THE λ - TRANSLATION AND THE CONVEXITY OF A EUCLIDEAN HYPERSURFACE

Mehmet ERDOĞAN* & Adil KILIÇ*

Firat Üniversitesi , Fen-Edebiyat Fakultesi , Matematik Bölümü , ELAZIĞ

SUMMARY

In this paper, we studied some properties of the first and second fundamental tensors of a closed convex hypersurface in a Euclidean space, and worked out that the λ - translation preserves the convexity of the hypersurface provided that $\lambda > 0$.

ŌKLÍÐ UZAYINDA BÍR HÍÞERYŰZEYÍN KONYEKSLÍĞÍ YE λ - ÖTELENMESÍ

ŌZET

Bu makalede bir öklid uzayındaki kapalı konveks bir hiperyüzeyin birinci ve ikinci temel tensörlerinin bazı özelliklerini çalışıp bir λ – ötelenmesinin , $\lambda > 0$ olmak şartı ile hiperyüzeyin konveksliğini koruduğunu elde ettik.

I. INTRODUCTION

Let $\forall_{n=1}^{}$ be a hypersurface imbedded in a Euclidean space \mathbb{R}^n of n-dimension. We shall suppose that the hypersurface is represented parametrically by the equations

$$x^{j} = x^{j}(u^{cx}), \quad cx = 1, 2, ..., n-1,$$
 (1.1)

in which the n-1=m-variables u^∞ represent the parameters of V_{n-1} and the x^j 's are the local coordinates in \mathbf{R}^n . It will be assumed that the functions of (1.1) are at least of class \mathbb{C}^3 in the u^∞ . Furthermore ,we will assume that the matrix $\lfloor \partial x^j / \partial u^\infty \rfloor$ has the maximal rank m. Throughout this paper Greek indices take the values 1 to n-1 and Latin indices the values 1 to n unless stated otherwise, we use the convention that repeated indices imply summation.

By using the Christoffel symbols of V_{n-1} and \mathbb{R}^n we can define the mixed covariant vectors. $\partial x^j / \partial u^\beta$ is a covariant vector field and we can define the mixed covariant derivation of it (with respect to u^γ) as ([1],[2])

$$\frac{\partial^{2}x^{j}}{\partial u^{\beta}, u^{\gamma}} = \frac{\partial^{2}x^{j}}{\partial u^{\beta}\partial u} = \frac{\partial^{2}x^{j}}{\partial u^{\lambda}} + \frac{\partial^{2}x^{k}}{\partial u^{\beta}} + \frac{\partial^{2}x^{k}}{\partial u^{\beta}} = \frac{\partial^{2}x^{j}}{\partial u^{\gamma}} + \frac{\partial^{2}x^{j}}{\partial u^{\beta}} + \frac{\partial^{2}x^{j}}{\partial u^{\gamma}} = \frac{\partial^{2}x^{j}}{\partial u^{\gamma}} + \frac{\partial^{2}x^$$

It will be used a comma to distinguish the mixed covariant derivatives from the usual ones. So it is a scalar multiply of the normal vector field of V_{n+1} , that is

$$\frac{\partial^2 x^j}{\partial u^{\beta}_{,u} Y} = \Omega_{\beta Y N^j}. \tag{1.3}$$

II.SOME RELATIONS BETWEEN THE FUNDAMENTAL FORMS

If $g_{hj}(x^k)$ denotes the metric tensor of \mathbb{R}^n , from $g_{hj}(x^k) = 1$ and Ricci's lemma, it follows that $g_{hj}(x^k) = 0$, so that $g_{hj}(x^k) = 0$, it is in the tangent space of $g_{hj}(x^k) = 0$.

When we differentiate $g_{hj}(\partial x^h/\partial u^\beta)N^j$ with respect to u^γ and noting (1.2),(1.3) and (11.1) we get that

$$g_{hj}\Omega_{\beta\gamma}N^hN^j+g_{hj}(-\partial x^h/-\partial u^\beta)$$
 ($\partial x^j/-\partial u^\infty$) $\eta^\infty_{\gamma}=0$ and that
$$g_{\beta}\propto\eta^\infty_{\gamma}=-\Omega_{\beta\gamma}$$
 (II.2)

Let us define a new symbol Ω^{eta}_{∞} = g eta Y $\Omega_{\gamma\infty}$, then it is possible to write that

$$(3 \text{ N}) / 3 \text{u}^{\infty}) = (3 \text{N}) / 3 \text{u}^{\beta}) \Omega^{\beta}_{\infty}$$
 (II.3)

A displacement at a point $M(x^1(u^1,...,u^{n-1}),...,x^n(-u^1,...,u^{n-1}))$ of V_{n-1} is given in the tangent space $T_n(M)$ by the equations

$$dx^{1} = \sum (\partial x^{1} / \partial u^{\infty}) du^{\infty} , ..., dx^{n} = \sum (\partial x^{n} / \partial u^{\infty}) du^{\infty}$$

$$\propto = 1$$

$$\alpha = 1$$

This imply a displacement of normal vector at point M, by using (H .3) we have it as follows

$$\widetilde{dN}^{j} = (\partial N^{j}), \partial u^{\infty} du^{\infty} \text{ or } \widetilde{dN}^{j} = -(\partial x^{j}) \partial u^{\beta} du^{\infty}$$
 (11.4)

Thus we may write the second fundamental tensor as follows

$$h_{\alpha\beta} = g_{jh} \xrightarrow{\partial x^{j}} N^{h} = -g_{jh} \xrightarrow{\partial u^{\alpha}, \partial u^{\beta}} Q_{\beta}^{Y}$$

$$\frac{\partial x^{j}}{\partial u^{\alpha}, \partial u^{\beta}} = -g_{jh} \xrightarrow{\partial u^{\alpha}, \partial u^{\beta}} Q_{\beta}^{Y}$$

0r

$$h_{\alpha\beta} = g_{\alpha\gamma} \Omega_{\beta}^{\gamma} \tag{11.6}$$

As to third fundamental tensor, from (11.3), (11.5) and its classical definition we have that

$$e_{\alpha\beta} = g_{jh} \frac{\partial}{\partial u^{\alpha}} = g_{jh} \frac{\partial}{\partial u^{\beta}} = g_{jh} \frac{\partial}$$

or by taking into that

$$9 \propto \beta = 9 \frac{3 \times 1}{9 \times 3} \frac{3 \times h}{3 \times 3}$$

M. Erdoğan, A. Kılıç

and using that
$$\Omega^{eta}_{\infty}$$
 = g eta Y $\Omega_{w\infty}$ we get

$$e \propto \beta = h \propto \gamma + \Omega^{\gamma} \beta$$

Finally from (H .6) we find that

$$e_{\alpha\beta} = g_{\delta\delta} \Omega^{\delta}_{\alpha} \Omega^{\delta}_{\beta}$$
 (11.9)

III. λ -TRANSLATION AND THE CONVEXITY OF A HYPERSURFACE

THEOREM III.I. A smooth closed hypersurface of \Re^n which is locally diffeomorphic to a hypersphere is convex if and only if its second fundamental form is semi- definite ,i.e. $h_{\alpha\beta} \, x^{\alpha} x^{\beta} \le 0 \, (g_{\alpha\beta} \, x^{\alpha} x^{\beta} \ne 0)$ holds at its each point.

(11.8)

PROOF: We assume that the normal of hypersurface V_{n-1} is directed outwards. Suppose that $h_{\infty\beta} \times^{cx} \times^{\beta} \le 0$ holds everywhere and that Y_{n-1} is not convex Now, let $r(u^{\infty}) = r(|u^1,...,u^{n-1}|)$ be a parametrization in P , with P = r(0,...,0). the distance from a point Q = $r(|u^1,...,u^{n-1}|)$ to the tangent plane $T_p(|V_{n-1}|)$ is given by $N_p.PQ$. Since $r(u^{\infty})$ is differentiable , we have Taylor's formula:

$$r(u^{1},...,u^{n-1}) = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial^{2} r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial^{2} r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial^{2} r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial^{2} r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial^{2} r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial^{2} r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \begin{bmatrix} n-1 \\ \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2) \end{bmatrix} = r(0,...,0) + \sum_{\alpha = 1}^{n-1} (\frac{\partial r}{\partial u^{\alpha}}) u^{\alpha} + (1/2)$$

$$\begin{vmatrix}
n-1 \\
2 \sum_{\alpha < \beta} (\partial^2 r / \partial u^{\alpha} \partial u^{\beta}) u^{\alpha} u^{\beta} \\
0 < \beta = 1 \\
0 \neq \beta
\end{vmatrix}, \vec{R},$$

where the derivatives are taken at (0,...,0) and the remainder \overline{R} satisfies the condition

Lim
$$(\tilde{R} / \sum_{\alpha=1}^{N} (u^{\alpha})^2) = 0$$
.

$$(-u^1,...,u^{n-1}) \rightarrow (0,...,0)$$

Hence it follows that

$$N_{p} \stackrel{\longrightarrow}{PQ} = N_{p} (r(u^{1},...,u^{n-1}) - r(0,...,0)) =$$

$$(1/2) \begin{bmatrix} n-1 & n-1 \\ \sum_{\alpha=1}^{\infty} N_{p}, (\partial^{2}r / \partial u^{\alpha} \partial u^{\alpha}) (u^{\alpha})^{2} + 2 \sum_{\alpha=1}^{\infty} (\partial^{2}r / \partial u^{\alpha} \partial u^{\beta}) u^{\alpha} u^{\beta} \end{bmatrix}_{+R},$$

$$\alpha \neq \beta$$

where
$$\hat{R} = N_{\mu}.R$$
, or
$$N_{\mu}.PQ = 1/2 \left(h_{cx\beta} du^{cx} du^{\beta}\right) + R \ . \tag{III.1}$$

Since Y_{n-1} is connected and locally diffeomorphic to a sphere-by the Gauss map , it has a positive definite. Gaussian curvature and , therefore , it is bending away from its tangent space in all tangent directions at p. Thus, we can find a line segment PQ such that P,Q exist on Y_{n-1} and the length of PQ is so short that

N.PQ = 1/2
$$(h_{\alpha\beta} du^{\alpha} du^{\beta}) + ... \le 0$$
, (III.2)

where N denotes the unit normal at point P. From (III.2) we write that

$$NPQ = ||N|| ||PQ|| \cos \theta \le 0$$
 or $\cos \theta \le 0$, where $\theta = < (N,PQ)$.

So we get $n/2 \le 3$ n/2, thus we see that the line segment PQ does not lie on the outside of V_{n-1} . This contradicts the assumption. Hence V_{n-1} is convex. Next suppose that V_{n-1} is convex and at the point P of V_{n-1} , ($h_{\infty\beta}$) $_p X^{\infty} X^{\beta} > 0$, ($g_{\infty\beta}$) $_p X^{\infty} X^{\beta} \ne 0$ holds. Then we have that

$$r.N_{\rm D} = r_{\rm D}.N_{\rm D} + 1/2 \left(h_{\infty\beta}\right)_{\rm D} du^{\infty} du^{\beta} + \varepsilon , \qquad (III.3)$$

where r = 0A, $r_{\beta} = 0P$, and A is a neighboring point of P on V_{n-1} and $|\epsilon|$ is an infinitesimal quantity whose degree is higher than that of $(g_{\infty\beta})_p du^{\infty} du^{\beta}$. Putting $du^{\infty} = X^{\infty} t$ we have from (III.3)

$$(r - r_p) N_p = 1/2 (h_{cx\beta})_p X^{cx} X^{\beta} t^2 + \varepsilon . \qquad (III.4)$$

If we put $OP = r(u^{\infty})$, $OP_1 = r(u^{\infty} + t|X^{\infty})$, $OP_2 = r(u^{\infty} - t|X^{\infty})$, then we find from (III.4) that the line segment P_1P_2 ties on the outside of Y_{n-1} if |t| is small enough.

A slightly different version of the proof of this theorem can be found in [3].

DEFINITION III.1: Let Y_{n-1} be a compact, and orientable hypersurface, which is imbedded in a Euclidean space \mathbf{R}^n . If $\mathbf{r}=(X^1(|\mathbf{u}|^\infty|),...,X^n(|\mathbf{u}|^\infty|))$, $1\leq \alpha \leq n-1$, is any point on Y_{n-1} and $\mathbf{N}=\mathbf{N}(|\mathbf{u}|^\infty|)$ is C^∞ unit normal, vector field on Y_{n-1} , then we may consider an imbedding $X_\lambda \colon Y_{n-1} \to \mathbf{R}^n$ defined by

$$X_1(r) = r(\lambda) = r + \lambda N_1 \lambda \in \mathbb{R}, \qquad (III.5)$$

where , $u \stackrel{\propto}{}$'s are the parameters of Y_{n-1} and X^i 's are the local coordinates in Y_{n-1} . Then this imbedding may be called the λ - translation of Y_{n-1} .

Since N(
$$u^{\infty}$$
), $\partial r / \partial u^{\infty} = 0$, differentiating (III.5) along Y_{n-1} we may write that $\partial r(\lambda) = \partial r = \partial N = \partial r(\lambda) = 0$, N(λ) = N. $\partial u^{\infty} = \partial u^{\infty}$

Hence we can get the fundamental relations of $Y_{n-1}(\lambda)$ by the following equations

$$g_{\alpha\beta}(\lambda) = g_{\alpha\beta} - 2\lambda h_{\alpha\beta} + \lambda^{2} e_{\alpha\beta} = (g_{\alpha\gamma} - \lambda h_{\alpha\gamma})(g_{\beta\delta} - \lambda h_{\beta\delta}) g^{\gamma\delta}$$
(III.6)
$$h_{\alpha\beta}(\lambda) = N. \frac{\partial^{2} r(\lambda)}{\partial u^{\alpha} \partial u^{\beta}} = h_{\alpha\beta} + \lambda (N. \frac{\partial^{2} N}{\partial u^{\alpha} \partial u^{\beta}}) = h_{\alpha\beta} - \lambda e_{\alpha\beta}$$
(III.7)

LEMMATILEFor a convex hypersurface Y_{n-1} , when $-\lambda>0$ the quadratic form $g_{\infty\beta}(\lambda)X^\infty X^\beta$ is positive definite.

PROOF:We have from (III.6) $g_{\text{CK}\beta}(\lambda) X^{\text{CK}} X^{\beta} = (g_{\text{CK}\gamma^{+}} \lambda h_{\text{CK}\gamma}) X^{\text{CK}} (g_{\beta\delta^{-}} \lambda h_{\beta\delta}) X^{\beta} g^{\gamma\delta} \geq 0 , g_{\text{CK}\beta}(\lambda) X^{\text{CK}} X^{\beta} \text{ becomes}$ zero if and only if $(g_{\text{CK}\gamma^{+}} \lambda h_{\text{CK}\gamma}) X^{\gamma} = 0$. Hence we get $g_{\text{CK}\beta} X^{\text{CK}} X^{\beta} = \lambda h_{\text{CK}\beta} X^{\text{CK}} X^{\beta}$. Now considering Theorem (III.1), if the last equality holds, then $g_{\text{CK}\beta} X^{\text{CK}} X^{\beta} \leq 0$ and so $X^{\text{CK}} = 0$. LEMMA III.2:For a convex hypersurface Y_{n+1} , when $\lambda>0$ the quadratic form $h_{\text{CK}\beta}(\lambda) X^{\text{CK}} X^{\beta}$ is negative semidefinite.

PROOF:From (II.6) - (II.9), (III.7) and the Theorem III.1 we can write

$$\begin{split} h_{\alpha\beta}\left(\lambda\right) & \chi^{\alpha} \chi^{\beta} = h_{\alpha\beta}\left(\lambda\right) \chi^{\alpha} \chi^{\beta} + \lambda e_{\alpha\gamma} \chi^{\alpha} \chi^{\beta} = h_{\alpha\beta} \chi^{\alpha} \chi^{\beta} + \lambda h_{\alpha\gamma} h_{\beta\delta} g^{\gamma\delta} \chi^{\alpha} \chi^{\beta} \\ & = h_{\alpha\beta} \chi^{\alpha} \chi^{\beta} + \lambda (h_{\alpha\gamma} \chi^{\alpha}) (h_{\beta\delta} \chi^{\beta}) g^{\gamma\delta} \leq 0 \end{split} .$$

From Lemma III.1 , Lemma III.2 and the Theorem III.1 we have easily the following

THEOREM (II.2: Let Y_{n-1} be a closed convex hypersurface of Y_{n-1} , which is locally diffeomorphic to a sphere. When $|\lambda>0|$, the $|\lambda-$ translation preserves the convexity of the hypersurface.

14 A-TRANSLATION AND THE PRINCIPAL CURYATURES OF A HYPERSURFACE

Let
$$k = k(|u^{\infty}|)$$
 be any principal curvature function on Y_{n-1} . Then from $\delta |r(\lambda)|/|\partial u^{\infty}| = |\delta r|/|\partial u^{\infty}| + \lambda (|\delta|N|/|\partial u^{\infty}|)$

and the equation of Olinde - Rodriques in the form

$$(a N / au^{\infty}) + k(ar/au^{\infty}) = 0$$

it follows that

$$\frac{\partial}{\partial u} r(\lambda) / \frac{\partial u}{\partial u} = (\frac{\partial}{\partial u} + \frac{\partial}{\partial u$$

So, from (IV.1) , the principal curvature function on $Y_{n-1}(\lambda)$ is given by $k(\lambda) = (k/1 - \lambda k). \tag{IY.2}$

DEFINITION 17.1: A point P of a hypersurface Y_{n+1} in \mathbb{R}^n of dimension n 2-3 is umbilical if $k_1 = k_2 = ... = k_{n+1}$ at the point P , where k_i 's are the principal curvatures at the point P of the hypersurface.

By the equation of Olinde - Rodriques the fact that all points of Y_{n-1} are umbilical points can be expressed in the equations (2)

$$\partial N/\partial u^{\alpha} + k(\partial r/\partial u^{\alpha}) = 0$$
, (or $h_{\alpha\beta} = kg_{\alpha\beta}$) (14.3)

If all points of V_{n-1} are umbilical points , then (IY.3) is equivalent to N+rk=p , where p is a constant vector.

LEMMA IV.1: To be $\lambda>0$ or $\lambda<0$, the λ - translation of a sphere is again sphere. PROOF: Since all points of a sphere are umbilical points, from N+rk = p we have that

$$N + (r + \lambda N) (k/1 - \lambda k) = p + \lambda \text{ or } N = -rk + (p + \lambda) (1 - \lambda k)$$
.

Thus, since N.N = 1, we obtain that

$$(r - a(\lambda))(r - a(\lambda)) = 1/k^2$$
, where $a(\lambda) = p + /k(\lambda)$.

This lemma shows us that λ - translation ($\lambda>0$ or $\lambda<0$) preserves the convexity of a sphere , but when $\lambda<0$ this is not always true for any hypersurface . For instance , let us consider an ellipsoid instead of a sphere. Assuming that the normal of it is again directed

outwards , in the case $\lambda \leftarrow b < 0$ (where b is the length of one of the minor axes of the ellipsoid) we see that the λ - translation of it is not always convex . For an ellipse in a plane Fig IV.1.(a)-(b) tells us that how the image of the λ - translation of an ellipse changes according to λ (λ < 0). Fig.IV.1.(a) illustrates the case $-b < \lambda < 0$ and Fig IV.1.(b) illustrates the case $\lambda \leftarrow b < 0$. In the first case the principal curvatures on the λ - translation of the ellipse do not have different signs. Whereas in the latter case the principal curvatures on the λ - translation is not convex.

Figure IV.I

finally, we obtain the following conclusions.

CONCLUSIONS

- 1) Let k be a principal curvature function on V_{n-1} . From (IV.2) , if λ = 1/k the λ translation of V_{n-1} does not represent a hypersurface.
- 2) The λ translation (λ >0 or λ <0) of a connected umbilic hypersurface of \Re^n is still convex.

REFERENCES

- 1.M.Erdogan H.H.Hacisalihoğlu, "An Integral Formula and Inverse Fundamental Forms on Hypersurfaces in Riemannian Manifolds", Communications, Ankara (1983), Tome 32,159-167.
- 2.D.Lovelock H.Rund ,"Tensors differential forms and variational principles Copyright 1975 by John Wiley and sons, Inc.
- J.A.Thorpe , "Elemantary Topics in Differential Geometry, Springer-Yerlag, New York Inc., 1979.
- G.F.Feeman, C.C.Haiung, 'Characterization of Riemann n-spheres', American J.Math.81 (1959),691-708.