLJ30092 AF-1 specific protein 
phosphatase

0.0070976 1.07E-05 -5.05112 3.2804 -0.95091 No

7010 MRPS21 Mitochondrial ribosomal 
protein S21

0.0124601 2.09E-05 -4.83884 2.6838 -0.78075 No
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ble 3. Accuracy, balanced accuracy, sensitivity, specificity, 
the positive predictive value, the negative predictive val-
ue, and the F1 score obtained from the XGboost model 
were 97.1%, 97.1%, 94.1%, 100%, 100%, 94.4%, and 97%, 
respectively. The performance criteria values are plotted 
for the XGboost model in Figure 2. Figure 3 shows the 
importance levels of expressions for the selected genes 
in explaining the output variable. The ALDOC gene had 
the highest predictor importance of 100%, followed 
by GLUD2 at 77.2 %, TRAPPC10 at 59.2%, FLJ12998 at 
51.0%, RPL39 at 33.2%, KDELR2 at 24.8%, and KIAA0446 
at 23.8%.

Figure 1: The volcano plot

Table 2: Descriptive statistics for Input variables

Gene
Prop 
number

Grups

OR p
HCV+HCC HBV+HCC

Mean±SD
Median

(min-max)
Mean±SD

Median
(min-max)

GLUD2 2747 0.87±0.31 0.89 (0.23-1.38) -0.01±0.43 -0.02 (-0.64-0.72) 0.003 <0.001*

ALDOC 2765 0.53±0.39 0.52 (-0.33-1.17) -0.34±0.35 -0.35 (-1.01-0.34) 0.003 <0.001*

TNIP1 3752 0.40±0.36 0.49 (-0.48-0.83) -0.40±0.46 -0.46 (-1.24-0.61) 0.019 <0.001*

MX1 4303 0.75±1.07 0.43 (-1.32-2.98) -0.39±0.72 -0.40 (-1.72-0.59) 0.187 0.001*

IFITM3 4853 0.55±0.40 0.56 (-0.17-1.14) -0.32±0.46 -0.37 (-0.94-0.44) 0.011 <0.001*

C7orf30 4904 0.63±0.50 0.57 (-0.10-1.66) -0.04±0.53 -0.01 (-1.56-0.72) 0.029 0.001*

RPL41 6171 -1.91±0.69 -1.83 (-3.47--0.77) -0.98±0.82 -0.58 (-2.51-0.15) 4.779 0.004**

TRAPPC10 7109 1.74±0.69 1.69 (0.40-3.01) 0.13±0.57 0.01 (-0.78-1.94) - <0.001**

KIAA0446 7556 0.69±0.48 0.69 (-0.23-1.78) -0.25±0.47 -0.11 (-1.72-0.35) 0.002 <0.001**

KDELR2 7919 0.33±0.50 0.22 (-0.57-1.38) -0.34±0.49 -0.34 (-1.14-0.66) 0.050 <0.001*

OS-9 7949 0.17±0.38 0.22 (-0.45-1.10) -0.36±0.38 -0.34 (-1.09-0.21) 0.014 <0.001*

ACP1 8178 0.16±0.25 0.12 (-0.24-0.69) -0.23±0.28 -0.20 (-0.83-0.16) 0.001 <0.001*

RPL39 9136 0.99±0.52 0.90 (0.27-2.23) -0.13±0.53 -0.26 (-1.02-0.59) 0.003 <0.001*

FLJ12998 9176 0.70±0.31 0.77 (0.09-1.13) -0.01±0.32 -0.11 (-0.41-0.67) 0.001 <0.001*

WTAP 9589 0.55±0.33 0.58 (-0.31-1.05) 0.07±0.40 0.00 (-0.58-0.64) 0.028 0.001*

LMNA 9744 0.88±0.53 0.90 (-0.18-1.94) 0.09±0.76 0.27 (-2.30-1.60) 0.067 <0.001**

FKBP1A 10014 0.76±0.46 0.66 (0.13-1.84) 0.27±0.33 0.23 (-0.37-1.07) 0.022 0.001*

*: Independent sample t-test; **: Mann Whitney U test; OR. Odds ratio; SD: Standard deviation

Table 3: Performance metrics of the XGboost model

Metric Value (%) (95% CI)

Accuracy 97.1 (91.4-100)

Balanced accuracy 97.1 (91.4-100)

Sensitivity 94.1 (71.3-99.9)

Specificity 100 (80.5-100)

Positive predictive value 100 (79.4-100)

Negative predictive value 94.4 (72.7-99.9)

F1 score 97 (91.2-100)
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DISCUSSION

Although the structure of gene expression profiling in 
HCC and the background liver tissue structure has been 
extensively studied, ML-based prediction of HBV-re-
lated HCC and HCV-related HCC and the detection of 
critical candidate biomarkers using an AI approach have 
not been clarified (23). The present study uses the XG-
boost method to classify HBV-related HCC and HCV-re-
lated HCC and identify important genes that may cause 
HBV-related HCC.

HCC is an aggressive type of cancer with well-defined ep-
idemiological features. HCC continues to be an important 
public health problem worldwide, as it causes a significant 
economic and disease burden (1, 3, 34). The incidence 
and fatality rates of HCC vary significantly throughout the 
world. Discrepancies in the timing and quantity of expo-
sure to environmental and infectious risk factors, the avail-
ability of healthcare resources, and the capacity to identify 
HCC at an earlier stage and administer possibly curative 
therapy are all variables that contribute to these differenc-
es (13, 35). HCC develops due to prolonged chronic hep-
atitis. In this case, patients have developed liver cirrhosis 
due to HBV or HCV infection. In patients with cirrhosis ow-

ing to chronic HBV or HCV infection, the annual incidence 
of HCC ranges from 2 to 5 percent overall. Chronic HBV 
and HCV infection are the major causes of HCC globally, 
accounting for 80% of all cases (34). 

Except in northern Africa, where HCV incidence is most 
significant, chronic HBV infection is the primary cause of 
HCC throughout Eastern Asia and most African nations 
(36, 37). It is estimated that 257 million people worldwide 
have a chronic HBV infection. This situation leads to the 
high prevalence of chronic viral liver disease and HCC. It 
is also estimated that 20 million deaths can be attributed 
to acute hepatitis, chronic hepatitis, cirrhosis, and HCC 
caused by HBV between 2015 and 2030, with 5 million 
deaths from HCC alone (34). 

HCV infection is still one of the most frequent blood-
borne viral diseases and the leading cause of global in-
fectious disease mortality (38, 39). HCV infection affects 
an estimated 71 million individuals worldwide, represent-
ing 1% of the population (40). Although direct-acting an-
tiviral treatments have a high cure rate, 1.75 million new 
HCV infections and 400,000 HCV-related deaths occur 
yearly (41). HCV infection is a firmly established risk factor 
for HCC, increasing risk by 10- to 20-fold. Fatalities from 
HCV-related HCC grew by 21.1 percent during the last 
decade, but deaths from HCC caused by sources other 
than HCV and alcohol remained unchanged (14). 

The overall survival of patients affected by HCC is low, 
and management of HCC risk factors needs to be ratio-
nally expanded to reduce the burden of HCC worldwide. 
There is a growing interest in genomics and molecular 
biology studies to identify early diagnosis and prognos-
tic markers and new therapeutic targets to uncover the 
mechanisms of liver carcinogenesis and thus improve the 
clinical management of HCC patients (34, 42). 

In the dataset investigated in this study, genomic data 
of samples obtained from liver tissues of 17 HBV-relat-
ed HCC and 17 HCV-related HCC patients were used for 
the relevant analyses. cDNA microarrays were obtained 
from the samples, and the dataset used contained 8516 
expressions. According to the Log2FC values used to 
determine the expression fold changes between the two 
groups from the bioinformatics analyses (detailed in Ta-
ble 2), the GML gene has three-fold lower gene expres-
sion in HBV-related HCC patients than HCV-related HCC. 
Similarly, the RPL39 gene had a 2.15-fold lower gene ex-
pression. The GLUD1 gene had two-fold upper gene ex-
pression in HBV-related HCC patients than in HCV-relat-
ed HCC patients. Finally, the ALDOC gene, IFITM3 gene, 
FLJ12998 gene, KIAA0446 gene, TNIP1 gene, FLJ30092 
gene, and MRPS21 gene had the same expression be-
tween the two groups. In this instance, gene expression 
data are so large that modeling with these datasets can 
result in long analysis times and computational inefficien-
cy in the analysis due to the size. Therefore, before mod-

Figure 2: Graph of values for performance criteria 
obtained from XGboost models

Figure 3: Graph of values for performance criteria 
obtained from XGboost models
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eling with the existing data set, the most important genes 
associated with the output variable were selected with 
the Lasso variable selection method. Seventeen genes 
selected by the Lasso method were used in building Xg-
boost modeling. The accuracy, balanced accuracy, sensi-
tivity, specificity, positive and negative predictive value, 
and F1 score metrics obtained with the XGboost model 
were 97.1%, 97.1%, 94.1%, 100%, 100%, 94.4%, and 97%, 
respectively. The performance metrics indicated that the 
proposed XGboost could correctly classify two groups 
of patients based on the AI approach. According to the 
variable importance obtained from the XGboost method, 
ALDOC, GLUD2, TRAPPC10, FLJ12998, RPL39, KDELR2, 
and KIAA0446 genes can be used as candidates for pre-
dictive biomarkers for HBV-related HCC. According to 
the statistical analysis, 17 genes obtained by variable 
selection showed statistically significant differences for 
the two patient groups. Of the genes whose odds values 
were calculated, all genes, except RPL41, were down-
regulated in HBV-related HCC patients at significant-
ly higher folds than in HCV-related HCC patients. The 
RPL41 gene, on the other hand, was upregulated 4.779 
fold in HBV-related HCC patients compared to HCV-re-
lated HCC patients. The OR values that were determined 
throughout the study and the Log2FC values support 
each other and support the values that were identified 
in the genes according to the variable significance. Addi-
tionally, the proposed pipeline produced a volcano plot, 
representing the up-and-down-regulation of the genes in 
this research. These plots are becoming more common 
in omics experiments such as genomics, proteomics, and 
metabolomics, where thousands of replicate data points 
between two conditions are often present.

One study reported that the ALDOC gene is associated 
with HBV-related HCC and is up-regulated by the MLX 
protein (43). In another study, it was reported that ALDOC 
was up-regulated in patients with HBV (44). In a study us-
ing matched tumor and adjacent liver tissues from 159 
patients with HBV-related HCC, GLUD2 showed high ex-
pression (45). Another study showed GLUD2 down-regu-
lation for the same condition (46). Another study found 
GLUD2, a potentially relevant gene for HCC (47). In one 
study, overexpression of RPL39 was reported to be asso-
ciated with HCC (48). In one study, KDELR2 was identified 
as a potential gene associated with HBV (49). 

As it is known, all diseases that cause chronic liver damage 
are risk factors for the development of HCC. Therefore, 
international guidelines’ follow-up of such patients is cru-
cial for detecting possible HCC or its detection at an early 
stage (50). The most authoritative guidelines on monitoring 
chronic liver patients are published periodically by EASL, 
APASL, and AASLD (50). The above guidelines suggest 
that patients with chronic liver disease without suspected 
HCC should be followed up with ultrasonography and AFP 
at six-month intervals (50). Patients with suspected HCC 

should be followed up with ultrasound and AFP at three or 
six-month intervals. Patients with a strong suspicion of HCC 
should be followed up with ultrasound and AFP.  

However, these approaches may not always give the ex-
pected results because it is not always easy for patients 
to reach healthcare providers in underdeveloped or de-
veloping countries. False-negative results may be high-
er than expected, especially since ultrasonography is an 
operator-dependent examination. It is a known fact that 
there is a correlation between the duration of chronic liver 
disease and the probability of developing HCC. In addi-
tion, as in all other cancer types, gene mutation and mu-
tation-related mRNA expression changes are expected in 
HCC. Therefore, in the follow-up of patients with chronic 
liver disease, fundamental genetic analysis can be per-
formed after a certain period to determine whether there 
is a genetic mutation. As seen in the results of this study, 
if changes in the expression of genes strongly associated 
with HCC are detected, and ideas are formed about the 
genetic mechanism underlying the different etiologies 
that cause HCC, patients can be followed more closely, 
and preventive treatments can be started when neces-
sary. However, there is no evidence-based data on when 
genetic analysis should be performed on chronic liver 
disease. Therefore, a prospective multicenter study is 
needed on the timing of genetic analysis for patients with 
chronic liver disease. With this vital finding, increasing 
the number of patients may further increase the scope of 
genetic information and the power of the study. 

CONCLUSION 

In conclusion, this study identified potential genomic 
biomarkers for HBV-associated HCC using gene expres-
sion data from patients with HBV-associated HCC and 
HCV-associated HCC. The reliability of the genes discov-
ered in the future, more thorough analyses may be evalu-
ated, therapy techniques can be devised based on these 
genes, and their clinical utility can be detailed.
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