Turk. J. Math. Comput. Sci. 15(1)(2023) 192–202 © MatDer DOI : 10.47000/tjmcs.1133973

On Quaternions with Gaussian Oresme Coefficients

Aybüke Ertaş 1,* 1,* 1,* D, Fatih Yılmaz 1

¹*Department of Mathematics, Polatlı Faculty of Science and Letters, Haci Bayram Veli University, 06900, Ankara, Turkey.*

Received: 21-06-2022 • Accepted: 15-05-2023

Abstract. At this paper, we describe Gaussian Oresme numbers taking into account the Oresme numbers. Furthermore, we investigate their some basic characteristic properties such as Binet formula and Cassini identity, etc. Moreover, we define quaternions with Gaussian Oresme coefficients and obtain their some spectacular properties.

2010 AMS Classification: 05A15, 11B39, 11B83, 11B37 Keywords: Generating function, Binet formula, Cassini identity, Catalan identity, D'Ocagne's identity.

1. Introduction

1.1. A Brief Review on Quaternions. The set of real quaternions can be represented as

$$
H = \{q = q_0 + q_1 i + q_2 j + q_3 k : q_0, q_1, q_2, q_3 \in \mathbb{R}\}\
$$

and it is a 4-dimensional vector space on $\mathbb R$, for details see [\[9,](#page-10-0)[27,](#page-10-1)[32\]](#page-10-2). A general from of a real quaternion is represented as below:

$$
q = \sum_{m=0}^{3} k_m e_m = k_0 e_0 + k_1 e_1 + k_2 e_2 + k_3 e_3,
$$

where k_0, k_1, k_2 , and k_3 are real coefficients and e_0, e_1, e_2 , and e_3 are quaternion units, that satisfies

$$
e_0^2 = 1
$$
, $e_0e_i = e_ie_0 = e_i$, $i = 1, 2, 3$, $e_1^2 = e_2^2 = e_3^2 = -1$.

The multiplication of quaternion units is listed in Table [1:](#page-0-0)

$$
\begin{array}{c|cccc}\n\cdot & 1 & e_1 & e_2 & e_3 \\
\hline\n1 & 1 & e_1 & e_2 & e_3 \\
e_1 & e_1 & -1 & e_3 & -e_2 \\
e_2 & e_2 & -e_3 & -1 & e_1 \\
e_3 & e_3 & e_2 & -e_1 & -1\n\end{array}
$$

TABLE 1. The multiplication of the quaternion units

For any quaternions $p = p_0 + p_1 i + p_2 j + p_3 k$ and $q = q_0 + q_1 i + q_2 j + q_3 k$, the addition operation is defined as follows:

$$
p+q=S_{(p+q)}+V_{(p+q)},
$$

^{}Corresponding Author*

Email addresses: aybuke.ertas@hbv.edu.tr (A. Ertaş), fatih.yilmaz@hbv.edu.tr (F. Yılmaz)

the vector product is defined as follows:

$$
p \times q = (p_2q_3 - p_3q_2)i + (p_3q_1 - p_1q_3)j + (p_1q_2 - p_2q_1)k,
$$

and moreover, the quaternion product is defined as follows:

$$
pq = S_p S_q - \langle V_p, V_q \rangle + S_q V_q + S_q V_p + V_p \times V_q,
$$

where " \langle , \rangle " denotes the inner product and " \times " denotes the vector product in \mathbb{R}^3 . In this definition *S_q* and *V_q* are the scalar part and vector parts, respectively. For $\lambda \in \mathbb{R}$, the scalar produ scalar part and vector parts, respectively. For $\lambda \in \mathbb{R}$, the scalar product is defined as

$$
\lambda q = (\lambda q_0) + (\lambda q_1)i + (\lambda q_2)j + (\lambda q_3)k.
$$

The conjugate of *q* is given by

$$
\bar{q} = S_q - V_q.
$$

Also, the norm of *q* is defined as below:

$$
\|q\| = \sqrt{q\bar{q}} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}.
$$

The inverse of a real quaternion *q* is

$$
q^{-1} = \frac{\bar{q}}{\|q\|}, \ \ \|q\| \neq 0.
$$

1.2. On the Oresme Numbers. The Oresme numbers are defined by the following recurrence relation:

$$
O_n = O_{n-1} - \frac{1}{4}O_{n-2}
$$

for $n \ge 2$ with $O_0 = 0$, $O_1 = \frac{1}{2}$. These numbers are obtained as a special case of Horadam numbers. Horadam numbers are defined as $W = W(W_0, W_1; n, a)$ for $n > 0$. are defined as $W_n = W_n(W_0, \overline{W_1}; p, q)$, for $n \geq 0$:

$$
W_{n+2}=pW_{n+1}-qW_n,
$$

where p, q, n are integers and $W_0 = a$, $W_1 = b$. It is a general form of some famous number sequences, please see e.g. [\[2,](#page-10-3) [5](#page-10-4)[–8,](#page-10-5) [13](#page-10-6)[–18,](#page-10-7) [21,](#page-10-8) [22,](#page-10-9) [28](#page-10-10)[–30\]](#page-10-11). Moreover the author, in [\[16\]](#page-10-12), presents some identities for Oresme numbers as follows:

$$
O_n = \frac{n}{2^n} \text{ (Binet Formula)},
$$

\n
$$
O_{n+1}O_{n-1} - O_n^2 = -\frac{1}{2^{2n}} \text{ (Cassini Formula)},
$$

\n
$$
O_{n+3} = \frac{3}{4}O_{n+1} - \frac{1}{4}O_n,
$$

\n
$$
O_{n+3} = \frac{3}{4}O_{n+2} - \frac{1}{16}O_n,
$$

\n
$$
\sum_{j=0}^n O_j = 4\left(\frac{1}{2} - O_{n+2}\right).
$$

In [\[3\]](#page-10-13), the authors defined the quaternions with the Oresme coefficients as below:

$$
QO_n = O_ne_0 + O_{n+1}e_1 + O_{n+2}e_2 + O_{n+3}e_3.
$$

In Table [2,](#page-1-0) we have listed some quaternions with Oresme coefficients.

$$
\frac{n}{QO_n || -2 + \frac{1}{2}e_2 + \frac{2}{4}e_3 || \frac{1}{2}e_1 + \frac{2}{4}e_2 + \frac{3}{8}e_3 || \frac{1}{2} + \frac{2}{4}e_1 + \frac{3}{8}e_2 + \frac{4}{16}e_3 || \frac{2}{4} + \frac{3}{8}e_1 + \frac{4}{16}e_2 + \frac{5}{32}e_3
$$

TABLE 2. Some Oresme Quaternions

In [\[12\]](#page-10-14), Halici investigated the complex Fibonacci quaternions and give the generating function and Binet formula for these quaternions. In [\[4\]](#page-10-15), Arslan introduced the Gaussian Pell quaternion and Gaussian Pell-Lucas quaternion.

Then, the author obtained some interesting identities of them. Any complex quaternion λ is defined in the following form:

$$
\lambda = \lambda_0 e_0 + \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3
$$

where each coefficient λ_i is a complex number and e_0 , e_1 , e_2 , e_3 are quaternionic units. The set of all complex quater-
pions is denoted by H. The complex quaternion λ can be written as nions is denoted by H_c . The complex quaternion λ can be written as

$$
\lambda = k + ik', \ i^2 = -1,
$$

where k and k' are real quaternions.

In literature, there are many amazing papers that are interested in Oresme numbers, Gaussian-type numbers, Horadam sequence, quaternions and their spectacular properties. For example; in [\[26\]](#page-10-16), the authors studied Oresme hybrid numbers and hybrationals based on the known Oresme sequence and gave some properties of Oresme hybrid numbers. In [\[10\]](#page-10-17), the authors defined the Horadam hybrid quaternions and gave some of their properties. Moreover, they investigated the relations between the Fibonacci hybrid quaternions and the Lucas hybrid quaternions which connected the Fibonacci quaternions and Lucas quaternions. In [\[11\]](#page-10-18), the authors considered determinants for some families of Toeplitz-Hessenberg matrices whose entries are Oresme numbers. In particular, they established a connection between the Oresme and the Fibonacci and Pell sequences via Toeplitz-Hessenberg determinants. In [\[24\]](#page-10-19), the authors defined the generalization of the matrix form of the Oresme sequence, extending it to the field of integers. In [\[23\]](#page-10-20), using the Leonardo Pisano numbers and hybrid numbers, the authors investigated Leonardo Pisano polynomials and hybrinomials. In [\[1\]](#page-10-21), the authors provided De Moivre's formula for the light-like Pauli quaternions. In [\[31\]](#page-10-22), Yılmaz and Ozkan took into account the generalized Gaussian Fibonacci numbers. In [[20\]](#page-10-23), Yılmaz and Karaca constructed new number systems, called the harmonic complex Fibonacci sequences (HCF) and the harmonic hybrid Fibonacci (HHF) sequences. Moreover, they examined some algebraic properties such as Binet-like-formula, partial sums related to these sequences. In [\[19\]](#page-10-24), the authors present, in a unified manner, results which are valid on both split quaternions with quaternion coefficients and quaternions with dual coefficients, simultaneously, calling the attention to the main differences between these two quaternions.

At this paper, initially, we consider Gaussian Oresme numbers and examine some spectacular properties of them. Then, we define quaternions with Gaussian Oresme coefficients and obtain some of their characteristic properties.

2. Gaussian Oresme Numbers

In [\[25\]](#page-10-25), the authors defined generalized Gaussian Fibonacci sequence, denoted by Gf_n , as below:

$$
Gf_{n+1} = pGf_n + qGf_{n-1}
$$

where $Gf_0 = a$, $Gf_1 = b$ are initial values. For $p = 1$, $q = -\frac{1}{4}$, $a = -2i$, $b = \frac{1}{2}$, we get the Gaussian Oresme sequence. In other words, the Gaussian Oresme sequence, denoted by *GOn*, defined by the following recurrence relation

$$
GO_n = GO_{n-1} - \frac{1}{4}GO_{n-2}, \quad \text{for } n \ge 2
$$
 (2.1)

with initial conditions $GO_0 = -2i$, $GO_1 = \frac{1}{2}$. We remind that the Gaussian Oresme sequence can be rewritten as below:

$$
GO_n = O_n + iO_{n-1}.
$$

We have listed some values of the Gaussian Oresme numbers in the following table.

n	0	1	2	3	4	5	6
GO _n	-2i	$1/2$	$(1+i)/2$	$(3+4i)/8$	$(2+3i)/8$	$(5+8i)/32$	$(3+5i)/8$
TABLE 3. Some Gaussian Oresme numbers							

Theorem 2.1 (Generating function). *The generating function for the Gaussian Oresme numbers is*

$$
f(x) = \sum_{n=0}^{\infty} (GO_n) x^n = \frac{-2i + (\frac{1}{2} + 2i)x}{1 - x + \frac{x^2}{4}}.
$$

Proof. By exploiting the definition of the generating function, we have:

$$
f(x) = GO_0 + GO_1x + GO_2x^2 + GO_3x^3 + \dots + GO_nx^n + \dots,
$$

$$
-xf(x) = -GO_0x - GO_1x^2 - GO_2x^3 - \dots - GO_{n-1}x^n - \dots,
$$

$$
\frac{1}{4}x^2f(x) = \frac{1}{4}GO_0x^2 + \frac{1}{4}GO_1x^3 + \frac{1}{4}GO_2x^4 + \dots + \frac{1}{4}GO_{n-2}x^n + \dots.
$$

From here;

$$
(1 - x + \frac{1}{4}x^2)f(x) = GO_0 + (GO_1 - GO_0)x
$$

+ $\left(GO_2 - GO_1 + \frac{1}{4}GO_0\right)x^2$
+ $\left(GO_3 - GO_2 + \frac{1}{4}GO_1\right)x^3$
: $\left.+ \left(GO_n - GO_{n-1} + \frac{1}{4}GO_{n-2}\right)x^n + \cdots \right.$

and as a result;

$$
f(x) = \frac{GO_0 + (GO_1 - GO_0)x}{1 - x + \frac{x^2}{4}}
$$

$$
= \frac{-2i + (\frac{1}{2} + 2i)x}{1 - x + \frac{x^2}{4}}.
$$

So, the proof is completed. \Box

Note that the generating function helps us to obtain the Binet formula which is an explicit closed-form formula for the coefficients of these generating functions.

Theorem 2.2 (Binet formula). *For* $n \geq 0$:

$$
GO_n = 2^{-n}(-A + B(n + 1)),
$$

where $A = (4i + 1)$, $B = (2i + 1)$.

Proof. By using the generating function and the definition of the Gaussian Oresme numbers, we have

$$
f(x) = \frac{GO_0 + (GO_1 - GO_0)x}{1 - x + \frac{x^2}{4}}
$$

=
$$
\frac{-2i + (\frac{1}{2} + 2i)x}{1 - x + \frac{x^2}{4}}
$$

=
$$
\frac{-2i + (\frac{1}{2} + 2i)x}{(\frac{x}{2} - 1)^2}
$$

=
$$
\frac{A}{(\frac{x}{2} - 1)} + \frac{B}{(\frac{x}{2} - 1)^2},
$$

where $A = (4i + 1)$ and $B = (2i + 1)$. It can be rewritten

$$
\frac{-2i + (\frac{1}{2} + 2i)x}{1 - x + \frac{x^2}{4}} = -\frac{(4i + 1)}{(1 - \frac{x}{2})} + \frac{(2i + 1)}{(1 - \frac{x}{2})^2}
$$

$$
= \left(\sum_{n=0}^{\infty} -A2^{-n}x^n\right) + \left(\sum_{n=0}^{\infty} B2^{-n}(n + 1)x^n\right)
$$

$$
= \sum_{n=0}^{\infty} \left(-A2^{-n} + B2^{-n}(n + 1)\right)x^n,
$$

where $f(x) = \sum_{n=0}^{\infty} (-A2^{-n} + B2^{-n}(n+1)) x^n$. In other words, the Binet formula is obtained as below:

$$
GO_n = -A2^{-n} + B2^{-n}(n+1)
$$

= $2^{-n}(-A + B(n+1)).$

So, the proof is completed. \Box

Example 2.3. *GO*₄ can be obtained by using Binet's formula. For $n = 4$,

$$
GO_4 = 2^{-4}(-A + B(4 + 1))
$$

= 2^{-4}(-(4i + 1) + (2i + 1)5)
= $\frac{3i + 2}{8}$.

Theorem 2.4 (Cassini identity). *For n* > ⁰*, the following identity holds*

$$
GO_{n+1}GO_{n-1}-GO_n^2=-2^{-2n}B^2.
$$

Proof. From the Binet formula for the Gaussian Oresme numbers;

$$
GO_{n+1}GO_{n-1} - GO_n^2 = (2^{-n-1}(-A + B(n + 2))) (2^{-n+1}(-A + Bn))
$$

$$
- ((2^{-n}(-A + B(n + 1))^2
$$

$$
= 2^{-2n} (A^2 - A Bn - A B(n + 2) + B^2(n + 2)n)
$$

$$
- 2^{-2n} (A^2 - 2AB(n + 1) + B^2(n + 1)^2)
$$

$$
= 2^{-2n} (A^2 - A Bn - A B(n + 2) + B^2(n + 2)n
$$

$$
- A^2 + 2AB(n + 1) - B^2(n + 1)^2)
$$

$$
= -2^{-2n} B^2,
$$

where $A = (4i + 1)$ and $B = (2i + 1)$.

Example 2.5. For $n = 5$, Cassini identity can be observed as follows:

$$
GO_6GO_4 - GO_5^2 = -2^{-10}B^2
$$

= -2^{-10}(2i + 1)²
= 2^{-10}(3 - 4i)
= $\frac{3 - 4i}{2^{10}}$.

Theorem 2.6 (Catalan identity). *For n, r* \geq 0*,*

$$
GO_{n+r}GO_{n-r} - GO_n^2 = -2^{-2n}B^2r^2.
$$

Proof. From the Binet formula for the Gaussian Oresme numbers;

$$
GO_{n+r}GO_{n-r} - GO_n^2 = (2^{-n-r}(-A + B(n+r+1))) (2^{-n+r}(-A + B(n-r+1)))
$$

$$
- (2^{-n}(-A + B(n+1)))^2
$$

$$
= 2^{-2n}(A^2 - 2ABn - 2AB + B^2(n^2 + 2n - r^2 + 1))
$$

$$
- 2^{-2n}(A^2 - 2ABn - 2AB + B^2n^2 + 2B^2n + B^2))
$$

$$
= -2^{-2n}B^2r^2,
$$

where $A = (4i + 1)$ and $B = (2i + 1)$. So, the proof is completed.

Example 2.7. For $n = 4$, $r = 1$,

$$
GO5GO3 - GO42 = -2-2nB2r2
$$

= -2⁻⁸(2*i* + 1)²
= 2⁻⁸(3 - 4*i*)
= $\frac{3 - 4i}{28}$.

Theorem 2.8 (d'Ocagne's identity). *For* $n, m \ge 0$,

$$
GO_{m+1}GO_n - GO_mGO_{n+1} = 2^{-m-n-1}B^2(n-m).
$$

Proof. From the Binet formula for the Gaussian Oresme numbers;

$$
GO_{m+1}GO_n - GO_mGO_{n+1} = (2^{-m-1}(-A + B(m+2)))(2^{-n}(-A + B(n+1)))
$$

\n
$$
- (2^{-m}(-A + B(m+1))) (2^{-n-1}(-A + B(n+2)))
$$

\n
$$
= 2^{-m-n-1}(A^2 - AB(n+1) - AB(m+2))
$$

\n
$$
+ B^2(m+2)(n+1)) - 2^{-m-n-1}(A^2 - AB(n+2))
$$

\n
$$
- AB(m+1) + B^2(m+1)(n+2))
$$

\n
$$
= 2^{-m-n-1}(A^2 - ABn - AB - ABm - 2AB)
$$

\n
$$
+ (B^2m + 2B^2)(n+1)) - 2^{-m-n-1}
$$

\n
$$
\times (A^2 - ABn - 2AB - ABm - AB)
$$

\n
$$
+ (B^2m + B^2)(n+2))
$$

\n
$$
= 2^{-m-n-1}(B^2(n-m),
$$

where $A = (4i + 1)$ and $B = (2i + 1)$. So, the proof is completed.

Example 2.9. For $n = 4$, $m = 1$,

$$
GO2GO4 - GO1GO5 = 2-1-4-1B2(4 - 1)
$$

= 2⁻⁶3(2*i* + 1)²
= 2⁻⁶(12*i* - 9).

3. Quaternions with Gaussian Oresme Numbers

In this section, we define quaternions with Gaussian Oresme coefficients and investigate some of their properties. Let us define the quaternions with Gaussian Oresme coefficients as below:

$$
QGO_n = GO_n e_0 + GO_{n+1}e_1 + GO_{n+2}e_2 + GO_{n+3}e_3.
$$

Note that, it verifies the equation *QGOⁿ* = *QOn*+*iQOn*−1. We have listed some values of the quaternions with Gaussian Oresme coefficients in Table [4.](#page-6-0)

Table 4. Some Gaussian Oresme Quaternions

The conjugate, complex conjugate, norm of the quaternions with Gaussian Oresme coefficients are defined as below, respectively:

$$
QGO_n^* = GO_n e_0 - GO_{n+1}e_1 - GO_{n+2}e_2 - GO_{n+3}e_3,
$$

\n
$$
\overline{QGO_n} = \overline{GO_n}e_0 + \overline{GO_{n+1}}e_1 + \overline{GO_{n+2}}e_2 + \overline{GO_{n+3}}e_3,
$$

\n
$$
N_{QGO_n} = QGO_nQGO_n^* = GO_n^2 + GO_{n+1}^2 + GO_{n+2}^2 + GO_{n+3}^2.
$$

Theorem 3.1. *For* $n > 1$ *, the quaternions with Gaussian Oresme coefficients verifies:*

i) $QGO_{n+1} = QGO_n - \frac{1}{4}QGO_{n-1}.$

i) $QGO_{n+1} + QGO^* - 2GO$ ii) $QGO_n + QGO_n^* = 2GO_n$.

Proof.

i) Using the equation [\(2.1\)](#page-2-0) and the definition of quaternions with Gaussian Oresme coefficients, we get

$$
QGO_n - \frac{1}{4}QGO_{n-1} = (GO_n + GO_{n+1}e_1 + GO_{n+2}e_2 + GO_{n+3}e_3)
$$

\n
$$
- \frac{1}{4}(GO_{n-1} + GO_ne_1 + GO_{n+1}e_2 + GO_{n+2}e_3)
$$

\n
$$
= (GO_n - \frac{1}{4}GO_{n-1}) + (GO_{n+1} - \frac{1}{4}GO_n)e_1
$$

\n
$$
+ (GO_{n+2} - \frac{1}{4}GO_{n+1})e_2 + (GO_{n+3} - \frac{1}{4}GO_{n+2})e_3
$$

\n
$$
= GO_{n+1} + GO_{n+2}e_1 + GO_{n+3}e_2 + GO_{n+4}e_3
$$

\n
$$
= QGO_{n+1}.
$$

ii) From the definition of quaternions with Gaussian Oresme coefficients and its quaternion conjugate, we obtain

$$
QGO_n + QGO_n^* = (GO_n + GO_{n+1}e_1 + GO_{n+2}e_2 + GO_{n+3}e_3)
$$

+ ((GO_n - GO_{n+1}e_1 - GO_{n+2}e_2 - GO_{n+3}e_3)
= 2GO_n.

 \Box

It is known that, the generating function is a way of coding an infinite sequence by treating them as the coefficients of a formal power series. Let us compute the generating function for the quaternions with Gaussian Oresme coefficients.

Theorem 3.2 (Generating function). *The generating function for the quaternions with Gaussian Oresme coe*ffi*cients is given by*

$$
g(x) = \sum_{n=0}^{\infty} (QGO_n) x^n = \frac{\left[-2i + \frac{e_1}{2} + (\frac{1+i}{2})e_2 + (\frac{3+4i}{8})e_3\right] + x\left[(\frac{1+4i}{2}) + (\frac{i}{2})e_1 - (\frac{1}{8})e_2 - (\frac{1+i}{8})e_3\right]}{1 - x + \frac{x^2}{4}}
$$

Proof. By exploiting the definition of the generating function, we have:

$$
g(x) = QGO_0 + QGO_1x + QGO_2x^2 + QGO_3x^3 + \dots + QGO_nx^n + \dots, -xg(x) = -QGO_0x - QGO_1x^2 - QGO_2x^3 \dots - QGO_{n-1}x^n - \dots, \frac{1}{4}x^2g(x) = \frac{1}{4}QGO_0x^2 + \frac{1}{4}QGO_1x^3 + \frac{1}{4}QGO_2x^4 + \dots + \frac{1}{4}QGO_{n-2}x^n + \dots
$$

From here;

$$
(1 - x + \frac{1}{4}x^2)g(x) = QGO_0 + (QGO_1 - QGO_0)x
$$

+ $\left(QGO_2 - QGO_1 + \frac{1}{4}QGO_0\right)x^2$
+ $\left(QGO_3 - QGO_2 + \frac{1}{4}QGO_1\right)x^3$
:
$$
\left(\frac{QGO_n - QGO_{n-1} + \frac{1}{4}QGO_{n-2}}{x^n} + \cdots\right)
$$

and as a result;

$$
g(x) = \frac{QGO_0 + (QGO_1 - QGO_0)x}{1 - x + \frac{x^2}{4}}
$$

=
$$
\frac{\left[-2i + \frac{e_1}{2} + (\frac{1+i}{2})e_2 + (\frac{3+4i}{8})e_3\right] + x\left[(\frac{1+4i}{2}) + (\frac{i}{2})e_1 - (\frac{1}{8})e_2 - (\frac{1+i}{8})e_3\right]}{1 - x + \frac{x^2}{4}}.
$$

So, the proof is completed. \Box

Theorem 3.3 (Binet formula). *For* $n \ge 0$

$$
QGO_n = 2^{-n}(-A + B(n + 1)),
$$

where

$$
A = \left[1 + 4i + ie_1 - \frac{1}{4}e_2 - \left(\frac{1+i}{4}\right)e_3\right]
$$

$$
B = \left[1 + 2i + \left(\frac{1+2i}{2}\right)e_1 + \left(\frac{1+2i}{4}\right)e_2 + \left(\frac{1+2i}{8}\right)e_3\right]
$$

and

2 4 8 *Proof.* By exploiting the generating function and the definition of the quaternions with Gaussian Oresme coefficients, we have

$$
g(x) = \frac{QGO_0 + (QGO_1 - QGO_0)x}{1 - x + \frac{x^2}{4}}
$$

=
$$
\frac{\left[-2i + \frac{e_1}{2} + (\frac{1+i}{2})e_2 + (\frac{3+4i}{8})e_3\right] + x\left[(\frac{1+4i}{2}) + (\frac{i}{2})e_1 - (\frac{1}{8})e_2 - (\frac{1+i}{8})e_3\right]}{1 - x + \frac{x^2}{4}}
$$

=
$$
\frac{A}{(\frac{x}{2} - 1)} + \frac{B}{(\frac{x}{2} - 1)^2},
$$

where

$$
A = \left[1 + 4i + ie_1 - \frac{1}{4}e_2 - \left(\frac{1+i}{4}\right)e_3\right]
$$

and

$$
B = \left[1 + 2i + \left(\frac{1 + 2i}{2}\right)e_1 + \left(\frac{1 + 2i}{4}\right)e_2 + \left(\frac{1 + 2i}{8}\right)e_3\right].
$$

It can be rewritten

$$
\frac{\left[-2i + \frac{e_1}{2} + \left(\frac{1+i}{2}\right)e_2 + \left(\frac{3+4i}{8}\right)e_3\right] + x\left[\left(\frac{1+4i}{2}\right) + \left(\frac{i}{2}\right)e_1 - \left(\frac{1}{8}\right)e_2 - \left(\frac{1+i}{8}\right)e_3\right]}{1 - x + \frac{x^2}{4}} = -\frac{A}{(1 - \frac{x}{2})} + \frac{B}{(1 - \frac{x}{2})^2}
$$
\n
$$
= \left(\sum_{n=0}^{\infty} -A2^{-n}x^n\right) + \left(\sum_{n=0}^{\infty} B2^{-n}(n+1)x^n\right)
$$
\n
$$
= \sum_{n=0}^{\infty} 2^{-n}(-A + B(n+1))x^n,
$$

where

$$
f(x) = \sum_{n=0}^{\infty} \left(-A2^{-n} + B2^{-n}(n+1) \right) x^n, \text{ i.e.,}
$$

$$
QGO_n = -A2^{-n} + B2^{-n}(n+1)
$$

$$
= 2^{-n}(-A + B(n+1)).
$$

So, the proof is completed.

Example 3.4. For $n = 1$,

$$
QGO_1 = 2^{-1}(-A + B(1 + 1))
$$

= $2^{-1}\left[-\left(1 + 4i + ie_1 - \frac{1}{4}e_2 - \left(\frac{1+i}{4}\right)e_3\right)\right]$
+ $\left[1 + 2i + \left(\frac{1+2i}{2}\right)e_1 + \left(\frac{1+2i}{4}\right)e_2 + \left(\frac{1+2i}{8}\right)e_3\right]$
= $-\frac{1}{2} - 2i - \frac{ie_1}{2} + \frac{1}{8}e_2 + \left(\frac{1+i}{8}\right)e_3$
+ $1 + 2i + \left(\frac{1+2i}{2}\right)e_1 + \left(\frac{1+2i}{4}\right)e_2 + \left(\frac{1+2i}{8}\right)e_3$
= $\frac{1}{2}\left(\frac{1+i}{2}\right)e_1 + \left(\frac{3+4i}{8}\right)e_2 + \left(\frac{2+3i}{8}\right)e_3$.

Theorem 3.5 (Cassini identity). For $n > 0$, the following identity holds

$$
QGO_{n+1}QGO_{n-1} - QGO_n^2 = -2^{-2n}B^2
$$

 \cdot

Proof. From the Binet formula;

where $A =$

$$
QGO_{n+1}QGO_{n-1} - QGO_n^2 = (2^{-n-1}(-A + B(n+2)))(2^{-n+1}(-A + Bn))
$$

\n
$$
- ((2^{-n}(-A + B(n+1)))^2
$$

\n
$$
= 2^{-2n}(A^2 - ABn - AB(n+2) + B^2(n+2)n)
$$

\n
$$
- 2^{-2n}(A^2 - 2AB(n+1) + B^2(n+1)^2)
$$

\n
$$
= 2^{-2n}(A^2 - ABn - AB(n+2) + B^2(n+2)n)
$$

\n
$$
- A^2 + 2AB(n+1) - B^2(n+1)^2)
$$

\n
$$
= -2^{-2n}B^2,
$$

\n
$$
[1 + 4i + ie_1 - \frac{1}{4}e_2 - (\frac{1+i}{4})e_3] \text{ and } B = [1 + 2i + (\frac{1+2i}{2})e_1 + (\frac{1+2i}{4})e_2 + (\frac{1+2i}{8})e_3].
$$

 \Box

So, the proof is completed. \Box

Example 3.6. For $n = 3$,

$$
QGO_4QGO_2 - QGO_3^2 = -2^{-6} \left[1 + 2i + \left(\frac{1+2i}{2} \right) e_1 + \left(\frac{1+2i}{4} \right) e_2 + \left(\frac{1+2i}{8} \right) e_3 \right]
$$

= -2^{-6} \left(\frac{1+2i}{8} \right)^2 \left[8 + 4e_1 + 2e_2 + e_3 \right]^2
= -2^{-12} (4i - 3) (43 + 68e_1 + 24e_2 + 32e_3).

Theorem 3.7 (Catalan identity). *For n, r* \geq 0*, the following property holds*

$$
QGO_{n+r}QGO_{n-r}-QGO_n^2=-2^{-2n}B^2r^2.
$$

Proof. By considering the Binet formula;

$$
QGO_{n+r}QGO_{n-r} - QGO_n^2 = (2^{-n-r}(-A + B(n+r+1))) (2^{-n+r}(-A + B(n-r+1)))
$$

$$
- (2^{-n}(-A + B(n+1)))^2
$$

$$
= 2^{-2n}(A^2 - 2ABn - 2AB + B^2(n^2 + 2n - r^2 + 1))
$$

$$
- 2^{-2n}(A^2 - 2ABn - 2AB + B^2n^2 + 2B^2n + B^2))
$$

$$
= -2^{-2n}B^2r^2,
$$

,

where $A = \left[1 + 4i + ie_1 - \frac{1}{4}e_2 - \left(\frac{1+i}{4}\right)e_3\right]$ and $B = \left[1 + 2i + \left(\frac{1+2i}{2}\right)e_1 + \left(\frac{1+2i}{4}\right)e_2 + \left(\frac{1+2i}{8}\right)e_3\right]$. So, the proof is completed. \Box

Example 3.8. For $n = 2, r = 1$,

$$
QGO_3QGO_1 - QGO_2^2 = -2^{-2n}B^2r^2
$$

= -2⁻⁴ $\left[1 + 2i + \left(\frac{1+2i}{2}\right)e_1 + \left(\frac{1+2i}{4}\right)e_2 + \left(\frac{1+2i}{8}\right)e_3\right]^2$
= -2⁻⁴ $\left(\frac{1+2i}{8}\right)^2$ $\left[8 + 4e_1 + 2e_2 + e_3\right]^2$
= -2⁻¹⁰(4i - 3)(43 + 68e₁ + 24e₂ + 32e₃).

4. Conclusion

In this paper, we consider the Oresme numbers, defined by Horadam in [\[16\]](#page-10-12), and describe the Gaussian Oresme numbers. Then, we investigate some of their characteristic properties, such as the Binet formula, generating function, Cassini identity, etc. In the following section, we define the quaternions with Gaussian Oresme coefficients and obtain some properties for them. Finally, we illustrate the results with some examples.

Acknowledgement

The authors are grateful to the referees and editor for their careful reading, valuable suggestions and helpful comments.

CONFLICTS OF INTEREST

The author/authors declare that there are no conflicts of interest regarding the publication of this article.

12

AUTHORS CONTRIBUTION STATEMENT

All authors contributed to the study conception and design equally.

REFERENCES

- [1] Akbıyık, M., Yamaç Akbıyık, S., Yılmaz, F., The matrices of Pauli quaternions, their De Moivre's and Euler's formulas. International Journal of Geometric Methods in Modern Physics, 19(11)(2022), 2250175-610.
- [2] Alp, Y., Kocer, E.G., Some properties of Leonardo numbers, Konuralp Journal of Mathematics, 9(1)(2021), 183-189.
- [3] Alves, F.R.V., Sequência de Oresme e algumas propriedades (matriciais) generalizadas, (2019), 40-44.
- [4] Arslan, H., Gaussian Pell and Gaussian Pell-Lucas uaternions, Filomat, 35(5)(2021), 1609-1617.
- [5] Bozkurt, S.B., Yılmaz, F., Bozkurt, D., On the complex factorization of the Lucas sequence, Applied Mathematics Letters, 24(8)(2011), 1317-1321.
- [6] Bozkurt, D., Da Fonseca, C.M., Yılmaz, F., The determinants of circulant and skew-circulant matrices with tribonacci numbers, Mathematical Sciences and Applications E-notes, 2(2)(2014), 67-75.
- [7] Catarino, P., Borges, A., On Leonardo numbers, Acta Math. Univ. Comen., 89(2019), 75-86.
- [8] Cook, C.K., Some sums related to sums of Oresme numbers, In Applications of Fibonacci Numbers, Springer, Dordrecht, (2004), 87-99.
- [9] Dağdeviren, A., Yüce, S., Dual quaternions and dual quaternionic curves, Filomat, 33(2019), 1037-1046.
- [10] Dağdeviren, A., Kürüz, F., On the Horadam hybrid quaternions, Advanced Studies: Euro-Tbilisi Mathematical Journal, 10(2022), 293-306.
- [11] Goy, T., Zatorsky, R., On Oresme numbers and their connection with Fibonacci and Pell numbers, Fibonacci Quart., 57(3)(2019), 238-245.
- [12] Halici, S., On complex Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 23(2013), 105-112.
- [13] Horadam, A.F., The Generalized Fibonacci sequences, The American Math. Monthly, 68(5)(1961), 455-459.
- [14] Horadam, A.F., Basic properties of a certain generalized sequence of numbers, Fibonacci Quart, 3(3)(1965), 161–176.
- [15] Horadam, A.F., Pell identities, Fibonacci Quart., 9(3)(1971), 245-263.
- [16] Horadam, A.F., Oresme numbers, The Fibonacci Quarterly, 12(3)(1974), 267-271.
- [17] Horadam, A.F., Jacobsthal and Pell curves, The Fibonacci Quarterly, 26(1)(1988), 79-83.
- [18] Horadam, A.F., Jacobsthal representation numbers, The Fib. Quart, 34 (1994), 40-54.
- [19] Karaca, E., Yılmaz, F., Caliskan, M., A unified approach: split quaternions with quaternion coefficients and quaternions with dual coefficients., Mathematics, 8(12)(2020), 2149.
- [20] Karaca, E., Yılmaz, F., An introduction to harmonic complex numbers and harmonic hybrid Fibonacci numbers : A unified approach, Notes Number Theory Discret. Math., 3(2022), 542-557.
- [21] Karataş, A., Halıcı, S., *Horadam octonions*, Analele Universitatii "Ovidius" Constanta - Seria Matematica, 25(3)(2017), 97-106.
- [22] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley Interscience Publication, 2001.
- [23] Kürüz, F., Dağdeviren, A., Catarino, P., On Leonardo Pisano hybrinomials, Mathematics, 9(22)(2021), 2923.
- [24] Mangueira, M.C. dos S., Vieira, R.P.M., Alves, F.R.V., Catarino, P. M.M.C., The Oresme sequence: The generalization of its matrix form and its hybridization process, NNTDM, 27(1)(2021), 101-111.
- [25] Pethe, S., Horadam, A.F., Generalized Gaussian Fibonacci numbers, Bull. Austral. Math. Soc., 33(1986), 37-48.
- [26] Szynal-Liana, A. Wloch, I., Oresme hybrid numbers and hybrationals, Kragujevac Journal of Mathematics, 48(5)(2024), 747–753.
- [27] Ward, J.P., Quaternions and Cayley numbers: Algebra and Applications, Mathematics and Its Applications, Kluwer, Dordrecht, 403(1997).
- [28] Yılmaz, F., Bozkurt, D., The adjacency matrix of one type of directed graph and the Jacobsthal numbers and their determinantal representation, Journal of Applied Mathematics, (2012), 1-14.
- [29] Yılmaz, F., Bozkurt, D., On the Fibonacci and Lucas numbers, their sums and permanents of one type of Hessenberg matrices, Hacettepe Journal of Mathematics and Statistics, 43(6)(2014), 1001-1007.
- [30] Yılmaz, F., Sogabe T., A note on symetric k-tridiagonal matrix family and the Fibonacci numbers, Int. J. Pure and Appl. Math., 96(2)(2014), 289-298.
- [31] Yılmaz, F., Özkan, M., On the generalized Gaussian fibonacci numbers and Horadam hybrid numbers: A unified approach, Axioms, $11(6)(2022)$, 255.
- [32] Zhang, F., Quaternions and matrices of quaternions, Linear Algebra and Its Applications, 251(1997), 21-57.