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Abstract. The main purpose of this work is to find the form of the solutions

of the following difference equation

xn+1 =
xn−2xn−6

xn−3(±1± xn−2xn−6)
, n = 1, 2, ...,

where the initial conditions are arbitrary positive real numbers. Moreover, we

gave the solutions of some special cases of this equation, and studied some

dynamic behavior of these equations. At the end we illustrated our results by
presenting some numerical examples to the equations are given.

1. Introduction

In the last few decades, there has been a major interest in studying a qualita-
tive behavior of the solutions of rational difference equations. The reasons of this
interest comes from the fact that these equations are powerful tool for applications
since difference equations plays an important role in mathematics to describe and
model a real life situations such as population dynamics, statistical problem, sto-
chastic time series, number theory, biology, economic, probability theory, genetics,
psychology, etc. [1]-[5]. It is well known that the field of difference equations is
old and it has been developed incrementally, and the rational difference equations
is important category of difference equations where they occupies a good place in
applicable analysis, which has encouraged the mathematical researchers to continue
investigating the qualitative properties of the solution of rational difference equa-
tions and the systems of difference equations.

Recently, Abo-Zeid [6] solved and studied the global behavior of the well
defined solutions of the difference equation

xn+1 =
xnxn−3

Axn−2 +Bxn−3
,
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Elsayed [7] have obtained the solution and also he studied the behavior of the
following rational difference equation

xn+1 = axn +
bxnxn−1

cxn + dxn−1
.

Cinar [8]-[10] have investigated the positive solutions of the following difference
equations

xn+1 =
αxn−1

1 + bnxnxn−1
, xn+1 =

xn−1

1 + αxnxn−1
, xn+1 =

xn−1

−1 + αxnxn−1
.

Ibrahim [11] got the solutions of the rational difference equation:

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)
.

Bozkurt [12] was investigated the local and global behavior of the positive solu-
tions of the following difference equation

yn+1 =
αe−yn + βe−yn−1

γ + αyn + βyn−1
.

Simsek et. al. [13] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Xian and L. Wei [14] investigated the global asymptotic stability of the following
difference equation

xn+1 =
p+ qxn

1 + rxn−k
.

Karatas et. al. [15] studied study the positive solutions and attractivity of the
difference equation

xn+1 =
xn−5

−1 + xn−2xn−5
.

For other papers related to study the dynamic behavior of difference, we refer
to [16]-[28].

Our goal is to study the dynamic behaviors of the solutions of the following
difference equations.

(1.1) xn+1 =
xn−2xn−6

xn−3(±1± xn−2xn−6)
,

where the initial conditions x−6, x−5, x−4, x−3, x−2, x−1, x0 are arbitrary
nonzero real numbers.

2. Preliminaries

Here, we review some results which will be useful in our investigation of the
difference equation (1.1).
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Definition 2.1. Let I be some interval of real numbers and let

F : I k+1 → I ,

be a continuously differentiable function. Then for every set of the initial conditions
x−k, x−k+1, ..., x0 ∈ I, the difference equation

(2.1) xn+1 = F (xn, xn−1, xn−2 . . . , xn−k), n = 0, 1, ...,

has a unique solution {xn}∞n=−k.

Definition 2.2. A point x∗ ∈ I is called an equilibrium point of Eq. (2.1) if

x∗ = F (x∗, x∗, x∗, ...).

That is,xn = x∗, for n ≥ 0, is a solution of Eq. (2.1), or equivalently, x∗ is a fixed
point of F .

Definition 2.3. Let x∗ be an equilibrium point of (2.1).
(i) The equilibrium point x∗ of Eq. (2.1) is called locally stable if for every

ϵ > 0, there exists δ > 0 such that for all x−k, x−k+1, ..., x0 ∈ I with

|x−k − x∗|+ |x−k+1 − x∗|+ ...+ |x0 − x∗| < δ,

we have,

|xn − x∗| < ϵ for all n ≥ −k.

(ii) The equilibrium point x∗ of Eq. (2.1) is called locally asymptotically
stable if it is locally stable, and if there exists γ > 0 such that if x−k, x−k+1, ..., x0 ∈
I with

|x−k − x∗|+ |x−k+1 − x∗|+ · · ·+ |x0 − x∗| < γ,

we have,

lim
n→∞

xn = x∗.

(iii) The equilibrium point x∗ of Eq. (2.1) is called a global attractor if
for every solution x−k, x−k+1, ..., x0 ∈ I, we have

lim
n→∞

xn = x∗.

(iv) The equilibrium point x∗ of Eq. (2.1) is called a global asymptoti-
cally stable if it is locally stable and global attractor of Eq. (2.1).

(v) The equilibrium point x∗ of Eq. (2.1) is called unstable if x∗ is not
locally stable.

The linearized equation of Eq. (2.1) about the equilibrium point x∗ is the linear
difference equation

zn+1 =

k∑
i=1

∂F (x̂, . . . , x̂)

∂xn−i
zn−i.
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Definition 2.4. A sequence {xn}∞n=−k is said to be periodic with periodic p if
xn+p = xn for all n ≥ −k.

Theorem 2.1. [30]. Assume that p0, p1, . . . , pk ∈ R, and k ∈ {0, 1, 2, . . . }. Then

(2.2)

k∑
i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation:

xn+k + p1xn+k−1 + · · ·+ pkxn = 0, n=0,1,. . . .

3. On the difference equation xn+1 = xn−2xn−6

xn−3(1+xn−2xn−6)

In this section, we obtain a specific form of the solution of the first case of the
equation (1.1):

(3.1) xn+1 =
xn−2xn−6

xn−3(1 + xn−2xn−6)
.

Theorem 3.1. Let {xn}∞n=−6 be a solution of equation (1.1). Then for n = 0, 1, . . . ,

x24n−6 = g

n−1∏
i=0

(1 + (8i+ 2)ae)(1 + (8i+ 5)bf)(1 + (8i)cg)

(1 + (8i+ 6)ae)(1 + (8i+ 1)bf)(1 + (8i+ 4)cg)
,

x24n−5 = f

n−1∏
i=0

(1 + (8i+ 5)ae)(1 + (8i)bf)(1 + (8i+ 3)cg)

(1 + (8i+ 1)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)
,

x24n−4 = e

n−1∏
i=0

(1 + (8i)ae)(1 + (8i+ 3)bf)(1 + (8i+ 6)cg)

(1 + (8i+ 4)ae)(1 + (8i+ 7)bf)(1 + (8i+ 2)cg)
,

x24n−3 = d

n−1∏
i=0

(1 + (8i+ 3)ae)(1 + (8i+ 6)bf)(1 + (8i+ 1)cg)

(1 + (8i+ 7)ae)(1 + (8i+ 2)bf)(1 + (8i+ 5)cg)
,

x24n−2 = c

n−1∏
i=0

(1 + (8i+ 6)ae)(1 + (8i+ 1)bf)(1 + (8i+ 4)cg)

(1 + (8i+ 2)ae)(1 + (8i+ 5)bf)(1 + (8i+ 8)cg)
,

x24n−1 = b

n−1∏
i=0

(1 + (8i+ 1)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)

(1 + (8i+ 5)ae)(1 + (8i+ 8)bf)(1 + (8i+ 3)cg)
,

x24n = a

n−1∏
i=0

(1 + (8i+ 4)ae)(1 + (8i+ 7)bf)(1 + (8i+ 2)cg)

(1 + (8i+ 8)ae)(1 + (8i+ 3)bf)(1 + (8i+ 6)cg)
,

x24n+1 =
cg

d(1 + cg)

n−1∏
i=0

(1 + (8i+ 7)ae)(1 + (8i+ 2)bf)(1 + (8i+ 5)cg)

(1 + (8i+ 3)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)
,
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x24n+2 =
bf

c(1 + bf)

n−1∏
i=0

(1 + (8i+ 2)ae)(1 + (8i+ 5)bf)(1 + (8i+ 8)cg)

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 4)cg)
,

x24n+3 =
ae

b(1 + ae)

n−1∏
i=0

(1 + (8i+ 5)ae)(1 + (8i+ 8)bf)(1 + (8i+ 3)cg)

(1 + (8i+ 9)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)
,

x24n+4 =
cg

a(1 + 2cg)

n−1∏
i=0

(1 + (8i+ 8)ae)(1 + (8i+ 3)bf)(1 + (8i+ 6)cg)

(1 + (8i+ 4)ae)(1 + (8i+ 7)bf)(1 + (8i+ 10)cg)
,

x24n+5 =
bdf(1 + cg)

cg(1 + 2bf)

n−1∏
i=0

(1 + (8i+ 3)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 5)cg)
,

x24n+6 =
ace(1 + bf)

bf(1 + 2ae)

n−1∏
i=0

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 4)cg)

(1 + (8i+ 10)ae)(1 + (8i+ 5)bf)(1 + (8i+ 8)cg)
,

x24n+7 =
bcg(1 + ae)

ae(1 + 3cg)

n−1∏
i=0

(1 + (8i+ 9)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)

(1 + (8i+ 5)ae)(1 + (8i+ 8)bf)(1 + (8i+ 11)cg)
,

x24n+8 =
abf(1 + 2cg)

cg(1 + 3bf)

n−1∏
i=0

(1 + (8i+ 4)ae)(1 + (8i+ 7)bf)(1 + (8i+ 10)cg)

(1 + (8i+ 8)ae)(1 + (8i+ 11)bf)(1 + (8i+ 6)cg)
,

x24n+9 =
aceg(1 + 2bf)

bdf(1 + cg)(1 + 3ae)

n−1∏
i=0

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 5)cg)

(1 + (8i+ 11)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)
,

x24n+10 =
bfg(1 + 2ae)

ae(1 + bf)(1 + 4cg)

n−1∏
i=0

(1 + (8i+ 10)ae)(1 + (8i+ 5)bf)(1 + (8i+ 8)cg)

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 12)cg)
,

x24n+11 =
aef(1 + 3cg)

cg(1 + ae)(1 + 4bf)

n−1∏
i=0

(1 + (8i+ 5)ae)(1 + (8i+ 8)bf)(1 + (8i+ 11)cg)

(1 + (8i+ 9)ae)(1 + (8i+ 12)bf)(1 + (8i+ 7)cg)
,

x24n+12 =
ceg(1 + 3bf)

bf(1 + 2cg)(1 + 4ae)

n−1∏
i=0

(1 + (8i+ 8)ae)(1 + (8i+ 11)bf)(1 + (8i+ 6)cg)

(1 + (8i+ 12)ae)(1 + (8i+ 7)bf)(1 + (8i+ 10)cg)
,

x24n+13 =
bdf(1 + 3ae)(1 + cg)

ae(1 + 2bf)(1 + 5cg)

n−1∏
i=0

(1 + (8i+ 11)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 13)cg)
,

x24n+14 =
ae(1 + bf)(1 + 4cg)

g(1 + 2ae)(1 + 5bf)

n−1∏
i=0

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 12)cg)

(1 + (8i+ 10)ae)(1 + (8i+ 13)bf)(1 + (8i+ 8)cg)
,

x24n+15 =
cg(1 + ae)(1 + 4bf)

f(1 + 5ae)(1 + 3cg)

n−1∏
i=0

(1 + (8i+ 9)ae)(1 + (8i+ 12)bf)(1 + (8i+ 7)cg)

(1 + (8i+ 13)ae)(1 + (8i+ 8)bf)(1 + (8i+ 11)cg)
,
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x24n+16 =
bf(1 + 4ae)(1 + 2cg)

e(1 + 3bf)(1 + 6cg)

n−1∏
i=0

(1 + (8i+ 12)ae)(1 + (8i+ 7)bf)(1 + (8i+ 10)cg)

(1 + (8i+ 8)ae)(1 + (8i+ 11)bf)(1 + (8i+ 14)cg)
,

x24n+17 =
ae(1 + 2bf)(1 + 5cg)

d(1 + 3ae)(1 + 6bf)(1 + cg)

n−1∏
i=0

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 13)cg)

(1 + (8i+ 11)ae)(1 + (8i+ 14)bf)(1 + (8i+ 9)cg)
,

where x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a are
arbitrary nonzero real numbers.

Proof. The result holds for n = 0. Now, assume that n > 0 and our assumption
holds for n− 1. Then,

x24n−30 = g

n−2∏
i=0

(1 + (8i+ 2)ae)(1 + (8i+ 5)bf)(1 + (8i)cg)

(1 + (8i+ 6)ae)(1 + (8i+ 1)bf)(1 + (8i+ 4)cg)
,

x24n−29 = f

n−2∏
i=0

(1 + (8i+ 5)ae)(1 + (8i)bf)(1 + (8i+ 3)cg)

(1 + (8i+ 1)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)
,

x24n−28 = e

n−2∏
i=0

(1 + (8i)ae)(1 + (8i+ 3)bf)(1 + (8i+ 6)cg)

(1 + (8i+ 4)ae)(1 + (8i+ 7)bf)(1 + (8i+ 2)cg)
,

x24n−27 = d

n−2∏
i=0

(1 + (8i+ 3)ae)(1 + (8i+ 6)bf)(1 + (8i+ 1)cg)

(1 + (8i+ 7)ae)(1 + (8i+ 2)bf)(1 + (8i+ 5)cg)
,

x24n−26 = c

n−2∏
i=0

(1 + (8i+ 6)ae)(1 + (8i+ 1)bf)(1 + (8i+ 4)cg)

(1 + (8i+ 2)ae)(1 + (8i+ 5)bf)(1 + (8i+ 8)cg)
,

x24n−25 = b

n−2∏
i=0

(1 + (8i+ 1)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)

(1 + (8i+ 5)ae)(1 + (8i+ 8)bf)(1 + (8i+ 3)cg)
,

x24n−24 = a

n−2∏
i=0

(1 + (8i+ 4)ae)(1 + (8i+ 7)bf)(1 + (8i+ 2)cg)

(1 + (8i+ 8)ae)(1 + (8i+ 3)bf)(1 + (8i+ 6)cg)
,

x24n−23 =
cg

d(1 + cg)

n−2∏
i=0

(1 + (8i+ 7)ae)(1 + (8i+ 2)bf)(1 + (8i+ 5)cg)

(1 + (8i+ 3)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)
,

x24n−22 =
bf

c(1 + bf)

n−2∏
i=0

(1 + (8i+ 2)ae)(1 + (8i+ 5)bf)(1 + (8i+ 8)cg)

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 4)cg)
,

x24n−21 =
ae

b(1 + ae)

n−2∏
i=0

(1 + (8i+ 5)ae)(1 + (8i+ 8)bf)(1 + (8i+ 3)cg)

(1 + (8i+ 9)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)
,

x24n−20 =
cg

a(1 + 2cg)

n−2∏
i=0

(1 + (8i+ 8)ae)(1 + (8i+ 3)bf)(1 + (8i+ 6)cg)

(1 + (8i+ 4)ae)(1 + (8i+ 7)bf)(1 + (8i+ 10)cg)
,

x24n−19 =
bdf(1 + cg)

cg(1 + 2bf)

n−2∏
i=0

(1 + (8i+ 3)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 5)cg)
,
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x24n−18 =
ace(1 + bf)

bf(1 + 2ae)

n−2∏
i=0

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 4)cg)

(1 + (8i+ 10)ae)(1 + (8i+ 5)bf)(1 + (8i+ 8)cg)
,

x24n−17 =
bcg(1 + ae)

ae(1 + 3cg)

n−2∏
i=0

(1 + (8i+ 9)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)

(1 + (8i+ 5)ae)(1 + (8i+ 8)bf)(1 + (8i+ 11)cg)
,

x24n−16 =
abf(1 + 2cg)

cg(1 + 3bf)

n−2∏
i=0

(1 + (8i+ 4)ae)(1 + (8i+ 7)bf)(1 + (8i+ 10)cg)

(1 + (8i+ 8)ae)(1 + (8i+ 11)bf)(1 + (8i+ 6)cg)
,

x24n−15 =
aceg(1 + 2bf)

bdf(1 + cg)(1 + 3ae)

n−2∏
i=0

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 5)cg)

(1 + (8i+ 11)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)
,

x24n−14 =
bfg(1 + 2ae)

ae(1 + bf)(1 + 4cg)

n−2∏
i=0

(1 + (8i+ 10)ae)(1 + (8i+ 5)bf)(1 + (8i+ 8)cg)

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 12)cg)
,

x24n−13 =
aef(1 + 3cg)

cg(1 + ae)(1 + 4bf)

n−2∏
i=0

(1 + (8i+ 5)ae)(1 + (8i+ 8)bf)(1 + (8i+ 11)cg)

(1 + (8i+ 9)ae)(1 + (8i+ 12)bf)(1 + (8i+ 7)cg)
,

x24n−12 =
ceg(1 + 3bf)

bf(1 + 2cg)(1 + 4ae)

n−2∏
i=0

(1 + (8i+ 8)ae)(1 + (8i+ 11)bf)(1 + (8i+ 6)cg)

(1 + (8i+ 12)ae)(1 + (8i+ 7)bf)(1 + (8i+ 10)cg)
,

x24n−11 =
bdf(1 + 3ae)(1 + cg)

ae(1 + 2bf)(1 + 5cg)

n−2∏
i=0

(1 + (8i+ 11)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 13)cg)
,

x24n−10 =
ae(1 + bf)(1 + 4cg)

g(1 + 2ae)(1 + 5bf)

n−2∏
i=0

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 12)cg)

(1 + (8i+ 10)ae)(1 + (8i+ 13)bf)(1 + (8i+ 8)cg)
,

x24n−9 =
cg(1 + ae)(1 + 4bf)

f(1 + 5ae)(1 + 3cg)

n−2∏
i=0

(1 + (8i+ 9)ae)(1 + (8i+ 12)bf)(1 + (8i+ 7)cg)

(1 + (8i+ 13)ae)(1 + (8i+ 8)bf)(1 + (8i+ 11)cg)
,

x24n−8 =
bf(1 + 4ae)(1 + 2cg)

e(1 + 3bf)(1 + 6cg)

n−2∏
i=0

(1 + (8i+ 12)ae)(1 + (8i+ 7)bf)(1 + (8i+ 10)cg)

(1 + (8i+ 8)ae)(1 + (8i+ 11)bf)(1 + (8i+ 14)cg)
,

x24n−7 =
ae(1 + 2bf)(1 + 5cg)

d(1 + 3ae)(1 + 6bf)(1 + cg)

n−2∏
i=0

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 13)cg)

(1 + (8i+ 11)ae)(1 + (8i+ 14)bf)(1 + (8i+ 9)cg)
.

Now, it follows from equation (3.1) that

x24n−6 =
x24n−9x24n−13

x24n−10(1 + x24n−9x24n−13)

=

ae
(1+5ae)

∏n−2
i=0

1+(8i+5)ae
1+(8i+13)ae

ae(1+bf)(1+4cg)
g(1+2ae)(1+5bf)

∏n−2
i=0

(1+(8i+6)ae)(1+(8i+9)bf)(1+(8i+12)cg)
(1+(8i+10)ae)(1+(8i+13)bf)(1+(8i+8)cg){1 +

ae
1+5ae

∏n−2
i=0

1+(8i+5)ae
1+(8i+13)ae}

=

1
(1+5ae)

∏n−2
i=0

1+(8i+5)ae
1+(8i+13)ae

(1+bf)(1+4cg)
g(1+2ae)(1+5bf)

∏n−2
i=0

(1+(8i+6)ae)(1+(8i+9)bf)(1+(8i+12)cg)
(1+(8i+10)ae)(1+(8i+13)bf)(1+(8i+8)cg){1 +

ae
1+5ae

∏n−2
i=0

1+(8i+5)ae
1+(8i+13)ae}
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=

1
(1+5ae){

(1+5ae)(1+13ae)...(1+(8n−11)ae)
(1+13ae)(1+21ae)...(1+(8n−3)ae)}

(1+bf)(1+4cg)
g(1+2ae)(1+5bf)

∏n−2
i=0

(1+(8i+6)ae)(1+(8i+9)bf)(1+(8i+12)cg)
(1+(8i+10)ae)(1+(8i+13)bf)(1+(8i+8)cg){1 +

ae
(1+5ae){

(1+5ae)(1+13ae)...(1+(8n−11)ae)
(1+13ae)(1+21ae)...(1+(8n−3)ae)}}

=

1
(1+(8n−3)ae)

(1+bf)(1+4cg)
g(1+2ae)(1+5bf)

∏n−2
i=0

(1+(8i+6)ae)(1+(8i+9)bf)(1+(8i+12)cg)
(1+(8i+10)ae)(1+(8i+13)bf)(1+(8i+8)cg){1 +

ae
(1+(8n−3)ae)}

=
1

(1+bf)(1+4cg)
g(1+2ae)(1+5bf)

∏n−2
i=0

(1+(8i+6)ae)(1+(8i+9)bf)(1+(8i+12)cg)
(1+(8i+10)ae)(1+(8i+13)bf)(1+(8i+8)cg) (1 + (8n− 3)ae){1 + ae

(1+(8n−3)ae)}

=
1

(1+bf)(1+4cg)
g(1+2ae)(1+5bf)

∏n−2
i=0

(1+(8i+6)ae)(1+(8i+9)bf)(1+(8i+12)cg)
(1+(8i+10)ae)(1+(8i+13)bf)(1+(8i+8)cg){(1 + (8n− 3)ae) + ae)}

=
1

(1+bf)(1+4cg)
g(1+2ae)(1+5bf)

∏n−2
i=0

(1+(8i+6)ae)(1+(8i+9)bf)(1+(8i+12)cg)
(1+(8i+10)ae)(1+(8i+13)bf)(1+(8i+8)cg){(1 + (8n− 2)ae}

=
g(1 + 2ae)(1 + 5bf)

(1 + bf)(1 + 4cg)

n−2∏
i=0

(1 + (8i+ 10)ae)(1 + (8i+ 13)bf)(1 + (8i+ 8)cg)

(1 + (8i+ 6)ae)(1 + (8i+ 9)bf)(1 + (8i+ 12)cg){(1 + (8n− 2)ae}
.

Hence,

x24n−6 = g

n−1∏
i=0

(1 + (8i+ 2)ae)(1 + (8i+ 5)bf)(1 + (8i)cg)

(1 + (8i+ 6)ae)(1 + (8i+ 1)bf)(1 + (8i+ 4)cg)
.

Similarly, we have

x24n−5 =
x24n−8x24n−12

x24n−9(1 + x24n−8x24n−12)

=

cg
(1+6cg)

∏n−2
i=0

1+(8i+6)cg
1+(8i+4)cg

cg(1+ae)(1+4bf)
f(1+5ae)(1+3cg)

∏n−2
i=0

(1+(8i+9)ae)(1+(8i+12)bf)(1+(8i+7)cg)
(1+(8i+13)ae)(1+(8i+8)bf)(1+(8i+11)cg){1 +

cg
(1+6cg)

∏n−2
i=0

1+(8i+6)cg
1+(8i+4)cg}

=

1
(1+6cg)

∏n−2
i=0

1+(8i+6)cg
1+(8i+4)cg

(1+ae)(1+4bf)
f(1+5ae)(1+3cg)

∏n−2
i=0

(1+(8i+9)ae)(1+(8i+12)bf)(1+(8i+7)cg)
(1+(8i+13)ae)(1+(8i+8)bf)(1+(8i+11)cg){1 +

cg
(1+6cg)

∏n−2
i=0

1+(8i+6)cg
1+(8i+4)cg}

=

1
(1+6cg){

(1+6cg)(1+14cg)...(1+(8n−10)cg)
(1+14cg)(1+22cg)...(1+(8n−2)cg)}

(1+ae)(1+4bf)
f(1+5ae)(1+3cg)

∏n−2
i=0

(1+(8i+9)ae)(1+(8i+12)bf)(1+(8i+7)cg)
(1+(8i+13)ae)(1+(8i+8)bf)(1+(8i+11)cg){1 +

cg
(1+6cg){

(1+6cg)(1+14cg)...(1+(8n−10)cg)
(1+14cg)(1+22cg)...(1+(8n−2)cg)}}

=

1
(1+(8n−3)cg)

(1+ae)(1+4bf)
f(1+5ae)(1+3cg)

∏n−2
i=0

(1+(8i+9)ae)(1+(8i+12)bf)(1+(8i+7)cg)
(1+(8i+13)ae)(1+(8i+8)bf)(1+(8i+11)cg){1 +

cg
(1+(8n−3)cg)}
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=
1

(1+ae)(1+4bf)
f(1+5ae)(1+3cg)

∏n−2
i=0

(1+(8i+9)ae)(1+(8i+12)bf)(1+(8i+7)cg)
(1+(8i+13)ae)(1+(8i+8)bf)(1+(8i+11)cg) (1 + (8n− 2)ae){1 + cg

(1+(8n−2)cg)}

=
1

(1+ae)(1+4bf)
f(1+5ae)(1+3cg)

∏n−2
i=0

(1+(8i+9)ae)(1+(8i+12)bf)(1+(8i+7)cg)
(1+(8i+13)ae)(1+(8i+8)bf)(1+(8i+11)cg){(1 + (8n− 2)cg) + cg}

=
1

(1+ae)(1+4bf)
f(1+5ae)(1+3cg)

∏n−2
i=0

(1+(8i+9)ae)(1+(8i+12)bf)(1+(8i+7)cg)
(1+(8i+13)ae)(1+(8i+8)bf)(1+(8i+11)cg){(1 + (8n− 1)cg)}

=
f(1 + 5ae)(1 + 3cg)

(1 + ae)(1 + 4bf)

n−2∏
i=0

(1 + (8i+ 13)ae)(1 + (8i+ 8)bf)(1 + (8i+ 11)cg)

(1 + (8i+ 9)ae)(1 + (8i+ 12)bf)(1 + (8i+ 7)cg)

1

{(1 + (8n− 1)cg)}
.

Then, we have

x24n−5 = f

n−1∏
i=0

(1 + (8i+ 5)ae)(1 + (8i)bf)(1 + (8i+ 3)cg)

(1 + (8i+ 1)ae)(1 + (8i+ 4)bf)(1 + (8i+ 7)cg)
.

Again, applying the same steps,

x24n+1 =
x24n−2x24n−6

x24n−3(1 + x24n−2x24n−6)

=
cg

∏n−1
i=0

1+(8i)cg
1+(8i+8)cg

d
∏n−1

i=0 d (1+(8i+3)ae)(1+(8i+6)bf)(1+(8i+1)cg)
(1+(8i+7)ae)(1+(8i+2)bf)(1+(8i+5)cg){1 + cg

∏n−1
i=0

1+(8i)cg
1+(8i+8)cg}

=
cg{ (1+8cg)(1+16cg)...(1+(8n−16)cg)(1+(8n−8)cg)

(1+8cg)(1+16cg)...(1+(8n−8)cg)(1+(8n)cg) }

d
∏n−1

i=0
(1+(8i+3)ae)(1+(8i+6)bf)(1+(8i+1)cg)
(1+(8i+7)ae)(1+(8i+2)bf)(1+(8i+5)cg){1 + cg{ (1+8cg)(1+16cg)...(1+(8n−16)cg)(1+(8n−8)cg)

(1+8cg)(1+16cg)...(1+(8n−8)cg)(1+(8n)cg) }}

=

cg
(1+(8n)cg)

d
∏n−1

i=0
(1+(8i+3)ae)(1+(8i+6)bf)(1+(8i+1)cg)
(1+(8i+7)ae)(1+(8i+2)bf)(1+(8i+5)cg){1 +

cg
(1+(8n)cg)}

=
cg

d
∏n−1

i=0
(1+(8i+3)ae)(1+(8i+6)bf)(1+(8i+1)cg)
(1+(8i+7)ae)(1+(8i+2)bf)(1+(8i+5)cg) (1 + (8n)cg){1 + cg

(1+(8n)cg)}

=
cg

d
∏n−1

i=0
(1+(8i+3)ae)(1+(8i+6)bf)(1+(8i+1)cg)
(1+(8i+7)ae)(1+(8i+2)bf)(1+(8i+5)cg){1 + (8n)cg + cg}

=
cg

d
∏n−1

i=0
(1+(8i+3)ae)(1+(8i+6)bf)(1+(8i+1)cg)
(1+(8i+7)ae)(1+(8i+2)bf)(1+(8i+5)cg){1 + (8n)cg + cg}

.
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Hence,

x24n+1 =
cg

d(1 + cg)

n−1∏
i=0

(1 + (8i+ 7)ae)(1 + (8i+ 2)bf)(1 + (8i+ 5)cg)

(1 + (8i+ 3)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)
.

Consequently, we can easily obtain the solutions of the other relations. Thus, the
proof is completed. □

Theorem 3.2. Equation (3.1) has a unique equilibrium point x∗ = 0 which is not
locally asymptotically stable.

Proof. For the equilibrium points of equation (3.1), we can write

x∗ =
x∗2

x∗(1 + x∗2)
,

⇒ x∗2(1 + x∗2) = x∗2 ⇒ 1 + x∗2 = 1.
Thus, the equilibrium point of equation (3.1) is x∗ = 0.
Now, let F be a function define by

F (u, v, w) =
uw

v(1 + uw)
.

Therefore,

Fu(u, v, w) =
w

v(1 + uw)2
, Fv(u, v, w) =

−uw

v2(1 + uw)
, Fw(u, v, w) =

u

v(1 + uw)2
.

Then,

Fu(x
∗, x∗, x∗) = 1, Fv(x

∗, x∗, x∗) = −1, Fw(x
∗, x∗, x∗) = 1.

It follows from Theorem (2.1) that equation (3.1) is not asymptotically stable. □

Numerical Examples

To confirm the result of the first subsection, we assume the following numerical
examples which illustrate difference types of solutions to equation (3.1).

Example 3.1. We put x−6 = 0.43, x−5 = 0.22, x−4 = 0.1, x−3 = 0.4, x−2 =
0.33, x−1 = 0.7, x0 = 0.5 in equation (3.1). So from Figure 1, we can see the
behavior of the solution of equation equation (3.1), where the solution dose not
converge to zero which prove the fact that the equilibrium point 0 is not locally
asymptotically stable .

Example 3.2. In Figure 2, since x−6 = 7, x−5 = 6, x−4 = 5, x−3 = 4, x−2 =
3, x−1 = 2, x0 = 1, we assure the same result of the previous example.
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Figure 1

Figure 2

4. On the difference equation xn+1 = xn−2xn−6

xn−3(−1+xn−2xn−6)

In this section, we study the second following case of the equation (1.1) in the
form:

(4.1) xn+1 =
xn−2xn−6

xn−3(−1 + xn−2xn−6)
.
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Theorem 4.1. Let {xn}∞n=−6 be a solution of equation (4.1). Then the solutions
of equation (4.1) are periodic of period 24 and given by:

x24n−6 = g, x24n−5 = f,

x24n−4 = e, x24n−3 = d,

x24n−2 = c, x24n−1 = b,

x24n = a, x24n+1 = cg
d(−1+cg) ,

x24n+2 = bf
c(−1+bf) , x24n+3 = ae

b(−1+ae) ,

x24n+4 = cg
a , x24n+5 = bdf(−1+cg)

cg ,

x24n+6 = ace(−1+bf)
bf , x24n+7 = bcg(−1+ae)

ae(−1+cg) ,

x24n+8 = abf
cg(−1+bf) , x24n+9 = (ae)(cg)

bdf(−1+ae)(−1+cg) ,

x24n+10 = (bf)g
(ae)(−1+bf) , x24n+11 = (aef)(−1+cg)

(cg)(−1+ae) ,

x24n+12 = ceg(−1+bf)
bf , x24n+13 = bdf(−1+ae)

ae ,

x24n+14 = ae
g , x24n+15 = cg

f(−1+cg) ,

x24n+16 = bf
e(−1+bf) , x24n+17 = ae

d(−1+ae) ,

where x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a are
arbitrary nonzero real numbers with initial conditions x−2x−6 ̸= 1, x−1x−5 ̸= 1,
x0x−4 ̸= 1.

Proof. For n = 0 the conclusion holds. Now, suppose that n > 0 and our assump-
tion holds for n− 1. Then,

x24n−30 = g, x24n−29 = f,

x24n−28 = e, x24n−27 = d,

x24n−26 = c, x24n−25 = b,

x24n−24 = a, x24n−23 = cg
d(−1+cg) ,

x24n−22 = bf
c(−1+bf) , x24n−21 = ae

b(−1+ae) ,

x24n−20 = cg
a , x24n−19 = bdf(−1+cg)

cg ,

x24n−18 = ace(−1+bf)
bf , x24n−17 = bcg(−1+ae)

ae(−1+cg) ,

x24n−16 = abf
cg(−1+bf) , x24n−15 = (ae)(cg)

bdf(−1+ae)(−1+cg) ,
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x24n−14 = bfg
ae(−1+bf) , x24n−13 = aef(−1+cg)

cg(−1+ae) ,

x24n−12 = ceg(−1+bf)
bf , x24n−11 = bdf(−1+ae)

ae ,

x24n−10 = ae
g , x24n−9 = cg

f(−1+cg) ,

x24n−8 = bf
e(−1+bf) , x24n−7 = ae

d(−1+ae) .

Now, we proof some of the relations of equation (4.1).

x24n−6 =
x24n−9x24n−13

x24n−10(−1 + x24n−9x24n−13)

=

cg
f(−1+cg)

aef(−1+cg)
cg(−1+ae)

ae
g {−1 + { cg

f(−1+cg)
aef(−1+cg)
cg(−1+ae) }}

=
ae

−1+ae
ae
g {−1 + { ae

−1+ae}}

=
1

1
g (−1 + ae){−1 + { ae

−1+ae}}
v =

g

1− ae+ ae
= g.

Similarly,

x24n+7 =
x24n+4x24n

x24n+3(−1 + x24n+4x24n)
=

cg
a (a)

ae
b(−1+ae){−1 + cg

a (a)}

=
cg

ae
b(−1+ae){−1 + cg}

=
bcg(−1 + ae)

ae{−1 + cg}
.

Also,

x24n+12 =
x24n+9x24n+5

x24n+8(−1 + x24n+9x24n+5)

=

(ae)(cg)
bdf(−1+ae)(−1+cg)

bdf(−1+cg)
cg

abf
cg(−1+bf){−1 + { (ae)(cg)

bdf(−1+ae)(−1+cg)
bdf(−1+cg)

cg }

=
ae

−1+ae
abf

cg(−1+bf){−1 + ae
−1+ae}

=
ae
abf

cg(−1+bf)

=
ecg(−1 + bf)

bf
.

Hence, we can easily proof the other relations. Thus, the proof has been done. □

Theorem 4.2. Equation (4.1) has three equilibrium points which are 0 and ±
√
2,

where they are not locally asymptotically stable.
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Proof. By using equation (4.1), and for the equilibrium points of (4.1) we can write

x∗ =
x∗2

x∗(−1 + x∗2)
.

Then we have,

x∗2(−1 + x∗2) = x∗2,

or

x∗2(x∗2 − 2) = 0.

Thus, 0, ±
√
2 are the equilibrium points.

Now, let F be a function define by

F (u, v, w) =
uw

v(−1 + uw)
.

Therefore,

Fu(u, v, w) =
−w

v(−1 + uw)2
, Fv(u, v, w) =

−uw

v2(−1 + uw)
, Fw(u, v, w) =

−u

v(−1 + uw)2
.

Then,

Fu(x
∗, x∗, x∗) = −1, Fv(x

∗, x∗, x∗) = ±1, Fw(x
∗, x∗, x∗) = −1.

Furthermore, we see from Theorem (2.1) that equation (4.1) is not asymptotically
stable. □

Numerical Examples.

Conforming the result of the second subsection, we consider the following nu-
merical examples which illustrate difference types of solutions to equation (4.1).

Example 4.1. In Figure 3 if we take the initial conditions as x−6 = 5, x−5 =
3, x4 = 4, x−3 = 1, x−2 = 1, x−1 = 3, x0 = 4, then we see that the behavior
of the solution of equation (4.1) doesn’t converge to the equilibrium points zero or

±
√
2, which confirm the result of Theorem (4.2.).

Example 4.2. Consider x−6 = 0.1, x−5 = 0.2, x−4 = 0.3, x−3 = 0.4, x−2 =
0.5, x−1 = 0.6, x0 = 0.7. In Figure 4, we get the same result of Example 4.1.

5. On the difference equation xn+1 = xn−2xn−6

xn−3(1−xn−2xn−6)

In this section, we get the expressions of the solution of the third case of the
equation (1.1):

(5.1) xn+1 =
xn−2xn−6

xn−3(1− xn−2xn−6)
.
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Figure 3

Figure 4

Theorem 5.1. Let {xn}∞n=−6 be a solution of equation (5.1). Then

x24n−6 = g

n−1∏
i=0

(1− (8i+ 2)ae)(1− (8i+ 5)bf)(1− (8i)cg)

(1− (8i+ 6)ae)(1− (8i+ 1)bf)(1− (8i+ 4)cg)
,
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x24n−5 = f

n−1∏
i=0

(1− (8i+ 5)ae)(1− (8i)bf)(1− (8i+ 3)cg)

(1− (8i+ 1)ae)(1− (8i+ 4)bf)(1− (8i+ 7)cg)
,

x24n−4 = e

n−1∏
i=0

(1− (8i)ae)(1− (8i+ 3)bf)(1− (8i+ 6)cg)

(1− (8i+ 4)ae)(1− (8i+ 7)bf)(1− (8i+ 2)cg)
,

x24n−3 = d

n−1∏
i=0

(1− (8i+ 3)ae)(1− (8i+ 6)bf)(1− (8i+ 1)cg)

(1− (8i+ 7)ae)(1− (8i+ 2)bf)(1− (8i+ 5)cg)
,

x24n−2 = c

n−1∏
i=0

(1− (8i+ 6)ae)(1− (8i+ 1)bf)(1− (8i+ 4)cg)

(1− (8i+ 2)ae)(1− (8i+ 5)bf)(1− (8i+ 8)cg)
,

x24n−1 = b
n−1∏
i=0

(1− (8i+ 1)ae)(1− (8i+ 4)bf)(1− (8i+ 7)cg)

(1− (8i+ 5)ae)(1− (8i+ 8)bf)(1− (8i+ 3)cg)
,

x24n = a

n−1∏
i=0

(1− (8i+ 4)ae)(1− (8i+ 7)bf)(1− (8i+ 2)cg)

(1− (8i+ 8)ae)(1− (8i+ 3)bf)(1− (8i+ 6)cg)
,

x24n+1 =
cg

d(1− cg)

n−1∏
i=0

(1− (8i+ 7)ae)(1− (8i+ 2)bf)(1− (8i+ 5)cg)

(1− (8i+ 3)ae)(1− (8i+ 6)bf)(1− (8i+ 9)cg)
,

x24n+2 =
bf

c(1− bf)

n−1∏
i=0

(1− (8i+ 2)ae)(1− (8i+ 5)bf)(1− (8i+ 8)cg)

(1− (8i+ 6)ae)(1− (8i+ 9)bf)(1− (8i+ 4)cg)
,

x24n+3 =
ae

b(1− ae)

n−1∏
i=0

(1− (8i+ 5)ae)(1− (8i+ 8)bf)(1− (8i+ 3)cg)

(1− (8i+ 9)ae)(1− (8i+ 4)bf)(1− (8i+ 7)cg)
,

x24n+4 =
cg

a(1− 2cg)

n−1∏
i=0

(1− (8i+ 8)ae)(1− (8i+ 3)bf)(1− (8i+ 6)cg)

(1− (8i+ 4)ae)(1− (8i+ 7)bf)(1− (8i+ 10)cg)
,

x24n+5 =
bdf(1− cg)

cg(1− 2bf)

n−1∏
i=0

(1− (8i+ 3)ae)(1− (8i+ 6)bf)(1− (8i+ 9)cg)

(1− (8i+ 7)ae)(1− (8i+ 10)bf)(1− (8i+ 5)cg)
,

x24n+6 =
ace(1− bf)

bf(1− 2ae)

n−1∏
i=0

(1− (8i+ 6)ae)(1− (8i+ 9)bf)(1− (8i+ 4)cg)

(1− (8i+ 10)ae)(1− (8i+ 5)bf)(1− (8i+ 8)cg)
,

x24n+7 =
bcg(1− ae)

ae(1− 3cg)

n−1∏
i=0

(1− (8i+ 9)ae)(1− (8i+ 4)bf)(1− (8i+ 7)cg)

(1− (8i+ 5)ae)(1− (8i+ 8)bf)(1− (8i+ 11)cg)
,

x24n+8 =
abf(1− 2cg)

cg(1− 3bf)

n−1∏
i=0

(1− (8i+ 4)ae)(1− (8i+ 7)bf)(1− (8i+ 10)cg)

(1− (8i+ 8)ae)(1− (8i+ 11)bf)(1− (8i+ 6)cg)
,

x24n+9 =
aceg(1− 2bf)

bdf(1− cg)(1− 3ae)

n−1∏
i=0

(1− (8i+ 7)ae)(1− (8i+ 10)bf)(1− (8i+ 5)cg)

(1− (8i+ 11)ae)(1− (8i+ 6)bf)(1− (8i+ 9)cg)
,
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x24n+10 =
bfg(1− 2ae)

ae(1− bf)(1− 4cg)

n−1∏
i=0

(1− (8i+ 10)ae)(1− (8i+ 5)bf)(1− (8i+ 8)cg)

(1− (8i+ 6)ae)(1− (8i+ 9)bf)(1− (8i+ 12)cg)
,

x24n+11 =
aef(1− 3cg)

cg(1− ae)(1− 4bf)

n−1∏
i=0

(1− (8i+ 5)ae)(1− (8i+ 8)bf)(1− (8i+ 11)cg)

(1− (8i+ 9)ae)(1− (8i+ 12)bf)(1− (8i+ 7)cg)
,

x24n+12 =
ceg(1− 3bf)

bf(1− 2cg)(1− 4ae)

n−1∏
i=0

(1− (8i+ 8)ae)(1− (8i+ 11)bf)(1− (8i+ 6)cg)

(1− (8i+ 12)ae)(1− (8i+ 7)bf)(1− (8i+ 10)cg)
,

x24n+13 =
bdf(1− 3ae)(1− cg)

ae(1− 2bf)(1− 5cg)

n−1∏
i=0

(1− (8i+ 11)ae)(1− (8i+ 6)bf)(1− (8i+ 9)cg)

(1− (8i+ 7)ae)(1− (8i+ 10)bf)(1− (8i+ 13)cg)
,

x24n+14 =
ae(1− bf)(1− 4cg)

g(1− 2ae)(1− 5bf)

n−1∏
i=0

(1− (8i+ 6)ae)(1− (8i+ 9)bf)(1− (8i+ 12)cg)

(1− (8i+ 10)ae)(1− (8i+ 13)bf)(1− (8i+ 8)cg)
,

x24n+15 =
cg(1− ae)(1− 4bf)

f(1− 5ae)(1− 3cg)

n−1∏
i=0

(1− (8i+ 9)ae)(1− (8i+ 12)bf)(1− (8i+ 7)cg)

(1− (8i+ 13)ae)(1− (8i+ 8)bf)(1− (8i+ 11)cg)
,

x24n+16 =
bf(1− 4ae)(1− 2cg)

e(1− 3bf)(1− 6cg)

n−1∏
i=0

(1− (8i+ 12)ae)(1− (8i+ 7)bf)(1− (8i+ 10)cg)

(1− (8i+ 8)ae)(1− (8i+ 11)bf)(1− (8i+ 14)cg)
,

x24n+17 =
ae(1− 2bf)(1− 5cg)

d(1− 3ae)(1− 6bf)(1− cg)

n−1∏
i=0

(1− (8i+ 7)ae)(1− (8i+ 10)bf)(1− (8i+ 13)cg)

(1− (8i+ 11)ae)(1− (8i+ 14)bf)(1− (8i+ 9)cg)
.

where x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a are
arbitrary nonzero real numbers.

Proof. The result holds for n = 0. Now, assume that n > 0 and our assumption
holds for n− 1. Then,

x24n−30 = g

n−2∏
i=0

(1− (8i+ 2)ae)(1− (8i+ 5)bf)(1− (8i)cg)

(1− (8i+ 6)ae)(1− (8i+ 1)bf)(1− (8i+ 4)cg)
,

x24n−29 = f

n−2∏
i=0

(1− (8i+ 5)ae)(1− (8i)bf)(1− (8i+ 3)cg)

(1− (8i+ 1)ae)(1− (8i+ 4)bf)(1− (8i+ 7)cg)
,

x24n−28 = e

n−2∏
i=0

(1− (8i)ae)(1− (8i+ 3)bf)(1− (8i+ 6)cg)

(1− (8i+ 4)ae)(1− (8i+ 7)bf)(1− (8i+ 2)cg)
,

x24n−27 = d

n−2∏
i=0

(1− (8i+ 3)ae)(1− (8i+ 6)bf)(1− (8i+ 1)cg)

(1− (8i+ 7)ae)(1− (8i+ 2)bf)(1− (8i+ 5)cg)
,
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x24n−26 = c

n−2∏
i=0

(1− (8i+ 6)ae)(1− (8i+ 1)bf)(1− (8i+ 4)cg)

(1− (8i+ 2)ae)(1− (8i+ 5)bf)(1− (8i+ 8)cg)
,

x24n−25 = b

n−2∏
i=0

(1− (8i+ 1)ae)(1− (8i+ 4)bf)(1− (8i+ 7)cg)

(1− (8i+ 5)ae)(1− (8i+ 8)bf)(1− (8i+ 3)cg)

x24n−24 = a

n−2∏
i=0

(1− (8i+ 4)ae)(1− (8i+ 7)bf)(1− (8i+ 2)cg)

(1− (8i+ 8)ae)(1− (8i+ 3)bf)(1− (8i+ 6)cg)
,

x24n−23 =
cg

d(1− cg)

n−2∏
i=0

(1− (8i+ 7)ae)(1− (8i+ 2)bf)(1− (8i+ 5)cg)

(1− (8i+ 3)ae)(1− (8i+ 6)bf)(1− (8i+ 9)cg)
,

x24n−22 =
bf

c(1− bf)

n−2∏
i=0

(1− (8i+ 2)ae)(1− (8i+ 5)bf)(1− (8i+ 8)cg)

(1− (8i+ 6)ae)(1− (8i+ 9)bf)(1− (8i+ 4)cg)
,

x24n−21 =
ae

b(1− ae)

n−2∏
i=0

(1− (8i+ 5)ae)(1− (8i+ 8)bf)(1− (8i+ 3)cg)

(1− (8i+ 9)ae)(1− (8i+ 4)bf)(1− (8i+ 7)cg)
,

x24n−20 =
cg

a(1− 2cg)

n−2∏
i=0

(1− (8i+ 8)ae)(1− (8i+ 3)bf)(1− (8i+ 6)cg)

(1− (8i+ 4)ae)(1− (8i+ 7)bf)(1− (8i+ 10)cg)
,

x24n−19 =
bdf(1− cg)

cg(1− 2bf)

n−2∏
i=0

(1 + (8i+ 3)ae)(1 + (8i+ 6)bf)(1 + (8i+ 9)cg)

(1 + (8i+ 7)ae)(1 + (8i+ 10)bf)(1 + (8i+ 5)cg)
,

x24n−18 =
ace(1− bf)

bf(1− 2ae)

n−2∏
i=0

(1− (8i+ 6)ae)(1− (8i+ 9)bf)(1− (8i+ 4)cg)

(1− (8i+ 10)ae)(1− (8i+ 5)bf)(1− (8i+ 8)cg)
,

x24n−17 =
bcg(1− ae)

ae(1− 3cg)

n−2∏
i=0

(1− (8i+ 9)ae)(1− (8i+ 4)bf)(1− (8i+ 7)cg)

(1− (8i+ 5)ae)(1− (8i+ 8)bf)(1− (8i+ 11)cg)
,

x24n−16 =
abf(1− 2cg)

cg(1− 3bf)

n−2∏
i=0

(1− (8i+ 4)ae)(1− (8i+ 7)bf)(1− (8i+ 10)cg)

(1− (8i+ 8)ae)(1− (8i+ 11)bf)(1− (8i+ 6)cg)
,

x24n−15 =
aceg(1− 2bf)

bdf(1− cg)(1− 3ae)

n−2∏
i=0

(1− (8i+ 7)ae)(1− (8i+ 10)bf)(1− (8i+ 5)cg)

(1− (8i+ 11)ae)(1− (8i+ 6)bf)(1− (8i+ 9)cg)
,

x24n−14 =
bfg(1− 2ae)

ae(1− bf)(1− 4cg)

n−2∏
i=0

(1− (8i+ 10)ae)(1− (8i+ 5)bf)(1− (8i+ 8)cg)

(1− (8i+ 6)ae)(1− (8i+ 9)bf)(1− (8i+ 12)cg)
,

x24n−13 =
aef(1− 3cg)

cg(1− ae)(1− 4bf)

n−2∏
i=0

(1− (8i+ 5)ae)(1− (8i+ 8)bf)(1− (8i+ 11)cg)

(1− (8i+ 9)ae)(1− (8i+ 12)bf)(1− (8i+ 7)cg)
,

x24n−12 =
ceg(1− 3bf)

bf(1− 2cg)(1− 4ae)

n−2∏
i=0

(1− (8i+ 8)ae)(1− (8i+ 11)bf)(1− (8i+ 6)cg)

(1− (8i+ 12)ae)(1− (8i+ 7)bf)(1− (8i+ 10)cg)
,

x24n−11 =
bdf(1− 3ae)(1− cg)

ae(1− 2bf)(1− 5cg)

n−2∏
i=0

(1− (8i+ 11)ae)(1− (8i+ 6)bf)(1− (8i+ 9)cg)

(1− (8i+ 7)ae)(1− (8i+ 10)bf)(1− (8i+ 13)cg)
,

x24n−10 =
ae(1− bf)(1− 4cg)

g(1− 2ae)(1− 5bf)

n−2∏
i=0

(1− (8i+ 6)ae)(1− (8i+ 9)bf)(1− (8i+ 12)cg)

(1− (8i+ 10)ae)(1− (8i+ 13)bf)(1− (8i+ 8)cg)
,
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x24n−9 =
cg(1− ae)(1− 4bf)

f(1− 5ae)(1− 3cg)

n−2∏
i=0

(1− (8i+ 9)ae)(1− (8i+ 12)bf)(1− (8i+ 7)cg)

(1− (8i+ 13)ae)(1− (8i+ 8)bf)(1− (8i+ 11)cg)
,

x24n−8 =
bf(1− 4ae)(1− 2cg)

e(1− 3bf)(1− 6cg)

n−2∏
i=0

(1− (8i+ 12)ae)(1− (8i+ 7)bf)(1− (8i+ 10)cg)

(1− (8i+ 8)ae)(1− (8i+ 11)bf)(1− (8i+ 14)cg)
,

x24n−7 =
ae(1− 2bf)(1− 5cg)

d(1− 3ae)(1− 6bf)(1− cg)

n−2∏
i=0

(1− (8i+ 7)ae)(1− (8i+ 10)bf)(1− (8i+ 13)cg)

(1− (8i+ 11)ae)(1− (8i+ 14)bf)(1− (8i+ 9)cg)
.

Now, it follows from equation (5.1) that,

x24n+1 =
x24n−2x24n−6

x24n−3(1− x24n−2x24n−6)

=
cg

∏n−1
i=0

(1−(8i)cg)
1−(8i+8)cg

d
∏n−1

i=0
(1−(8i+3)ae)(1−(8i+6)bf)(1−(8i+1)cg)
(1−(8i+7)ae)(1−(8i+2)bf)(1−(8i+5)cg){1− cg

∏n−1
i=0

1−(8i)cg
1−(8i+8)cg}

=
cg{ (1−8cg)(1−16cg)...(1−(8n−16)cg)(1−(8n−8)cg)

(1−8cg)(1−16cg)...(1−(8n−8)cg)(1−(8n)cg) }

d
∏n−1

i=0
(1−(8i+3)ae)(1−(8i+6)bf)(1−(8i+1)cg)
(1−(8i+7)ae)(1−(8i+2)bf)(1−(8i+5)cg){1− cg{ (1−8cg)(1−16cg)...(1−(8n−16)cg)(1−(8n−8)cg)

(1−8cg)(1−16cg)...(1−(8n−8)cg)(1−(8n)cg) }}

=

cg
(1−(8n)cg)

d
∏n−1

i=0
(1−(8i+3)ae)(1−(8i+6)bf)(1−(8i+1)cg)
(1−(8i+7)ae)(1−(8i+2)bf)(1−(8i+5)cg){1−

cg
(1+(8n)cg)}

=
cg

d(1− cg)

n−1∏
i=0

(1− (8i+ 7)ae)(1− (8i+ 2)bf)(1− (8i+ 5)cg)

(1− (8i+ 3)ae)(1− (8i+ 6)bf)(1− (8i+ 9)cg)
.

We can easily proof the solutions of the other relations. Thus, the proof is com-
pleted. □

Theorem 5.2. Equation (5.1) has a unique equilibrium point that is number
zero and this equilibrium point is not locally asymptotically stable.

Proof. As the proof of Theorem 3.2, and will be omitted. □

Numerical Examples.
In the next examples we can verify the result of Theorem (5.2.), that the solution
does not converge to the equilibrium point 0.

Example 5.1. Assume the initial values of equation (5.1) are x−6 = 2, x−5 =
1, x−4 = 2, x−3 = 3, x−2 = 4, x−1 = 2, x0 = 5. The behavior in Figure 5 shows
that the solution of equation equation (5.1) dose not converge to zero which prove
the result of Theorem (5.2.)

Example 5.2. See Figure 6 since (5.1) are x−6 = −1, x−5 = 0.2, x−4 =
−3, x−3 = 0.4, x−2 = 3, x−1 = −4, x0 = −5., we got the same result of the
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previous example.

Figure 5

Figure 6
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6. On the difference equation xn+1 = xn−2xn−6

xn−3(−1−xn−2xn−6)

In this section, we study the last case of the equation (1.1) in the form:

(6.1) xn+1 =
xn−2xn−6

xn−3(−1− xn−2xn−6)
.

Theorem 6.1. Let {xn}∞n=−6 be a solution of equation (6.1). Then the solutions
of equation (6.1) are periodic of period 24 and given by:

x24n−6 = g, x24n−5 = f,

x24n−4 = e, x24n−3 = d,

x24n−2 = c, x24n−1 = b,

x24n = a, x24n+1 = cg
d(−1−cg) ,

x24n+2 = bf
c(−1−bf) , x24n+3 = ae

b(−1−ae) ,

x24n+4 = cg
a , x24n+5 = bdf(−1−cg)

cg ,

x24n+6 = ace(−1−bf)
bf , x24n+7 = bcg(−1−ae)

ae(−1−cg) ,

x24n+8 = abf
cg(−1−bf) , x24n+9 = (ae)(cg)

bdf(−1−ae)(−1−cg) ,

x24n+10 = (bf)g
(ae)(−1−bf) , x24n+11 = (aef)(−1−cg)

(cg)(−1−ae) ,

x24n+12 = ceg(−1−bf)
bf , x24n+13 = bdf(−1−ae)

ae ,

x24n+14 = ae
g , 24n+15 = cg

f(−1−cg) ,

x24n+16 = bf
e(−1−bf) , x24n+17 = ae

d(−1−ae) .

where x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a are
arbitrary nonzero real numbers with initial conditions x−2x−6 ̸= −1, x−1x−5 ̸= −1,
x0x−4 ̸= −1.

Proof. For n = 0 the conclusion holds. Now, suppose that n > 0 and our assump-
tion holds for n− 1. Then,

x24n−30 = g, x24n−29 = f,

x24n−28 = e, x24n−27 = d,

x24n−26 = c, x24n−25 = b,

x24n−24 = a, x24n−23 = cg
d(−1−cg) ,
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x24n−22 = bf
c(−1−bf) , x24n−21 = ae

b(−1−ae) ,

x24n−20 = cg
a , x24n−19 = bdf(−1−cg)

cg ,

x24n−18 = ace(−1−bf)
bf , x24n−17 = bcg(−1−ae)

ae(−1−cg) ,

x24n−16 = abf
cg(−1−bf) , x24n−15 = (ae)(cg)

bdf(−1−ae)(−1−cg) ,

x24n−14 = bfg
ae(−1−bf) , x24n−13 = aef(−1−cg)

cg(−1−ae) ,

x24n−12 = ceg(−1−bf)
bf , x24n−11 = bdf(−1−ae)

ae ,

x24n−10 = ae
g , x24n−9 = cg

f(−1−cg) ,

x24n−8 = bf
e(−1−bf) , x24n−7 = ae

d(−1−ae) .

Now, we proof some of the relations of equation (6.1).

x24n+2 =
x24n−1x24n−5

x24n−2(−1− x24n−1x24n−5)
=

bf

c(−1− bf)
.

Similarly,

x24n+9 =
x24n+6x24n+2

x24n+5(−1− x24n+6x24n+2)
=

ace(−1−bf)
bf

bf
c(−1−bf)

bdf(−1−cg)
cg (−1− ace(−1−bf)

bf
bf

c(−1−bf) )

=
(ae)(cg)

bdf(−1− ae)(−1− cg)
.

Hence, we can easily proof the other relations. Thus, the proof has been done.
□

Theorem 6.2. Equation (6.1) has equilibrium point x∗ = 0 and it is not locally
asymptotically stable.

Proof. The proof is similar to the proof of Theorem 3.2, and will be omitted.

Numerical Examples.

Example 6.1. Figure 7 shows the periodic solution of equation (5.1) where
the initial conditions are x−6 = 9, x−5 = 4, x−4 = 3, x−3 = 4, x−2 = 10, x−1 =
7, x0 = 9. Also, it shows that the solution of equation (6.1) doesn’t converge to
the 0 and this confirms that the equation (6.1) is not asymptotically stable.
Example 6.2. Also in Figure 8 we assure the same results of Example 6.1.
where the initial conditions are x−6 = 1, x−5 = 0.22, x−4 = 0.3, x−3 = 7, x−2 =
1.0, x−1 = 0.7, x0 = 0.9.
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7. Conclusion

In this article we presents the solution of the difference equation (1.1). First,
we obtained the form of the solution of four special cases of the difference equation
(1.1) and investigated the existence of the equilibrium point, the global asymptotic
behavior and the existence of a periodic solutions of these equations. By the end,
we gave some numerical examples of each case with different initial values by using
the mathematical program MATLAB to confirm the obtained results.
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