GERMENYUM MONOHİDRİDİN DÖNME ENERJİLERİİNİN RİJİT OLMAYAN ROTATOR, TİTREŞİM ENERJİLERİİNİN DE HARMONİK OLMAYAN OSİLATÖR MODELLERİ İLE HESAPLANMASI

Mustafa KUMRU
Selçuk Üniversitesi, Fen - Edebiyat Fakültesi, Fizik Bölümü, 42079 KONYA

İzzet KARA
Fırat Üniversitesi, Fen - Edebiyat Fakültesi, Fizik Bölümü 23169 ELAZIĞ

ÖZET

Germenyum monohidridinin dönmé enerjileri rijit olmayan rotator, titreşim enerjileri harmonik olmayan osilatör modelleri ile, kuantum sayılarının fonksiyonu olarak ve bilgisayar yardımcı ile hesaplanmıştır. Rijit olmayan rotator modelinde; dönmé enerjileri, \(3, 46 \times 10^{-22}\) joule \((= 2,162 \times 10^{-3}\text{ eV})\) ile \(3,507 \times 10^{-19}\) joule \((= 2,192\text{ eV})\) arasında değişirken, harmonik olmayan osilatör modellinde titreşim enerjileri; \(1,930 \times 10^{-20}\) joule \((= 1,206 \times 10^{1}\text{ eV})\) ile \(9,695 \times 10^{-19}\) joule \((= 6,060\text{ eV})\) arasında değişmektedir.
SUMMARY

Rotational energies with non-rigid rotator and vibrational energies with anharmonic oscillator models of monohydride germanium were calculated, as functions of quantum numbers, by using a computer. In the non-rigid rotator model; while the rotational energies change between; 3.507×10^{-19} Joule ($= 2.192$ eV) and 3.46×10^{-22} Joule ($= 2.162 \times 10^{-3}$ eV), in the anharmonic oscillator model the vibrational energies change between; 9.695×10^{-19} Joule ($= 6.060$ eV) and 1.930×10^{-20} Joule ($= 1.206 \times 10^{-1}$ eV).

1. Giriş

Germenyum atomu, yarı iletkenlik özellikleri sebebiyle teknolojik öneme sahiptir. Özellikle; hidrojen veya karbon ile bağlı haldeki Germanyum'un, enerji yasak band aralığı arttığından fotovoltaik aletlerde kullanılma şansı da artmaktadır. Bununla ilgili çalışmalar literatürde oldukça sık rastlanmaktadır [1-5].

2. RİJİT OLMAYAN ROTATOR

\[B = \frac{h}{8\pi^2 \mu c} = \frac{h}{8\pi^2 \epsilon \mu r^2} \]

(1)

eşıtlığı ile verilir [8]. Burada I ve \(\mu; \) sistemin sırasıyla eylemsizlik momenti ve indirgenmiş kütesidir. \(r \) dışındaki tüm nicelikler titreşimden bağımsız olduğundan,

\[B \propto \frac{1}{r^2} \]

\[(1') \]

şeklinde yazılabilir. Basit harmonik harekette; moleküler bağı, denge uzaklığını her iki tarafından da eşit miktarda sıkışp genişlediğinden, uzaklığını ortalama değeri değişmesi de, \(1/r^2 \) nin ortalama değeri, \(1/r_d^2 \) ye eşit değildir. Burada; \(r_d \) denge uzaklığınıdır. Bu fark küçük olsa da, spektroskopik olarak ölçülebilen \(B \) deki fark ile karşılaştırıldığında ihmal edilemez.
Bu durumda, B ve r değerleri için, üç farklı değer tanımlamak uygun olur. Denge durumunda çekirdekler arasındaki uzaklık r_d ise, dönme sabiti B_d dir; titreşim taban durumunda ortalama çekirdekler arası uzaklık r_o ise, dönme sabiti B_o; molekülün fazladan bir de titreşim enerjisi varsa, nicelikler r_n ve B_o dir. Burada v, titreşim kuantum sayısıdır. Schrödinger dalga denklemi rijit olmayan bir molekül için çözüldüğünde, dönme enerji düzeyleri,

$$E_J = \frac{\hbar^2}{8\pi^2 I} \; J(J+1) - \frac{\hbar^4}{32\pi^4 I^2 \; r^2 \; k} \; j^2(J+1)^2 \; \text{joule}$$

veya

$$\epsilon_J = \frac{E_J}{\hbar c} = B J (J+1) - D \; j^2 (J+1)^2 \; \text{cm}^{-1}$$ \hspace{1cm} (2)

olarak bulunur [8]. Burada, D merkezkaç bükülme sabiti olup,

$$D = \frac{\hbar^3}{32\pi^4 I^2 \; r^2 \; k c} \; \text{cm}^{-1}$$ \hspace{1cm} (3)

şeklinde verilen pozitif bir niceliktir. Denklem (2) yalnızca basit harmonik kuvvet alanı için uygulanır. Kuvvet alanı harmonik olmadığı durumda; ifade,

$$\epsilon_J = B J (J+1) - D j^2 (J+1)^2 + H J^3 (J+1)^3 + K j^4 (J+1)^4 \ldots \; \text{cm}^{-1}$$ \hspace{1cm} (4)

B ve D nin Denklem (1) ve (3) de tanımlanan değerlerinden,

$$D = \frac{16 B n^2 \mu c^2}{k} = \frac{4 B^3}{\omega^2}$$ \hspace{1cm} (5)
elde edilir. Bu yani, \(\varepsilon \); bağıntı derinliğini \(x \)'ın, k ise kuvvet sabitidir. Titreşim frekansları \(g \). \(\text{cm}^{-1} \) ve \(B \) de 10 cm. mertebesinde olduğu bilinmektedir. Dolayısıyla \(10^{-3} \text{ cm}^{-1} \) mertebesinde olan \(D \), \(B \) ye göre çok küçük olur. Bu nedenle, küçük \(J \) değerleri için, \(D \) \(J^2 \) \((J+1)^2 \) düzelmeye terimi ihmal edilebilir. Fakat, 10 veya daha büyük \(J \) değerleri için bu terim fark edilir hale gelir.

Rijit iki atomlu molekülden rijit olmayan iki atomlu moleküle geçildiğinde, döme düzeylerinin daralması abartılı olarak Şekil 1 de görülmektedir. Spektrumlar, rijit ve rijit olmayan moleküllere karşılık gelen enerji düzeylerini göstermektedir. Bunlar, geçişleri birleştiren kesikli çizgilerle de karşılaştırılabilir. Rijit olmayan durum için de \(\Delta J = \pm 1 \) seçimin kuralı geçerlidir.

Geçişler için analitik ifade,

\[
\varepsilon_{J+1} - \varepsilon_J = \varepsilon_J = B \left(\begin{array}{c} J+1 \ \ (J+2) \ \ (J+1) \end{array} \right) \cdot D \left[(J+1)^2 \ (J+2)^2 \ (J+1)^2 \right] = 2B (J+1) - 4D (J+1)^3 \text{ cm}^{-1} \tag{6}
\]

şeklinde yazılabilir. Burada, \(\varepsilon_J \); \(J \) den \(J + 1 \) e olan yukarı geçiş veya \(J + 1 \) den \(J \) ye aşağı geçiş eşit biçimde karşılık gelir. Böylece, esnek rotator spektrumunun, her bir çizgisinin düşük frekanslara yavaşca kayması, yani, \((J + 1)^3 \) ile artan yer değiştirme dışında, rijit molekülün spektrumuna benzediği, analitik olarak ve Şek. 1 de de görülmektedir.

\(D \) nin bilinmesi, gözlenen bir spektrumdaki çizgilerden \(J \) değerlerinin belirlenmesini sağlar. Bir kaç yalıtılmış geçiş ölçüldüğünde, çizgilerin ortaya çıktığı yer \(J \) değerlerinden belirlmek her zaman kolay değildir. Bununla birlikte,.arcışık üç çizginin ölçüldüğü şartı ile, geçişlere Denklem (6) nin uygulanması ; \(B \), \(D \) ve \(J \) için tek değerler verir. Ayrıca \(D \) nin bilinmesi; kısmen, iki atomlu bir molekülün titreşim frekansını belirledede kolaylık sağlar.
Şekil 1 Rijit iki atomlu molekülden rijit olmayan iki atomlu moleküle geçildiğinde, dönme enerji düzeyleri ve dönme spektrumlarındaki değişim. Sağ taraftaki düzeyler $D = 10^{-3}$ B eşitliğini sağlamaktadır.

3. HARMONİK OLMAYAN OSİLATör

Şekil 2 Harmonik olmayan uzama ve sıkışmalar yapan iki atomlu bir molekülün enerjisi.

Bu eğriyi iyi bir yaklaşım haline koyan bir ampirik ifade, P. M. Morse tarafından türetildiğinden Morse Fonksiyonu olarak adlandırılmıştır [8]. Bu,

$$E = D_{\text{den}} \left[1 - \exp\left(-a(r_{\text{den}} - r) \right) \right]^2$$

(7)

şeklinde verilmiştir. Burada a; moleküle ait bir sabit, D_{den} ise; ayrırmaya enerjisidır. (7) denklemi, Schrödinger Denklemi içerisinde ($E = 1/2 k (r - r_{\text{den}})^2$) değerinin yerine kullanıldığı zaman; izinli titreşim enerji seviyeleri,

$$\varepsilon_n = \left(n + \frac{1}{2} \right) \omega_{\text{den}}^2 \left(n + \frac{1}{2} \right) \omega_{\text{den}}^2 \chi_{\text{den}} \text{ cm}^{-1} \quad (n = 0, 1, 2, \ldots)$$

(8)

olarak bulunur. Burada ω_{den}; dalga sayısı cinsinden ifade edilen titreşim frekansı, χ_{d}; gerilen bağ titreşimleri için daima küçük ve pozitif (≈ 0.01) olan anharmoniklik sabitidir. Bu nedenle, titreşim seviyeleri artan v ile birlikte hızlı bir şekilde sıralar. Bu seviyelerden bazıları Şek. 3 de kabaca gösterilmiştir.
Denklem (8) harmonik olmayan osilatör için yeniden yazıldığında,
\[\varepsilon_v = \varpi_{\text{den}} \left(1 - \chi_{\text{den}} \left(v + \frac{1}{2} \right) \right) \left(v + \frac{1}{2} \right) \]
(9)
elde edilir. Bu, harmonik osilatörün enerji seviyeleri (\(\varepsilon_o = \left(v + 1/2 \right) \varpi_{\text{lit}} \)) ile karşılaştırılarak,
\[\varpi_{\text{lit}} = \varpi_{\text{den}} \left(1 - \chi_{\text{den}} \left(v + \frac{1}{2} \right) \right) \]
(10)
yazılabilir. Böylece; harmonik olmayan osilatör, harmonik osilatör gibi davranır.
Fakat artan \(v \) ile azalan bir osilasyon frekansına sahiptir. \(v = -1/2 \) ile elde edilen teorik enerji durumu gözönüne alınarak, molekül; sıfır titreşim enerjisi ile denge noktasında olacaktır. Molekülün titreşim frekansı \(\text{cm}^{-1} \) cinsinden,
\[\varpi_{\text{lit}} = \varpi_{\text{den}} \]
olur.

Böylece \(\varpi_{\text{den}} \); harmonik olmayan sistemnin deney ile bulunan denge titreşim frekansı olarak tanımlanabilir. Pozitif bir \(v \) tam sayışı ile belirlenen herhangi gerçek durum için titreşim frekansı, Denklem (10) ile verilmektedir. Taban durumunda \((v=0) \);
\[\varepsilon_0 = \varpi_{\text{den}} \left(1 - \frac{1}{2} \chi_{\text{den}} \right) \text{ cm}^{-1} \]
ve
\[\varepsilon_0 = \frac{1}{2} \varpi_{\text{den}} \left(1 - \frac{1}{2} \chi_{\text{den}} \right) \text{ cm}^{-1} \]
eşitiği elde edilir. Dolayısı ile sıfır nokta enerjisinin harmonik osilatördekinden çok az farklı olduğu görülmektedir. harmonik olmayan osilatör için seçim kuralları; \(\Delta v = \pm 1, \pm 2, \pm 3, \ldots \) olarak şekilde bulunur. Böylece, daha büyük atlamaları belirleyen ihtimalle birlikte harmonik osilatör ile aynı seçim kuralı geçerlidir.
Bunlar teorik olarak gösterilmiş ve lüzmi bir şekilde azalan ihtimalde pratikte de gözlenmiştir.
Şekil 3 Harmonik olmayan titreşimler yapan iki atomlu bir molekül için izinli titreşim enerji seviyeleri ve bu seviyeler arasındaki geçişler.

3. SONUÇ VE TARTIŞMA

Germanyum monohidridin dönme enerjileri rjıt olmayan rotator, titreşim enerjileri harmonik olmayan osilatör modeline göre ve kuantum sayılarna bağlı olarak hesaplanmıştır. Fortran prograrnı yardımile yapılan hesaplamaada; J dönme ve v titreşim kuantum sayısı olarak; 0 ile 50 arasındaki tamsayılar seçilmiştir.

'Atomik küteler; H: 1,00 a. k. b., Ge:72, 59 a. k. b., Ge - H gerilme titreşim frekansı; 1950 cm⁻¹, anharmoniklik sabiti \(\chi_d \); 0.01 olarak alınmıştır. Atomlar arasındaki uzaklığın J dönme kuantum sayısı bağlı olarak değişimi diğer parametreler yanında ihmal edilebilecek kadar küçük olduğundan, 1.4 Å olarak sabit kabul edilmiştir.
Şekil 4 ve Şekil 5 de; yukarıdaki şartlar çerçevesinde joule ve eV cinsinden hesaplanan Ge - II dönme enerjilerinin dönme kuantum sayısına bağlı olarak değişimini veren grafikler görülmektedir. Denklem (2) gözetüne alındığında bu beklenen bir sonuçtır.

Şek. 6 ve Şek. 7 de; yine aynı şartlarda Ge - II titreşim enerjilerinin, titreşim kuantum sayısına göre değişimleri joule ve eV olarak görülmektedir. Denklem (8) gözetüne alındığında bunun da uygun bir sonuç olduğu açıktır.

Enerjilerin eV cinsinden tekrar hesaplanarak kuantum sayılara göre grafiğinin çizilmesinin başıca sebebi; enerjinin bu birimlerde ifadesinin daha çok kullanılır olması ve daha anlaşılabilir bulunmasındandır.

Şekil 4 Dönme enerjilerinin, J dönme kuantum sayısına göre değişimi. Enerji joule cinsinden alınmıştır.
Şekil 5 Dönme enerjilerinin, J dönme kuantum sayısına göre değişimi. Enerji eV olarak alınmıştır.

Şekil 6 Titreşim enerjilerinin, v titreşim kuantum sayısına göre değişimi. Enerji joule cinsinden alınmıştır.
Şekil 7 Titreşim enerjilerinin, v titreşim kuantum sayısına göre değişimi. Enerji eV olarak alınmıştır.

4. KAYNAKLAR

TEŞEKKÜR

Konu ile ilgili yararlı tartışmalar için, Prof. Dr. İsfaiıl GÜSEİNOV ve Prof. Dr. Hüseyin YÜKSEL'e teşekkür ederiz.