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Abstract
This study examines embodied technology flows through intermediate good transactions between industries 
in various economies and focuses on the ambiguity about their link to innovation. The model consists 
of two equations measuring labor productivity and knowledge production, and knowledge production 
is measured as the explanatory variable of productivity. We compare direct effect of embodied research 
transfer on labor productivity through intermediate good transactions between industries and its indirect 
effect via knowledge creation. We use input-output tables as a proximity mechanism for research capital 
and utilize production function approach. Simultaneous equations results support the system we introduce, 
indicating that both channels of embodied technology spillovers are significant. We observe that labor 
productivity soars with direct and indirect utilization of technology transfer via knowledge production.
Keywords: Technology Diffusion, Knowledge Production, Simultaneous Equations
JEL Classification: O31, O41, O47

Öz
Bu çalışma, çeşitli ekonomilerde sektörler arası ara mal işlemleri yoluyla şekillenmiş teknoloji akışlarını 
incelemekte ve bunların inovasyonla olan bağlantılarına ilişkin belirsizliğe odaklanmaktadır. Şekillenmiş 
araştırma transferi’nin endüstriler arasındaki ara mal işlemleri yoluyla emek verimliliği üzerindeki 
doğrudan etkisi ile bilgi yaratma yoluyla dolaylı etkisini karşılaştırıyoruz. Araştırma sermayesi için bir 
ağırlıklandırma yöntemi olarak girdi-çıktı tablolarını ve çoklu denklem GMM yaklaşımını kullanıyoruz. 
Model, emek verimliliğini ve bilgi üretimini ölçen iki denklemden oluşmakta, bilgi üretimi verimliliğin 
açıklayıcı değiskeni olarak ölçülmektedir. Eşzamanlı denklem sonuçlarımız, şekillenmiş teknoloji 
yayılmalarının her iki kanalının da anlamlı olduğunu göstererek, tanıttığımız sistemi desteklemektedir. 
Bilgi üretimi yoluyla teknoloji transferinin doğrudan ve dolaylı kullanımı aracılığıyla emek verimliliğinin 
arttığını gözlemliyoruz.
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1. Introduction

Production process depends mainly on three inputs; capital, labor, and knowledge. Knowledge in 
the form of technological progress is considered as a commodity. However, unlike normal goods, 
knowledge is non-rival and partially excludable. These properties of knowledge give arise to 
externality.

Literature focuses on mainly two types of technology flows; knowledge embedded in patents and 
intermediate goods. Jaffe (1986) is a pioneer study on spillovers via patents in which he constructs a 
proximity matrix between firms via technology fields of patent applications and Bloom, Schankerman, 
& van Reene (2013) and Oikawa (2017) use researchers in the same field as a proxy. Aldieri (2013) 
and Hu & Jaffe (2003) show that Jaffe’s method is also suitable for macroeconomics. Verspagen (1997) 
uses various methods to measure flows between sectors via patent documents with the emergence of 
the technology flow matrix.

Relation of intermediate goods with technology generation has an important place in endogenous 
growth models according to Romer (1990) and Grossman & Helpman (1991). Empirical literature 
adopts this approach and uses intermediate good transactions as a weighting scheme. Griliches 
(1976) defines spillovers that arise from good purchases from one firm (industry) to another as 
‘rent spillovers’ and suggests that because of quality-price mismatch there is ambiguity about the 
occurrence of knowledge transfer. Los & Verspagen (2000) compare rent and pure knowledge 
spillovers and defines transfer via a transmission mechanism (intermediate goods or patents) as 
indirect R&D spillovers. Terleckyj (1980) and Aldieri, Sena, & Vinci (2018) are examples in the 
recent literature that compares pure and rent knowledge spillovers. They show that transfer via 
patents is stronger between agents close to the technology frontier with the same absorptive capacity 
and estimate that firms, which are further to high R&D intensity, receive knowledge transfer mostly 
from rent spillovers. Gonçalves & B. Ferreira Neto (2016) and Gonçalves, Perobelli, & Araújo (2017) 
also focus on the importance of indirect knowledge transfer in emerging countries and medium-
level technology sectors.

While empirical literature of embodied knowledge flows focuses on the correlation between 
productivity and spillovers, we establish an indirect channel from embodied technology diffusion to 
labor productivity through innovations.

1.1 Main Proposition

In this subsection, we explain two main purposes of this study. First, we create ‘a link’ from knowledge 
production to the final product. We observe that empirical literature tends to regress embodied 
knowledge flow directly to productivity. Thus, we propose that technology spillover works through 
the knowledge production function in order to obtain a new patent then the new idea is utilized in 
good or service production. Our first hypothesis is as follows:
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Hypothesis 1: Embodied technology flows might have an effect on a final good through knowledge 
production.

As an example, we assume that firm i operating in machinery sector producing hydraulic press buys 
a newly innovated metal component from firm j, which is operating in fabricated metals industry. 
The new component could be embodied with greater research intensity and enables firm i to produce 
with greater productivity. However, it does not necessarily mean that with the influx of external 
technology firm i also achieves innovation. We do not argue that so-called “direct effect” does not 
necessarily increase productivity of firm i’s hydraulic press. However, we cannot simply conclude 
that R&D capital transfer which is weighted by transactions between industries causes an increase in 
firm i’s productivity through its innovative performance. Griliches emphasizes a similar issue with a 
perspective in failure in price discrimination of firm j. We aim to isolate direct and indirect effects of 
externality on labor productivity. We summarize our second hypothesis below:

Hypothesis 2: Embodied technology flows might have a direct effect on a final good.

This paper is composed as follows; section two describes the model; section three presents descriptive 
statistics for the sample and methodology, section four presents results and section five concludes.

2. Model

The main aim of this paper is to examine inter-sectoral externalities and propose a new approach to 
embodied knowledge transfer. In the empirical literature, an intermediate good is treated as carrier 
of technology between units in an economy. Grilliches (1976) proposes a production function with 
externality between firms as follows where the first term is the constant, Xi is the conventional 
production factors, Ki is the firm’s own resources of research and the last term is the knowledge pool 
comes from all other firms in a sector.
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Yi = BXi
1−γKi

γKα
μ                             (1) 

Grilliches defines externality as follows; 

∑ Kii =Kα                (2) 

Therefore, he aggregates all firm production functions to observe the overall elasticity of 
knowledge creation including externalities; 

∑ Yii = B(∑ Xi )1−γKα
γ+μ                         (3) 

The last equation shows that coefficient of knowledge capital is greater than the individual 
production function in aggregated form. Based on Grilliches’ function, we propose variations in 
twofold. First, we use sector production functions and secondly we treat each sector as producer 
of final output and knowledge. 
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we use sector production functions and secondly we treat each sector as producer of final output and 
knowledge.

The model consists of two endogenous equations. One is for the knowledge and the other is for the 
final good production.

We present the relationship with two equations; Equation 4 shows the final good production 
function where Y is the value of final goods produced in sector i and country c, X is a vector of 
conventional inputs such as physical capital stock and domestic inputs for each sector and A is the 
internal knowledge input. We present knowledge production in equation 5 where R stands for the 
internal R&D efforts, H is human capital in sector i, and T is the knowledge spillover from other 
sectors. Unlike Grilliches’ model, our spillover term is inserted into both equations to represent two 
channels of transfer.
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We select the sample in accordance with available country-sector database from WIOD (World 
Input-Output Database) and OECD and match countries accessible in both sources. We create 
clusters for mean labor productivity for OECD economies and our sample consists of the cluster 
with Czech Republic, Lithuania, Poland, Portugal, Romania, Slovenia, and Turkey. Thus, there 
are 7 countries and 19 sectors (12 manufacturing and 7 service sectors) between 2009-2014. We 
have 456 observations with differenced logarithmic form and time lag. Time period is between 
2009 and 2014 since R&D expenditure data causes missing observation problem before these 
dates. Hence, we examine whether two channels of embodied technology flows strengthens labor 
productivity in low productivity level countries during a post-crisis period. As a result, our 
sample is in a panel data structure with 7 countries and 19 sectors. We have 798  observations 
on the level and it reduces to 532 with first difference logarithmic form. Focus of this study is 
the first cluster with the lowest productivity levels. We choose to examine these countries in a 
post-crisis period to understand whether inter-sectoral spillovers generate new knowledge 
production, so that we aim to analyze that the internal innovative dynamics of countries with 
lower productivity benefits their labor productivity levels which were declined significantly after 
2008. 

Internal components of production function are calculated with a conventional approach. 
Physical capital is nominal capital stock and the number of employees in each sector stands for 
labor. Knowledge production function has three explanatory variables; R&D capital stock that 
is calculated via cumulative R&D expenditures with depreciation rate, human capital (number 
of researchers and R&D personnel) and technology spillover. 

All variables are transformed into real terms with price indices in WIOD.1 Gross output and 
physical capital are deflated via gross output prices when intermediate goods are deflated with 

                                                
1 WIOD presents national input-output tables as a result of project which is funded by European Comission 
as described by Timmer, Dietzenbacher, Los, Stehrer and Vries (2015). 
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All variables are transformed into real terms with price indices in WIOD.1 Gross output and physical 
capital are deflated via gross output prices when intermediate goods are deflated with intermediate 
goods price indices.2 We use labor shares to overcome scale effects and estimate the system in 
differenced logarithmic forms.

We use number of patents as a proxy for knowledge output. Data for patent grants are obtained from 
WIPO (World International Patent Office). Patent grants are classified under IPC (International Patent 
Classification) and even though they are aggregated in NACE Rev 2. codes, each IPC code does not 
belong to only one sector. A patent grant under a certain technology field could be categorized under 
more than one NACE sector with two digits. Since there are no patent grants in each technology field3 
for every year in our sample, the following method enables us to overcome the missing data issue. 
We distribute each technology field code throughout the sectors with probabilistic concordance table 
(Neuhäusler, Frietsch, & Kroll, 2019). They use patent data for approximately 150 million companies 
under IPC classification and aggregate them on industry to generate a “technology profile” for each 
sector. Their data consists of largely with European and North American countries. The coverage of 
dataset is suitable for our sample. Even though it is not, they explain that their concordance scheme 
works with on country level with small discrepancies. Notation for each variable is presented in Table 1.

Table 1. List of Variables

Abbreviation Variable Source
Y/L Labor Productivity WIOD-SEA
K/L Phsyical Capital Stock per employee WIOD-SEA
M/L Within Sector Inputs per labor WIOD
A/L # Patent Grants per labor WIPO
H/L Human Capital per labor OECD-ANBERD
R/L R&D Capital Stock per labor OECD-ANBERD
T/L Forward Embodied Technology flow per labor Author`s calculation
B/L Backward Embodied Technology flow per labor Author’s calculation

Embodied technology transfer for each sector is calculated as sum of number of patents in other 
sectors weighted by bilateral intermediate good transactions matrix. Matrix is calculated from input-
output tables of each country for 19 sectors. Wijc stands for IO table of each economy where i and j 
are sector indices and c is for the country. We measure expenditures between sectors by setting the 
diagonal of matrix W to zero. We name this matrix as WXijc.

1 WIOD presents national input-output tables as a result of project which is funded by European Comission as described 
by Timmer, Dietzenbacher, Los, Stehrer and Vries (2015).

2 Data collected from WIOD Socio Economic Accounts (SEA) are transformed from national currency to dollar values 
by using exchange rates of countries presented by WIOD. R&D expenditure is also transformed into in real terms from 
OECD database.

3 A technology field is an aggregated title for IPC codes with more digits.
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input-output tables of each country for 19 sectors. Wijc stands for IO table of each economy 
where i and j are sector indices and c is for the country. We measure expenditures between sectors 
by setting the diagonal of matrix W to zero. We name this matrix as WXijc.  

WXijc =[
0 ⋯ n
⋮ 0 ⋮
n ⋯ 0

]                         (6) 

Indirect technology spillover is calculated by multiplying WXijc by R&D intensity4 of each sector 
in rows, so that spillover value for each sector is the sum of products between R&D intensity 
and each IO column. We calculate the variable for every year in the data in equation 7. 

Tict = ∑ Rjct
Yjct

n
i=1 WXijct                         (7) 

We calculate backward linkage by simply transposing WX matrix in eq. 8. 

Bict = ∑ Rjct
Yjct

n
i=1 (WXijct)

T
                         (8) 

We also use domestic inputs of each sector as variable M. We obtain this variable by multiplying 
W with an identity matrix and extracting the diagonal. 

WDijc = [
1 ⋯ 0
⋮ 1 ⋮
0 ⋯ 1

]Wijc                 (9) 

We divide all variables to number of employees in each industry. Final good product turns into 
labor productivity and conventional sector inputs are fixed capital stock and inputs. Finally, all 
variables are transformed into logarithmic forms in differences with additional control variables. 
We also utilize dummy for manufacturing industries in equation 10 and a dummy for high and 
medium-high technology level sectors in eq. 11 and 12 to control for sector heterogeneity. 5 We 
also consider backward link of spillovers in knowledge production where sectors adjust their 
innovative efforts in accordance with their buyers’ research capital stocks in equation 12. 

                                                
4 We calculate R&D intensity by dividing R&D capital stock to final output for each sector. 
5 First dummy variable takes the value of 1 if there is a manufacturing industries and 0 otherwise. Dummy 
variables in knowledge production function are constructed as follows; dummy for high-medium-high 
technology industries takes the value of 1 for manufacture of chemicals and chemical products; computer, 
electronic and optical products, electrical equipment, machinery and equipment n.e.c., motor vehicles, 
trailers and semi-trailers, other transport equipment, Information and communication (except computer 
programming, consultancy and related activities) services, computer programming, consultancy and related 
activities; information service activities.  
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3. Methodology 
Figure 1.1 shows the qualitative relationship between labor productivity and knowledge creation. 
We examine a possible positive relationship between new ideas and productivity. Thus, patent 
grants are utilized in good/service production. We also observe a relationship between final 
goods and external R&D capital stock as positive. In figures 1.3 and 1.4, comparison between 
external and internal R&D capital stock can be found. We expect contribution from both 
domestic and inter-industry R&D efforts to knowledge creation. In Figure 1.5. and 1.6., we 
present physical capital stock and backward embodied technology transfer. These two graphs 
indicate that they also have a positive relationship between labor productivity and patent grants 
when the latter is of relatively low magnitude. 

We also present weighted network graphs for WXijc matrix of economies as the average of all 
years in figures in Appendix. These networks show input-output transactions between sectors in 
each economy without a self-loop. Thicker edges indicate a relatively higher weight between 
two nodes. Thus, network graphs show that there is a heterogeneous structure between sectors 
in absolute values which points out that some sectors have a more prominent role in the economy. 
We observe that service sectors have relatively higher interactions among each other in all 
countries. Additionally, manufacturing industries also establish relatively stronger links to 
service sectors in Poland and Turkey. 
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3.1. Diagnostics

We present diagnostic test results for data in this section and Table 2 shows descriptive statistics for 
the sample in logarithmic differences. Industries’ R&D capital stock and both types of spillovers have 
the highest mean which are the focal variables for our purpose.

In Table 3, we present Breusch-Pagan / Cook-Weisberg test values and first-order autocorrelation 
test results for the same equations. Null hypothesis for no heteroscedasticity is accepted by p values 
higher than 0.05 for all equations. Wooldridge test for autocorrelation indicates the presence of first-
order autocorrelation in equation 10. We also do not observe any significant multi-collinearity.

Table 2. Sample Descriptive Statistics

Variable Mean Std. Dev. Min Max

0.010028 0.070763 -0.21516 0.257038

0.002217 0.065521 -0.21802 0.18365

-0.06587 0.222068 -1.0899 0.58546

0.052897 0.102682 -0.51277 0.411917

0.374576 0.164647 -0.00432 1.0725

0.081257 0.1637 -0.51674 0.713787

0.347283 0.144444 -0.38604 0.599241

0.323911 0.188204 -0.43203 0.692523

Table 3. Heteroscedasticity – First Order Autocorrelation Test Results
Equation 10 Equation 11 Equation 12
Breusch-Pagan / Cook-Weisberg test for heteroscedasticity
Prob > chi2 = 0.1197 Prob > chi2 = 0.3474 Prob > chi2 = 0.0768
Wooldridge test for autocorrelation in panel data
Prob > F = 0.0003 Prob > F = 0.0533 Prob > F = 0.0542
Mean VIF = 1.1 Mean VIF = 1.23 Mean VIF = 1.23

3.2. Estimation Strategy

We utilize Generalized Method of Moments-3 Stages Least Squares (GMM-3SLS) method. 
Wooldridge (2002) argues that GMM-3SLS is consistent and asymptotically normal. 3 stages least 
squares uses all exogenous determinants as instruments for each equation.

We use a weight matrix up to two lags with Bartlett Kernel that allows for autocorrelation and 
heteroscedasticity. Band-with is determined as one addition to the lag structure. Significance of 
our results do not vary depending on band-with used in the weight matrix. We also obtain robust 
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clustered standard errors and use twostep GMM estimator. Additionally, we use an identity weight 
matrix for the first step parameter estimates. Finally, Hansen’s J test result shows that system is over-
identified.

4. Results

Results for final good production function in third column indicate that physical capital has the 
largest impact on labor productivity in Table 4. Patent to labor ratio has the second largest effect 
on labor productivity and our dummy variable for manufacturing industries is significant and 
positive. Our spillover term has a significant impact on knowledge production. We should also note 
that the impact of indirect R&D spillover is higher more than the direct effect. If we had regressed 
our technology spillover variable to labor productivity function, results would be misleading and 
we would not know whether R&D inflow actually turns into inventions and through that process 
productivity in final good soars. In our model, we try to isolate “direct” and “indirect” effects of 
intermediate good transactions.

Our empirical results support the system we have introduced where both indirect knowledge 
spillovers are effective through knowledge production and direct flow from other industries increases 
labor productivity of receiving sector. Thus, we create a ‘link’ via knowledge creation from spillovers 
to final good production that would be missing otherwise. Finally, backward linkage falls short in its 
impact on knowledge creation. Therefore, forward spillover comes forward as the prominent source 
of externality for our sample.

5. Conclusion

This paper presents a production function approach to simultaneously analyze different roles of 
embodied technology transfer through intermediate goods between industries. First, we measure 
direct impact of diffusion on labor productivity. Second, we propose an indirect effect of technology 
transfer on productivity through knowledge creation. Therefore, the receiver sector of research 
diffusion uses higher external research intensity to produce a more efficient final output when it also 
uses it to produce new ideas in knowledge production part of the sector. We also introduce research 
flows to R&D department as backward link where supplier industries adapt their research efforts to 
their customers’.

We create a sample with 7 economies and 19 sectors between 2009 and 2014. We also utilize multiple 
equation GMM to simultaneously estimate a two-equation system; final good and knowledge 
production. Results indicate that both channels of embodied technology flow are significant 
indicators of labor productivity. We also conclude that indirect impact of research transfer is greater 
than its direct effect when backward linkage on knowledge creation has no significant influence.

Overall, this paper argues the literature by emphasizing that a direct correlation of embodied 
technology flow via intermediate goods to the productivity of industries is not sufficient to analyze 
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whether there is room for creation of new ideas as a result of externalities. Thus, we create a link 
between embodied research transfer and labor productivity through knowledge creation along with 
the direct impact of spillovers.

We suggest that policymakers consider these two channels jointly in order to examine inter-sectoral 
transactions in an economy in the framework of research diffusion. Thus, stimulation of externalities 
as result of R&D subsidies would be analyzed in terms of not only direct link to productivity levels 
but also as a nexus between final good and embodied technology transfer via knowledge creation.

Table 4. Estimation Results

VARIABLES

No Externalities Externalities
Eq. 10 Eq. 11 Eq. 10 Eq. 11 Eq. 10 Eq. 12
△logY/Lict △logA/Lict △logY/Lict △logA/Lict △logY/Lict △logA/Lict
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Appendix
Table A.1. List of Sectors

NACE Rev. 2. Sector
C10-C12 Manufacture of food products, beverages and tobacco products
C13-C15 Manufacture of textiles, wearing apparel and leather products
C20 Manufacture of chemicals and chemical products
C22 Manufacture of rubber and plastic products
C23 Manufacture of other non-metallic mineral products
C25 Manufacture of fabricated metal products, except machinery and equipment
C26 Manufacture of computer, electronic and optical products
C27 Manufacture of electrical equipment
C28 Manufacture of machinery and equipment n.e.c.
C29 Manufacture of motor vehicles, trailers and semi-trailers
C30 Manufacture of other transport equipment
C31_C32 Manufacture of furniture; other manufacturing

DE
Electricity, Gas And Water Supply; Sewerage, Waste Management And 
Remediation Activities

F Construction
G45 Wholesale and retail trade and repair of motor vehicles and motorcycles

J
Information and communication (except Computer programming, consultancy 
and related activities)

J62_J63
Computer programming, consultancy and related activities; information service 
activities

M
Professional, scientific and technical activities (with scientific research and 
development)

NOPQS Community, Social And Personal Services
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Figure A.1. Czech Republic Input-Output Network
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 Source: Author’s calculations based on WIOD, Timmer, Dietzenbacher, Los, Stehrer and Vries (2015)

Figure A.2. Lithuania Input-Output Network
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 Source: Author’s calculations based on WIOD, Timmer, Dietzenbacher, Los, Stehrer and Vries (2015)
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Figure A.3. Poland Input-Output Network
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 Source: Author’s calculations based on WIOD, Timmer, Dietzenbacher, Los, Stehrer and Vries (2015)

Figure A.4. Portugal Input-Output Network

C10-C12

C13-C15

C20

C22
C23C25

C26

C27

C28

C29

C30

C31_C32

DE

F
G45 J

J62_J63

M

NOPQS

Portugal

 Source: Author’s calculations based on WIOD, Timmer, Dietzenbacher, Los, Stehrer and Vries (2015)
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Figure A.5. Romania Input-Output Network
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 Source: Author’s calculations based on WIOD, Timmer, Dietzenbacher, Los, Stehrer and Vries (2015)

Figure A.6. Slovenia Input-Output Network
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Figure A.7. Turkey Input-Output Network
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 Source: Author’s calculations based on WIOD, Timmer, Dietzenbacher, Los, Stehrer and Vries (2015)


