A NOTE ON THE INVERSES OF COMPANION MATRICES

Durmuş BOZKURT and Dursun TAŞCI Selcuk Universitesi Fen-Edebiyat Fakültesi Matematik Bölümü, 42079, Kampüs, Konya

ABSTRACT

For the companion matrix $B=A-ab^t$, it was given a statement depend on the component of b-vector of the matrix A and it was searched the structure of A^{-1} .

UZET

Bir B=A-ab^t companion matrisi için A matrisinin, b-vektör bileşenine bağlı bir ifadesi verildi ve A matrisinin tersinin yapısı araştırıldı.

1. INTRODUCTION

In [1] W. Barrett and in [2] W. Barrett and P. J. Feinsilver gave a proof of a theorem which characterized the inverses of tridiagonal matrices. In these studies, it was given a definition called the triangle property. Main theorems were established by using this property. It was

profited from 2-minors of matrix while it was made the proof of the theorems. In this paper we considered a companion matrix B. i.e. $B=A-ab^{t}$ where $a=(a_0,\cdots,a_{n-1})^{t}e\mathbf{R}^n$ and $b=(b_0,\cdots,b_{n-1})^{t}e\mathbf{R}^n$ such that $a_0=1$ and $b_0\neq 0$. It was given a statement depend on the component of b-vector of the matrix A and it was searched the structure of A^{-1} .

2. MAIN RESULTS

Definition 1. A_{ij} is the minor that it is obtained deleting i-th row and j-th column of matrix A.

Definition 2. A matrix $H=(h_{ij})_{n\times n}$ is called a lower (upper) Hessenberg matrix if $h_{ij}=0$ for all pairs (i,j) such that $i+1 \le j$ (j+1 \le i).

Definition 3. Let

$$B = \begin{bmatrix} 0 & 0 & \dots & 0 & -b_{0} \\ 1 & 0 & \dots & 0 & -b_{1} \\ 0 & 1 & \dots & 0 & -b_{2} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & -b_{n-1} \end{bmatrix}.$$
 (1)

The matrix B is said to be a companion matrix. It can be written the following form:

$$B=A-ab^{t} \tag{2}$$

where A is nxn matrix, $a = (a_0, \dots, a_{n-1})^t$ and $b = (b_0, \dots, b_{n-1})^t$.

Lemma 1. Let B be a companion matrix such that $a=(a_0,\cdots,a_{n-1})^t$ and $b=(b_0,\cdots,b_{n-1})^t$ where $a_0=1$ and $b_0\neq 0$. If the matrix A can be written as

$$A = \begin{cases} a_{1i} = b_{i-1}, & \text{for } i = 1, \dots, n-1 \\ a_{i+1,i} = 1 + \frac{b_{i-1}b_i}{b_0} & \text{for } i = 1, \dots, n-2 \\ a_{i,1} = b_{i-1} & \text{for } i = 3, \dots, n \\ a_{1n} = b_{n-1} - b_0 & \\ a_{i,n} = \frac{b_{i-1}}{b_0} a_{1n} & \text{for } i = 2, \dots, n \end{cases}$$

$$a_{n,n-1} = 1 + \frac{b_{n-1}^2}{b_0} & \\ a_{n,n-1} = 1 + \frac{b_{n-1}^2}{b_0} & \text{for } i, j = 2, \dots, n-1; i \le j$$

$$a_{n,n-1} = \frac{b_{n-1}b_{n-1}}{b_0} & \text{for } i = 4, \dots, n, j = 2, \dots, n-2; i-1 > j, j = 2$$

then

$$detA = (-1)^{n-1} (b_{n-1} - b_0)$$
 (4)

where all b_i are the components of b-vector.

Proof. Let the matrix A be as (3). Hence $b_{n-1}-b_0$ is common factor of the last column of A. Let us take this common factor in outside of the determinant. If we subtract from (n-1)-th and (n-2)-th column multiple b_{n-2} and b_{n-3} of n-th column, respectively, and we continue this operation, then we obtain

$$det A = (-1)^{n-1} (b_{n-1} - b_0) \begin{vmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & \frac{b_1}{b_0} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & \frac{b_{n-2}}{b_0} \\ 0 & 0 & \dots & 1 & \frac{b_{n-1}}{b_0} \end{vmatrix}.$$
 (5)

Hence

$$det A = (-1)^{n-1} (b_{n-1} - b_0).$$
(6)

Thus the proof is completed.

Theorem 1. Let B be a companion matrix such that $a=(a_0,\cdots,a_{n-1})^t$ and $b=(b_0,\cdots,b_{n-1})^t$ where $a_0=1$ and $b_0\neq 0$. If the matrix A is defined as (3) and it is regular, then the inverse A^{-1} of A is lower Hessenberg matrix such that $a_{i,i+1}^{-1}=1$ for $i=1,\ldots,n-2$ and $a_{ij}^{-1}=0$ for $i,j=2,\ldots,n-1$; $i\geq j$, where all a_{ij}^{-1} are elements of A^{-1} for $i,j=1,\ldots,n$.

Proof: Let's make at three step the proof.

First of all, we show that A^{-1} is a lower Hessenberg matrix. Since the matrix A is defined as in (3), the minors $A(\frac{1}{j+1},\frac{1}{j})$ of A are zero for $i=1,\ldots,n-2$ and $j=i+2,\ldots,n$. Therefore the minors A_{ij} of A are zero for j-i>1 (see [1], Theorem 1). Then the matrix A^{-1} is a lower Hessenberg matrix.

In the second step we will show that $a_{i,i+1}^{-1}=1$ for $i=1,\ldots,$ n-1. From the definition of inverse of a matrix we have

$$a_{i,i+1}^{-1} = \frac{A_{i+1,i}}{\det A} \,. \tag{7}$$

Now we show that $A_{i+1,i}=\det A$ for $i=1,\ldots,n-2$. Since $b_{n+1}-b_0$ is common factor of the last column of $A_{i+1,i}$, we can take this common factor in outside of the determinant. If we apply elementary operations, we obtain

$$A_{i+1,i} = (-1)^{n-1} (b_{n-1} - b_0) | I_{n-1} |,$$
 (8)

where I_{n-1} is (n-1)x(n-1) identity matrix. Thus

$$A_{i+1,i} = \det A. \tag{9}$$

Because of (9) we write $a_{i,i+1}^{-1}=1$.

In the third step let's show that $a_{ij}^{-1}=0$ for $i,j=2,\ldots,n-1$ and $i\geq j$, i.e. $A_{ji}=0$. Since j-th row and i-th column of A not found in A_{ji} , the first and (j-1)-th rows of this minors are linear dependent. Therefore

$$A_{ji}=0$$
 for $i, j=2, ..., n-1; i \ge j$. (10)

Consequently

$$a_{ij}^{-1}=0$$
 for $i,j=2,\ldots,n-1; i \ge j$. (11)

Thus the proof is completed.

Corollary 1. Let the matrix A be as in (3). Then the avector in B is in the following form:

$$a = \left(a_0, \frac{b_1}{b_0}, \frac{b_2}{b_0}, \dots, \frac{b_{n-1}}{b_0}\right)$$
 (12)

where $a_0=1$ and $b_0\neq 0$.

Proof: Since the matrix A is as in (3), the minors $A(\frac{i}{1},\frac{i+1}{1})$ of A are zero for $i=1,\ldots,n-2$ and $j=i+2,\ldots,n$. Clearly, we have $a_i=\frac{b_i}{b_0}$ for $i=1,\ldots,n-1$.

REFERENCES

- [1]. W. Barrett, "A Theorem On Inverses of Tridiagonal Matrices", Linear Algebra And Its Appl. 27:211-217, (1979).
- [2]. W. Barrett and P.J. Feinsilver, "Inverses of Banded Matrices", Linear Algebra And Its Appl. 41:111-130, (1981).