SCHWARZ PICK TEOREMININ CEBIRSEL KARAKTERIZASYONU

ÖZET

 $\bar{D}=\{z\in\mathcal{C}:|z|\leq r,r>0\}$ ve $\bar{U}=\{w\in\mathcal{C}:|w|\leq 1\}$ kompleks düzlemde kapalı diskler olmak üzere $B(\bar{D}),\bar{D}$ de tanımlı sınırlı analitik fonksiyonların cebiri olsun. Ayrıca, R bir kompleks cebir iken her bir $\alpha\in\mathcal{C}$ için $\Phi(\alpha)=\alpha$ olacak şekilde $\Phi:B(\bar{D})\to R$ izomorfizminin varlığını kabul edelim. Bu çalışmada, $a\in R$ nin spektrumu kullanılarak Schwarz-Pick teoreminin cebirsel karekterizasyonu verildi.

1. INTRODUCTION

It is well known that from the Riemann mapping theorem that every simple connected region G in the plane (other then the plane itself) is conformally equivalent to the unit disc U. It is proven in 1940 that $G_1 \simeq G_2$ if and only if $B(G_1)$ and $B(G_2)$ are isomorphic. So in algebraic characterization, first and very important step was taken. $G_1 \simeq G_2$ is a property connected with simple-connected regions, in general, any two annuli

 $B_1(r_1;R_1) = \{z \in \mathcal{C} : r_1 < |z| < R_1\}$ and $B_2(r_2;R_2) = \{z \in \mathcal{C} : r_2 < |z| < R_2\}$ are not conformally equivalent. $B_1(r_1;R_1) \simeq B_2(r_2;R_2)$ if and only if $\frac{R_1}{r_1} = \frac{R_2}{r_2}$. The algebraic characterization related to this subject was given in [2].

2. ALGEBRAIC CHARACTERIZATIONS

Let Φ be an isomorphism from B(D) onto R and we will denote elements of $B(\bar{D})$ by f,g,h,... and elements of R by a,b,c,... Let e and 1 be multiplicative identity of R and $B(\bar{D})$, respectively. Thus, $1 \in B(\bar{D})$ is the function identically equal to 1 on \bar{D} . Since $\Phi: B(\bar{D}) \to R$ is an isomorphism, $\Phi(1) = e$. Furthermore,

$$\Phi(n1) = ne$$

so that

$$\Phi(\pm \frac{m}{n}.1)) = \pm (\frac{m}{n}).e.$$

-e has two square roots in R, one is the image of i.1, the other is the image of -i.1. It is algebraically impossible to distinguish between these, since R has an automorphism which takes one into the other (corresponding to the mapping $f \to \bar{f} \in B(\bar{D})$). Thus, we choose one of the root of -e and make it to correspond to i.1. We denote it as i.e.

Henceforth, we will denote the complex number field by C and the complex rational number field by C_r , where a complex number, both of whose real and imaginary part is a real rational number, is called a complex rational number. Clearly, C_r and C are subrings of $B(\bar{D})$.

Lemma 2.1: For each $\alpha \in C_r$, $\phi(\alpha) = \alpha$ (or $\bar{\alpha}$).

Proof: If $\alpha \in C_r$, there are the rational numbers r_1 and r_2 such that $\alpha = r_1 + ir_2$. Since $\phi(1) = e$ and $\phi(i) = i$ (or -i), we get

$$\phi[(r_1+ir_2)1] = r_1e + r_2 ie \quad (\text{ or } r_1e - r_2 ie).$$

Lemma 2.2: For each real number $c, \phi(c1) = ce$.

Proof: If c is a rational number, by the Lemma 2.1, $\phi(c1) = ce$. If c is an irrational number, for each rational number $r, c-r \neq 0$. Thus there exists $(c-r)^{-1} = \frac{1}{c-r}$. Then

$$\phi[(c-r)1] = \phi(c1) - re$$

and

$$\phi[(\frac{1}{c-r})1] = \frac{e}{\phi(c1) - re}.$$

Therefore $\phi(c1) = ce$ [2].

Corallary 2.3: If $c \in C$, $\phi(c1) = ce$.

Definition 2.4: Let R be a ring and $a \in R$. If a has inverse in R, a is called an aritmetic unit, otherwise a is not an aritmetic unit.

Lemma 2.5: Let $f \in B(\bar{D})$ and let \bar{R}_f be the closed range of f. Then $\lambda \in \bar{R}_f$ iff $f - \lambda 1$ has no inverse in $B(\bar{D})$.

Proof: If $\lambda \in \bar{R}_f$ there is $z_0 \in \bar{D}$ such that $f(z_0) = \lambda$. Then $(f - \lambda 1)(z_0) = 0$. Hence $f - \lambda 1$ has no inverse in $B(\bar{D})$. Now, we suppose that $f - \lambda 1$ has no inverse in $B(\bar{D})$. Then for at least one point $z_0 \in \bar{D}$, $(f - \lambda 1)(z_0) = 0$. It follow that $f(z_0) = \lambda$, i.e. $\lambda \in \bar{R}_f$.

Lemma 2.6 : $\lambda \in \bar{R}_f$ iff $\Phi(f) - \lambda e$ has no inverse in R.

Proof: If $\lambda \in \bar{R}_f$, $f - \lambda 1$ has no inverse in $B(\bar{D})$ by the Lemma 2.5. Since Φ is an isomorphism, $\Phi(f - \lambda 1) = \Phi(f) - \lambda e$ has no inverse in R [1]. Definition 2.7: Let f be any function in $B(\bar{D})$. The set

$$\sigma(f) = \{\lambda \in \mathcal{C} : f - \lambda 1 \text{ has no inverse in } B(\bar{D})\}$$

is called the spectrum of f.

Definition 2.8: The spectrum of an element $a \in R$ is the set of all complex number λ such that $a - \lambda e$ is not invertible. We denote the spectrum of a by $\sigma(a)$.

Definition 2.9: For any $a \in R$, the spectral radius $\rho(a)$ of a is the radius of the smallest closed disc with center at the origin which contains $\sigma(a)$:

$$\rho(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\}.$$

Then $\rho(a)$ is also the maximum modulus (Hereinafter abbreviated MM) of $\Phi^{-1}(a)$.

Now, let us give the algebraic characterization of Schwarz-Pick theorem.

Theorem 2.10: let $B(\bar{D})$ be an algebra of bounded analytic functions on $\bar{D}=\{z\in\mathcal{C}:|z|\leq r\},\ \Phi:B(\bar{D})\to R$ be an isomorphism which preserves the constants and R is any algebra. Furthermore, we suppose that there exists only $\lambda_i\in\sigma(a)=\bar{D}$, for each $z_i\in\bar{D}$. Let

$$\Phi^{-1}(a)(z_1) = \lambda_1, \quad \Phi^{-1}(a)(z_2) = \lambda_2$$

for $\lambda_1, \lambda_2 \in \sigma(a)$ such that $|z_1| < r$, $|z_2| < r$ and $\rho(a) = r$. Then

$$\left(r^2 \frac{\lambda_1 e - \lambda_2 e}{r^2 - \bar{\lambda}_2 e \lambda_1 e}\right) \le \rho\left(r^2 \frac{z_1 e - z_2 e}{r^2 - \bar{z}_2 e z_1 e}\right)$$

inequality holds.

Proof: Let $|z_2| < r$ and z_2 be a fixed point. If $|\lambda_2| = r$, then $\lambda_2 \in \bar{R}_{\Phi^{-1}(a)}$. Hence, according to maximum principle $\Phi^{-1}(a) = f$ is constant. Thus inequalite holds. Now, we suppose that $|\lambda_2| < r$. Let R be any algebra and d = b. Let $a \in R$. If $a \in R$ if

Let

$$h(z) = r^2 \frac{z - z_2}{r^2 - \bar{z}_2 z}, \quad m(z) = r^2 \frac{z - \lambda_2}{r_2 - \bar{\lambda}_2 z},$$

where $h: \bar{D} \to \bar{D}$ and $m: \sigma(a) = \bar{D} \to \bar{D}$. We claim that the function $g = m \circ f \circ h^{-1}$ satisfies the conditions of Schwarz's Theorem. $\Phi^{-1}(a) = f$ is a mapping from \bar{D} to \bar{D} . First of all g is a mapping from \bar{D} to \bar{D} , since $h^{-1}, m \in B(\bar{D})$. Furthermore

$$g(0) = m(f(h^{-1}(0)))$$

= $m(f(z_2))$
= $m(\lambda_2)$
= 0.

Thus g satisfies the conditions of Schwarz's Theorem. Therefore

$$|g(w)| \leq |w|$$

for $w \in \overline{D}$. From this inequality, we can write

$$|m(f(r^2\frac{w+z_2}{r^2+\tilde{z}_2w}))| \leq |w|.$$

If $z_1 \in \tilde{D}$ is arbitrary point, $w = r^2 \frac{z_1 - z_2}{r^2 - z_2 z_1}$ and thus

$$|m(f(r^{2}\frac{r^{2}\frac{z_{1}-z_{2}}{r^{2}+\bar{z}_{2}z_{1}}+z_{2}}{r^{2}+\bar{z}_{2}r^{2}\frac{z_{1}-z_{2}}{r^{2}-\bar{z}_{2}z_{1}}}))| \leq |r^{2}\frac{z_{1}-z_{2}}{r^{2}-\bar{z}_{2}z_{1}}|$$

$$\Rightarrow |m(f(r^{2}\frac{r^{2}z_{1}-r^{2}z_{2}+r^{2}z_{2}-z_{2}\bar{z}_{2}z_{1}}{r^{4}-r^{2}\bar{z}_{2}z_{1}+r^{2}\bar{z}_{2}z_{1}-r^{2}\bar{z}_{2}^{2}z_{2}}))| \leq |r^{2}\frac{z_{1}-z_{2}}{r^{2}-\bar{z}_{2}z_{1}}|$$

$$\Rightarrow |m(f(r^{2}\frac{(r^{2}-z_{2}\bar{z}_{2})z_{1}}{r^{2}(r^{2}-z_{2}\bar{z}_{2})z_{1}}))| \leq |r^{2}\frac{z_{1}-z_{2}}{r^{2}-\bar{z}_{2}z_{1}}|$$

$$\Rightarrow |m(f(z_{1}))| \leq |r^{2}\frac{z_{1}-z_{2}}{r^{2}-z_{2}z_{1}}|$$

$$\Rightarrow |m(f(z_{1}))| \leq |r^{2}\frac{z_{1}-z_{2}}{r^{2}-z_{2}z_{1}}|$$

$$\Rightarrow |m(f(z_{1}))| \leq |r^{2}\frac{z_{1}-z_{2}}{r^{2}-z_{2}z_{1}}|$$

$$\Rightarrow |m(f(z_{1}))| \leq |r^{2}\frac{z_{1}-z_{2}}{r^{2}-z_{2}z_{1}}|$$

or

Corallary 2.11: Let $B(\bar{U})$ be an algebra of bounded analytic functions on $\bar{U}=\{z\in\mathcal{C}:|z|\leq 1\},\quad \Phi:B(\bar{U})\to R$ be an isomorphism which preserves the constants and R is any algebra. Furthermore, we suppose that there exists only $\lambda_i\in\sigma(a)=\bar{U}$, for each $z_i\in\bar{U}$. On the other hand, let

$$\Phi^{-1}(a)(z_1)=\lambda_1,$$

$$\Phi^{-1}(a)(z_2) = \lambda_{2'}$$

for $\lambda_1, \lambda_2 \in \sigma(a)$ such that $|z_1| < 1$, $|z_2| < 1$ and $\rho(a) = 1$. Then

$$\left(\frac{\lambda_1 e - \lambda_2 e}{1 - \bar{\lambda}_2 e \lambda_1 e}\right) \le \rho\left(\frac{z_1 e - z_2 e}{1 - \bar{z}_2 e z_1 e}\right).$$

inequality holds.

REFERENCES

- [1] Bayraktar, M., "Üst yarı düzlemin birim daireye konform tasvirinin cebirsel karekterizasyonu", Gazi Üniversitesi Fen-Edebiyat Fakültesi Matematik İstatistik Dergisi, 2, 111-116 (1989)
- [2].Beck, A., "On Ring On Ring", Proc. Amer. Math. Soc., 15, 350-353 (1964)
- [3] Bers, L., "On Rings of Analytic Functions", Bull. Amer. Math. Soc., 54, 311-315 (1948)
- [4] Helmer, O., "Divisibility Properties of Integral Functions", Duke Math. J., 6, 346-356 (1940)
- [5] Kakutani, S., "Rings of Analytic Functions", Proc. Michingan Conference on Functions of a Complex Variable, 71-84 (1955)