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Abstract. In the present paper, we investigate some tensor conditions of

Kenmotsu manifolds with the generalized Tanaka-Webster connection. Using

the Q tensor whose trace is the well-known Z-tensor, we prove the conditions
ξ − Q∗ flat, φ − Q∗ flat Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection.

1. INTRODUCTION

In 2013, Mantica et al. defined the Q−tensor notation. This tensor is the name
given whose trace the Z tensor defined by these authors [1, 2]. Along with this new
tensor, they defined pseudo Q−symmetric Riemannian manifolds, named (PQS)n,
which are a new type of manifolds that include both pseudo-symmetric manifolds
(PS)n and pseudo-concircular symmetric manifolds (PCS)n. They studied various
properties such manifolds and obtained important results [1]. Recently, Yılmaz and
Yıldırım investigated some curvature condition Sasakian manifolds and Kenmotsu
manifolds with Q tensor, respectively [3, 4] .

A generalized (0, 2) symmetric Z tensor defined as [1]

(1.1) Z(X,Y ) = S(X,Y ) + λg(X,Y ),

where X,Y are vector fields, g Riemannian metric on M2n+1, S is the Ricci tensor
of (M2n+1, g) and λ is an arbitrary scalar function.

The (1, 3) Q tensor whose trace is the Z tensor expressed as

(1.2) Q(X,Y )Z = R(X,Y )Z − λ

2n
{g(Y, Z)X − g(X,Z)Y } ,

where R denotes the curvature tensor of (M2n+1, g) and λ is an arbitrary scalar
function.

Kenmotsu manifolds [5] have proved to be an important area for contact geom-
etry with many valuable studies carried out in the last 30 years. Another reason to
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study these manifolds is that these are in some sense complementary to Sasakian
manifolds. Indeed, while some features of Kenmotsu manifolds and Sasakian man-
ifolds are similar to each other, they are generally different in terms of structure
[6]. Kenmotsu manifolds studied by many authors [7, 8, 9, 10, 11, 12].

On the other hand, the Tanaka-Webster connection [13, 14] is the canonical of
fine connection defined on a non-degenerate pseudo-Hermitian CR-manifold. Tanno
[15] defined the generalized Tanaka-Webster connection for contact metric manifolds
by the canonical connection which coincides with the Tanaka-Webster connection
if the associated CR-structure is integrable.

In the present paper, we study some curvature conditions of Kenmotsu manifolds
with respect to generalized Tanaka-Webster connection. In section 2, we give some
basic properties of Kenmotsu manifolds and give some conditions with respect to
the generalized Tanaka-Webster connection. Then in Main results, using the Q
tensor whose trace is the well-known Z-tensor, we prove the conditions ξ−Q∗ flat,
φ − Q∗ flat Kenmotsu manifold with respect to the generalized Tanaka-Webster
connection and obtain some important results.

2. Preliminaries

In this section, we recall some general definitions and basic formulas for late use.
Let M be a Riemannian manifold of dimension (2n+1). If there are the tensor field
φ ∈ T 1

1 (M2n+1), ξ ∈ χ(M2n+1) and a 1−form η satisfying the conditions

(2.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1,

then M2n+1 admits the almost contact structure (φ, ξ, , η), where ξ is the structure
vector field of the almost contact manifold M2n+1. If (φ, ξ, η) is an almost contact
structure on the M2n+1 then: [16]

(2.2) φξ = 0, η ◦ φ = 0.

Also, given theM2n+1 manifold equipped with the almost contact structure (φ, ξ, η) ,
then if there exist a Riemannian metric g on M2n+1 which satisfies the condition

(2.3) g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X),

then the manifold (M2n+1, g) with the structure (φ, ξ, η) is called almost contact
metric manifold, for any X,Y ∈ χ(M2n+1). Also, we note that g is a metric com-
patible with the almost contact structure on M2n+1.

In addition these equations, if there exist

(2.4) (∇Xφ)(Y ) = −g(X,φY )ξ − η(Y )φX,

(2.5) ∇Xξ = X − η(X)ξ,

where ∇ denotes the operator of covariant differentiation with respect to the Rie-
mannian metric g, then (M2n+1, g) is called a Kenmotsu manifold [5]. Moreover,
an almost contact metric manifold is an almost Kenmotsu manifold if the following
condition are satisfied

dη = 0, dΦ = 2η ∧ Φ
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where Φ is fundamental form and defined as Φ(X,Y ) = g(φX, Y ). If the Nijen-
huis tensor of φ vanishes, then almost Kenmotsu manifold is said to be Kenmotsu
manifold. Some conditions provided in a Kenmotsu manifold are as follows: [5]:

(2.6) (∇Xη)Y = g(X,Y )− η(X)η(Y ),

(2.7) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.8) R(ξ,X)Y = η(Y )X − g(X,Y )ξ,

(2.9) S(φX, φY ) = S(X,Y ) + 2ngη(X)η(Y ),

(2.10) S(X, ξ) = −2nη(X),

(2.11) η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X),

for any vector fields X,Y, Z where R is the Riemannian curvature tensor and S is
the Ricci tensor.

If Ricci tensor S satisfies condition

(2.12) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

then manifold is said to be η−Einstein manifold, where a, b certain scalars. If b = 0,
then the manifold is an Einstein manifold.

Througout this paper we associate ∗ with the quantities with respect to general-
ized Tanaka-Webster connection. The generalized Tanaka-Webster connection ∇∗

associated to the Levi- Civita connection ∇ is given by [18, 19]

(2.13) ∇∗
XY = ∇XY − η(Y )∇Xξ + (∇Xη) (Y )ξ − η(X)φY

for any vector fields X,Y on M2n+1.
Using (2.5) and (2.6) the generalized Tanaka-Webster connection ∇∗ for a Ken-

motsu manifold is given by

∇∗
XY = ∇XY + g(X,Y )ξ − η(Y )X − η(X)φY.

In a Kenmotsu manifold which admits the generalized Tanaka-Webster connec-
tion the following relations hold [17]:

(2.14) ∇∗
Xξ = 0,

(2.15) R∗(X,Y )Z = R(X,Y )Z + g(Y,Z)X − g(X,Z)Y,

(2.16) R∗(X,Y )ξ = R∗(X, ξ)Z = R∗(ξ, Y )Z = 0,

(2.17) S∗(X,Y ) = S (X,Y ) + 2ng(X,Y ),

(2.18) S∗(φX, φY ) = S(φX, φY ) + 2ng(φX, φY ),

(2.19) L∗X = LX + 2nX,

(2.20) r∗ = r + 2n(2n+ 1),

for any X,Y, Z ∈ χ(M2n+1), where R∗ is the Riemannian curvature tensor, S∗ is
the Ricci tensor, L∗ is the Ricci operator and r∗ is scalar curvature with respect to
the generalized Tanaka-Webster connection.
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3. Main Results

Definition 3.1. The Q tensor with respect to the generalized Tanaka-Webster
connection ∇∗ defined by

(3.1) Q∗(X,Y )Z = R∗(X,Y )Z − λ

2n
{g(Y, Z)X − g(X,Z)Y }

for all vector fields X,Y, Z on M.

Proposition 1. Let ∇∗ be Tanaka-Webster connection on M2n+1. The Q∗ tensor
of ∇∗ satisfies the following first Bianchi identity:

Q∗(X,Y )Z +Q∗(Y, Z)X +Q∗(Z,X)Y = 0.

Proof. Using equation (3.1), the result is clear. �

Proposition 2. The Q∗ tensor in a Kenmotsu manifold (M2n+1, g) which admits
the generalized Tanaka-Webster connection satisfies the relations:

(3.2) Q∗(X,Y )ξ =
−λ
2n
{η(Y )X − η(X)Y } ,

(3.3) Q∗(ξ,X)Y =
−λ
2n
{g(X,Y )ξ − η(Y )X} ,

(3.4) Q∗(X, ξ)Y =
−λ
2n
{η(Y )X − g(X,Y )ξ} ,

for all vector fields X,Y, Z on M.

Proof. By using (2.3) and (2.16) in equation (3.1) the results is clear. �

Definition 3.2. A Kenmotsu manifold with respect to the generalized Tanaka-
Webster connection ∇∗ is said to be ξ −Q∗ flat if Q∗(X,Y )ξ = 0.

Theorem 3.3. Let M be a Kenmotsu manifold with generalized Tanaka-Webster
connection. In M , the following two conditions are equivalent:

i) M is ξ −Q∗ flat,
ii) λ = 0.

Proof. i⇒ii:
Now, we assume that the manifold M with respect to the generalized Tanaka-

Webster connection is ξ − Q∗ flat, that is, Q∗(X,Y )ξ = 0. Then using equation
(3.2), it follows that

(3.5) Q∗(X,Y )ξ =
−λ
2n
{η(Y )X − η(X)Y } .

Since Q∗(X,Y )ξ = 0, we obtain λ = 0.
ii⇒i:
Let λ = 0. From equation (3.2), it follows that Q∗(X,Y )ξ = 0, so the manifold

is ξ −Q∗ flat manifold. �

Theorem 3.4. For a ξ−Q∗ flat Kenmotsu manifold with respect to the generalized
Tanaka-Webster connection, the manifold is a special type of η−Einstein manifold.
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Proof. Let M be a ξ −Q∗ flat Kenmotsu manifold. From equation (3.2), we have

−λ
2n
{η(Y )X − η(X)Y } = 0.

Taking Y = ξ in above equation, we obtain

(3.6)
λ

2n
{X − η(X)ξ} = 0.

Taking inner product of the equation (3.6) with U, we obtain

(3.7)
λ

2n
{g(X,U)− η(X)η(U)} = 0.

L being Ricci operator, replacing X by LX, we obtain

λ

2n
{S(X,U)− S(X, ξ)η(U)} = 0.

By using (2.10), we get

λ

2n
{S(X,U) + 2nη(X)η(U)} = 0

yields to

S(X,U) = −2nη(X)η(U).

This implies from (2.12), the manifold is a special type of η−Einstein manifold. �

Definition 3.5. A Kenmotsu manifold is said to be φ−Q∗ flat with respect to the
generalized Tanaka-Webster connection ∇∗if

(3.8) g(Q∗(φX, φY )φZ, φW ) = 0,

for any vector fields X,Y, Z on M .

Theorem 3.6. Let the Kenmotsu manifold M with generalized Tanaka-Webster
connection be φ−Q∗ flat, then M is an η−Einstein manifold.

Proof. Using (3.1) in (3.8), we have

(3.9) g

(
R∗(φX, φY )φZ − λ

2n
{g(φY, φZ)φX − g(φX, φZ)φY } , φW

)
= 0.

Let {e1, e2, ..., e2n+1} be a local orthonormal basis of vector fields in M . Then
{φe1, φe2, ..., φe2n+1} is also a local orthonormal basis. If we put X = W = ei in
(3.9) and summing up with respect to i, 1 ≤ i ≤ 2n+ 1, we obtain
(3.10)

2n∑
i=1

R∗ (φei, φY, φZ, φei) =
λ

2n

2n∑
i=1

{g(φY, φZ)g (φei, φei)− g(φei, φZ)g (φY, φei)} .

Using equation (2.17), above result is equal to

S∗ (φY, φZ) =
λ

2n
(2n− 1) g (φY, φZ) .

Then, by view of (2.9) and (2.18), we obtain

(3.11) S (Y,Z) =

{
λ

2n
(2n− 1)− 2n

}
g(φY, φZ)− 2nη(Y )η(Z).
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By using equation (2.3), we get

(3.12) S (Y,Z) =

{
λ

2n
(2n− 1)− 2n

}
g(Y,Z)− λ

2n
(2n− 1) η(Y )η(Z).

With this result, it is seen that the manifold is η−Einstein. �

Corollary 1. Let the Kenmotsu manifold M with generalized Tanaka-Webster
connection be φ−Q∗ flat, then the scalar curvature is

r = λ(2n− 1)− 2n(2n+ 1).

Proof. Let {e1, e2, ..., e2n+1} be a local orthonormal basis of vector fields in M . If
we put Y = Z = ei in (3.12) and summing up with respect to i, 1 ≤ i ≤ 2n+ 1, we
obtain

2n+1∑
i=1

S(ei, ei) =

2n+1∑
i=1

{
λ

2n
(2n− 1)− 2n

}
g(ei, ei)−

λ

2n
(2n− 1) η(ei)η(ei).

This implies the scalar curvature is r = λ(2n− 1)− 2n(2n+ 1). �

4. Conclusion

In this paper, are shown some curvature conditions of Kenmotsu manifolds with
respect to generalized Tanaka-Webster connection. The results are given which
states that ξ−Q∗ flat and φ−Q∗ flat Kenmotsu manifold admitting the generalized
Tanaka-Webster connection is a manifold of η-Einstein.
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