SEPARATION PROPERTIES AT \mathbf{p} FOR THE TOPOLOGICAL CATEGORY OF STACK CONVERGENCE SPACES

Mehmet Baran

Erciyes University, Department of Mathematics, Kayseri- TURKEY

AMS Classification: 54B30, 54D10, 54A05, 54A20, 18B99, 18D15.

Keywords: separation properties, stack convergence spaces.

ABSTRACT.

In this paper, an explicit characterizations of each of the separation properties T_0 , T_1 , $PreT_2$, and T_2 at a point p is given in the topological categories of stack convergence and constant stack convergence spaces. Moreover, specific relationships that arise among the various T_0 , $PreT_2$, and T_2 structures at p are examined in these categories.

YAKINSAK YIĞIN UZAYLAR KATEGORİSİ İÇİN p DE AYRILMA AKSİYOMLARI

ÖZET. Bu çalısmada, yakınsak yığın uzaylar ve yakınsak sabit yığın uzaylar kategorilerinde p noktasında T_0, T_1 , PreT_2 ve T_2 ayrılma aksi yomlarının herbirinin açık bir karakterizasyonu verildi. Bununla beraber, bu kategorilerde p deki değişik T_0 , PreT_2 ve T_2 yapıları arasında ortaya çıkan özel ilişkiler incelendi.

1. INTRODUCTION.

Let A be a set and $\alpha \subseteq PA$, the set of subsets of A. Define $[\alpha] = \{B \mid B \subseteq A \text{ for which there exists } C \subseteq \alpha \text{ with } C \subseteq B\}.$

1.1 <u>Definition.</u> A <u>stack</u> on A is a subset α of PA such that $[\alpha] = \alpha$ i.e α is closed under supersets. See [5] p. 345. Let STK(A) denote the set of stacks on A. A stack α is said to be proper iff $\Phi \notin \alpha$.

Let A be a set and K be a function on A whose value K(a) at each a in A is a set of nonempty stacks on A.

1.2 <u>Definition.A pair (A,K)</u> is said to be a <u>Stack Convergence Space</u> if for each a in A,

- 1. [a] belongs to K(a)
- 2. If α and β are stacks on A and $\alpha \subset \beta$, then $\beta \in K(a)$ if $\alpha \in K(a)$. A morphism $(A, K) \to (B, L)$ is a function $f: A \to B$ such that $f\alpha \in L(f(a))$ if $\alpha \in K(a)$, where $f\alpha$ denotes the stack $\{U|U \subset B \text{ and } U \supset f(C) \text{ for some } C \in \alpha\}$. We denote by SCO, the category so formed. See [5] p. 354.
- 1.3 <u>Definition</u>. The category of <u>Constant Stack Convergence Spaces</u>, ConSCO is the full subcategory of SCO determined by those spaces (A, K), where K is a constant function.
- 1.4 The discrete structure (A, K) on A in SCO and ConSCO is given by $K(a) = \{\alpha | \alpha \supset [a]\}$, a in A, and $K = \{\alpha | \alpha \supset [b] \text{ for some } b \text{ in } A\}$, respectively.
- 1.5 A source $\{f_i: (A,K) \to (A_i,K_i) \mid i \in I\}$ is an initial lift in SCO if and only if $\alpha \in K(a)$ precisely when $f_i\alpha \in K_i(f_i(a))$ for all i in I. See [4] p. 1374.
- 1.6 A source $\{f_i: (A,K) \to (A_i,K_i), i \in I\}$ is initial in ConSCO iff $\alpha \in K$ precisely when $f_i\alpha \in K_i$ for all i.
- 1.7 An epi morphism $f:(A_1,K_1)\to (A,K)$ is final in SCO, iff for each a in A, $\alpha\in K(a)$ implies there exists $\beta\in K_1(a_1)$ such that $f\beta\subset\alpha$ and $f(a_1)=a$. An epi sink $\{i_1,i_2:(A,K)\to (A_1,K_1)\}$ is final in SCO iff for each a_1 in A_1 , $\alpha\in K_1(a_1)$ implies there exists a in A and β in K(a) such that for some k=1,2, $i_ka=a_1$ and $i_k\beta\subset\alpha$. These are special cases of [4] p. 1375.
- 1.8 An epi morphism $f:(A_1,K_1)\to (A,K)$ is final in ConSCO iff $\alpha\in K$ implies there exists $\beta\in K$, such that $f\beta\subset\alpha$. An epi sink $\{i_1,i_2:(A,K)\to (A_1,K_1)\}$ is final in ConSCO iff $\alpha\in K_1$ implies there exists β in K such that $i_k\beta\subset\alpha$ for some k=1,2. These are special cases of 1.7.

Let α and β be stacks on X, γ a stack on Y, and $f: X \to Y$ a function.

1.9 Definitions.

 $\alpha \cup \beta = \{U | U \subset X \text{ and } V \subset U \text{ for some } V \text{ in } \alpha \text{ or } \beta\}$ $\alpha \cap \beta = \{U | U \subset X \text{ and } U \in \alpha \text{ and } \beta\}$ 1405

$$f^{-1}(\gamma) = \{U | U \subset X \text{ and } f^{-1}(W) \subset U \text{ for some } W \text{ in } \gamma\}$$

 $f(\alpha) = \{V | V \subset Y \text{ and } f(U) \subset V \text{ for some } U \text{ in } \alpha\}$

1.10 Lemma. $f(\alpha \cup \beta) = f(\alpha) \cup f(\beta)$ and $f(\alpha \cap \beta) = f(\alpha) \cap f(\beta)$.

Proof. Sec [2].

Let X be a set and p a point in X. Let $X \bigvee_p X$ be the wedge product of X with itself, i.e. two distinct copies of X identified at the point p. A point x in $X \bigvee_p X$ will be denoted by $x_1(x_2)$ if x is in the first (resp. second) component of $X \bigvee_p X$. Let $X^2 = X \times X$ be the cartesian product of X with itself.

- 1.11 Definition. The principal p axis map, $A_p: X \vee_p X \to X^2$ is defined by $A_p(x_1) = (x_1, p)$ and $A_p(x_2) = (p, x_2)$
- 1.12 <u>Definition</u>. The skewed p axis map, S_p : $X \bigvee_p X \rightarrow X^2$ is defined by $S_p(x_1) = (x_1, x_1)$ and $S_p(x_2) = (p, x_2)$.
- 1.13 Definition. The fold map at p_i , $\nabla_p : X \vee_p X \to X$ is given by $\nabla_p(x_i) = x$ for i = 1, 2.
- 1.14 Example. If X is the set of real numbers and p = 0, then the image of the principal p axis map is just the union of the x- and y- axes, and the image of the skewed p axis map is the union of the diagonal i.e. the line y = x and the y-axis.

In this way, we may view the image of A_p and S_p as "axes" in X^2 with origin p.

Let $U: E \to \text{Sets}$ be a topological functor [3], X an object in E, and p a point in UX = B.

1.15 Definitions.

1. X is $\overline{T_o}$ at p iff the initial lift of the U-source $\{A_p: B\bigvee_p B \to U(X^2) = B^2 \text{ and } \nabla_p: B\bigvee_p B \to UDB = B\}$ is discrete, where DB is the discrete structure on B.

- 2. X is T_{\bullet} at p iff the initial lift of the U-source $\{id: B\bigvee_{p}B \to U(X\bigvee_{p}X) = B\bigvee_{p}B \text{ and } \nabla_{p}: B\bigvee_{p}B \to UDB = B\}$ is discrete, where $X\bigvee_{p}X$ is the wedge in E i.e. the final lift of the U-sink $\{i_{1},i_{2}: UX = B \to B\bigvee_{p}B\}$ where i_{1},i_{2} denote the canonical injections.
- 3. X is $\underline{PreT_2}$ at \underline{p} iff the initial lift of the U-source $\{S_p: B\bigvee_p B \to U(X^2) = B^2\}$ and the initial lift of the U-source $\{A_p: B\bigvee_n B \to U(X^2) = B^2\}$ agree.
- 4. X is T_1 at p iff the initial lift of the U-source $\{S_p : B \bigvee_p B \to U(X^2) = B^2 \text{ and } \nabla_p : B \bigvee_p B \to UDB = B\}$ is discrete.
- 5. X is $PreT_2'$ at p iff the initial lift of the U-source $\{S_p : B \bigvee_p B \to U(X^2) = B^2$ and the final lift of the U-sink $\{i_1, i_2 : UX = B \to B \bigvee_p B\}$ agree.
- 6. X is $\overline{T_2}$ at p iff X is $\overline{T_0}$ at p and $Pre\overline{T_2}$ at p.
- 7. X is T' at p iff X is T' at p and PreT' at p.
- 1.16 Theorem. For the category of topological spaces we have:
- 1. $\overline{T_o}$ at p is equivalent to T'_o at p and they both reduce to the following (called T_o at p in [1]): for each point x distinct from p, there exists a neighborhood of x missing p or there exists a neighborhood of p missing x.
- 2. $Pre\overline{T_2}$ at p is equivalent to PreT' at p and they both reduce to the following (called $PreT_2$ at p in [1]): for each point x distinct from p, if the set $\{x, p\}$ is not indiscrete, then there exist disjoint neighborhoods of x and p.
- 3. $\overline{T_2}$ at p is equivalent to T_2' at p and they both reduce to (called T_2 at p in [1]): for each point x distinct from p, there exist disjoint neighborhood of x and p.

Proof: [1].

1.17 Remark. We define p_1, p_2, ∇_p by $1 + p, p + 1, 1 + 1 : B \bigvee_p B \to B$, respectively where $1 : B \to B$ is the identity map, $p : B \to B$ is constant map at p_i and $\pi_i : B^2 \to B$ is the ith projection i = 1, 2. Note that $\pi_1 A_p = p_1 = \pi_1 S_p$, $\pi_2 A_p = p_2$, $\pi_2 S_p = \nabla$.

2. Separation Properties at p

In this section, we give explicit characterizations of the generalized separation properties at p for the topological categories of Stack Convergence Spaces, SCO and Constant Stack Convergence Spaces, ConSCO.

2.1 Theorem.
$$X = (B, K)$$
 in SCO is $\overline{T_o}$ at p iff for each $x \neq p$, $K(x) = \{\alpha | \alpha \supset [x]\}.$

<u>Proof.</u> Assume X is $\overline{T_o}$ at p i.e. for any stack σ on the wedge and for any point z in the wedge, $p_1\sigma \in K(p_1z)$, $p_2\sigma \in K(p_2z)$, and $\nabla \sigma \supset [\nabla z]$ iff $\sigma \supset [z]$. Suppose there exists a stack α in K(x) such that $\alpha \not\supset [x]$ for some $x \neq p$. Let $\sigma = i_1\alpha \cup [(p,x)]$. By 1.10: $p_1\sigma = \alpha \cup [p]$, $p_2\sigma = [p] \cup [x]$, and $\nabla \sigma = \alpha \cup [x]$ and consequently $p_1\sigma \in K(x)$, $p_2\sigma \in K(p)$ and $\nabla \sigma \supset [x]$. Hence $\sigma \supset [(x,p)]$ since X is $\overline{T_o}$ at p. Since $x \neq p$, $(x,p) \in i_1\alpha$ and consequently $(x,p) \supset i_1V$ for some $V \in \alpha$. Clearly $V = \{x\}$ i.e. $\alpha \supset [x]$, a contradiction. Hence we must have that for each $x \neq p$, $K(x) = \{\alpha | \alpha \supset [x]\}$.

Conversely, suppose the condition holds and $x \neq p$. If σ satisfies $p_1 \sigma \in K(x)$, $p_2 \sigma \in K(p)$, and $\nabla \sigma \supset [x]$, then by the assumption $p_1 \sigma \supset [x]$ and consequently $\sigma \supset [(x,p)]$. Similarly, if σ satisfies $p_1 \sigma \in K(p)$, $p_2 \sigma \in K(x)$ and $\nabla \sigma \supset [x]$, then $\sigma \supset [(p,x)]$. If x = p and σ satisfies $p_1 \sigma \in K(p)$, $p_2 \sigma \in K(p)$, and $\nabla \sigma \supset [p]$ then $\sigma \supset [(p,p)]$. Hence X is $\overline{T_0}$ at p.

2.2 Theorem.
$$X = (B, K)$$
 in SCO is T_o' at p iff for each $x \neq p$, $K(x) = \{\alpha | \alpha \supset [x]\}$.

<u>Proof.</u> Assume X is T_{\bullet}^{i} at p i.e. for any stack σ on the wedge and any point z in the wedge, $\sigma \supset i_{k}\sigma_{1}$ for some $\sigma_{1} \in K(x)$, where $i_{k}(x) = z$, k = 1 or 2 and $\nabla \sigma \supset [x]$ iff $\sigma \supset [z]$. Suppose there exists $\alpha \in K(x)$ such that $\alpha \not\supset [x]$ for some $x \neq p$. Let $\sigma = i_{1}\alpha \cup [(p, x)]$. By 1.10, $\nabla \sigma = \alpha \cup [x] \supset [x]$ and $\sigma \supset i_{1}\alpha$, $i_{1}(x) = (x, p)$. Hence $\sigma \supset [(x, p)]$ and consequently $(x, p) \supset i_{1}V$ for some $V \in \alpha$. Thus $V = \{x\}$ i.e. $\alpha \supset [x]$, a contradiction. Therefore we must have $K(x) = \{\alpha \mid \alpha \supset [x]\}$ for all $x \neq p$.

Conversely if $x \neq p$ and $\sigma \supset i_1\sigma_1$ for some $\sigma_1 \in K(x)$, and $\nabla \sigma \supset [x]$, then by the assumption, $\sigma_1 \supset [x]$ and consequently $\sigma \supset i_1\sigma_1 \supset i_1[x] = [(x,p)]$. Similarly, if

M.BARAN/SEPARATION PROPERTIES AT p FOR THE TOPOLOGICAL CATEGORY OF STACK CONVERGENCE. $x \neq p$ and $\sigma \supset i_2\sigma_2$ for some $\sigma_2 \in K(x)$ and $\nabla \sigma \supset [x]$, then $\sigma \supset [(p,x)]$. If x = p and $\sigma \supset i_k\sigma_1$ for some $\sigma_1 \in K(p)$ where $i_k(p) = (p,p)$ for some k = 1 or 2, and $\nabla \sigma \supset [p]$, then it follows easily that $\sigma \supset [(p,p)]$. Hence X is T'_o at p.

2.3 Theorem. X = (B, K) in SCO is T_1 at p iff B = p.

Proof. Suppose X is T_1 at p i.e. by 1.4 , 1.17 , 1.5 and definition 1.15 for any stack σ on the wedge and any point z in the wedge, $p_1\sigma \in K(p_1z)$, $\nabla \sigma \in K(\nabla z)$, and $\nabla \sigma \supset [\nabla z]$ iff $\sigma \supset [z]$. If $B \neq p$ then there exists $x \in B$ such that $x \neq p$. Let $\sigma = [(p,p)] \cup [(x,p)]$. Note that $p_1\sigma = [p] \cup [x] \in K(p)$, $\nabla \sigma = [p] \cup [x] \in K(x)$, and $\nabla \sigma \supset [x]$. Hence $\sigma \supset [(p,x)]$ since X is T_1 at p. But this is impossible since $x \neq p$. Hence B = p. Conversely if B = p, then clearly X is T_1 at p (since $\sigma = [(p,p)]$ or $[\phi]$).

2.4 Theorem. X = (B, K) in SCO is $Pre\overline{T_2}$ at p iff for each x in B, $K(x)^* = STK(B) =$ the set of all stacks on B.

<u>Proof.</u> Suppose X is $Pre\overline{T_2}$ at p i.e. by 1.5, 1.17, and definition 1.15 for any stack σ on the wedge and any point z in the wedge if $p_1\sigma \in K(p_1z)$, then $p_2\sigma \in K(p_2z)$ iff $\nabla \sigma \in K(\nabla z)$. We first show that K(p) = STK(B). In order to establish this we need only to show that $[B] \in K(p)$ since every stack contains the set B. Let $\sigma = [^nx - axis^n, ^ny - axis^n]$. Clearly $p_1\sigma = [p] = p_2\sigma \in K(p)$

and consequently $\nabla \sigma = [D]$ is in K(p) (since X is $Pre\overline{T_2}$ at p). Therefore K(p) = STK(B). We next show that K(x) = STK(B) for $x \neq p$. To this end, let $\sigma = [(x,p),(x,p) \cup (p,x),"x-axis"]$. It follows easily that $p_1\sigma = [x]$, $p_2\sigma = [p]$, and $\nabla \sigma = [x]$. Since $p_1\sigma = [x] \in K(p) = STK(B)$ and $\nabla \sigma = [x] \in K(x)$, it follows that $p_2\sigma = [p] \in K(x)$ (since X is $Pre\overline{T_2}$ at p). If $\sigma = ["x-axis", "y-axis"]$, then $p_1\sigma = [p] \in K(x)$, $p_2\sigma = [p] \in K(p)$ and consequently $\nabla \sigma = [B] \in K(x)$ i.e. K(x) = STK(B). The converse is trivial.

2.5 Theorem. X = (B, K) in SCO is $PreT_2'$ at p iff B = p.

Proof. Suppose X is $PreT_2'$ at p i.e. by 1.4, 1.17, 1.7 and definition 1.15 for any stack σ on the wedge and any point x in the wedge, $p_1\sigma \in K(p_1z)$ and $\nabla \sigma \in K(\nabla x)$ iff $\sigma \supset i_k\sigma_1$ for some σ_1 in K(x), where $i_k(x) = z$, k=1 or 2. If $B \neq p$, then there exists $x \in B$ such that $x \neq p$. Let $\sigma = ["y - axis", (x, p) \cup (p, x)]$. Clearly $p_1\sigma = [p] \in K(p)$ and $\nabla \sigma = [x] \in K(x)$. Hence $\sigma \supset i_1\sigma_1$, for some 1409

 $\sigma_1 \in K(x)$ and $i_2(x) = (p, x)$. We show that $\sigma_1 = [B]$. Clearly $[B] \subset \sigma_1$. To show the reverse, if $U \in \sigma_1$, then $i_2U \in i_2\sigma_1 \subset \sigma$, and consequently $i_2U \in \sigma$. Hence $i_2U \supset "y - axis"$ i.e. U = B. Thus $\sigma_1 = [B]$. Since $\sigma_1 \in K(x)$, it follows that K(x) = STK(B). We next let $\sigma = [(x, p) \cup (p, x)]$. Clearly $p_1\sigma = [x \cup p] \in K(x)$ and $\nabla \sigma = [x] \in K(x)$, and consequently $\sigma \supset i_1\sigma_1$ for some $\sigma_1 \in K(x)$. Hence $i_1V \in i_1\sigma_1 \subset \sigma$ for some $V \in \sigma_1$ and consequently $i_1V \supset (x, p) \cup (p, x)$ which is impossible. Hence B = p. Conversely, if B = p, then clearly X is $PreT_2^i$ at p.

2.6 Theorem. X = (B, K) in SCO is $\overline{T_2}$ at p iff B = p.

<u>Proof.</u> Recall X is $\overline{T_2}$ at p iff X is $\overline{T_0}$ at p and $Pre\overline{T_2}$ at p. Since X is $\overline{T_0}$ at p, $[p] \notin K(x)$ (2.1). But this is a contradiction to K(x) = STK(B) i.e. $Pre\overline{T_2}$ at p (2.4). Hence B = p. On the other hand, if B = p, then clearly X is $\overline{T_0}$ at p and since $STK(p) = \{[p], [\phi]\} = K(p)$, X is $Pre\overline{T_2}$ at p by 2.4. Hence X is $\overline{T_2}$ at p.

2.7 Theorem. X = (B, K) in SCO is T_2' at p iff B = p.

Proof. Suppose X is T_2^i at p i.e. by definition 1.15 X is T_0^i at p and $PrcT_2^i$ at p.

Then in particular by 2.5, B = p. Conversely, if B = p, then clearly X is T'_o at p and $PreT'_2$ at p (2.5). Hence X is T'_2 at p.

2.8 Remark. $\overline{T_o}$ and T'_o at p agree and T'_2 and $\overline{T_2}$ at p agree (2.1, 2.2, 2.6, and 2.7) and $PreT'_2$ at p implies $Pre\overline{T_2}$ at p.

2.9 Theorem. X = (B, K) in ConSCO is $\overline{T_o}$ at p iff B = p.

Proof. Suppose X is $\overline{T_o}$ at p i.e. by 1.4, 1.17, 1.6, and definition 1.15 for any stack σ on the wedge, $p_1\sigma \in K$, $p_2\sigma \in K$, and $\nabla \sigma \supset x$ for some x in B iff $\sigma \supset [z]$ for some z in the wedge. If $B \neq p$, then there exists x in B such that $x \neq p$. Let $\sigma = ["x - axis", "y - axis", (x, p) \cup (p, x)]$. Clearly $p_1\sigma = [p] = p_2\sigma$ and $\nabla \sigma = [x]$. Hence $\sigma \supset [z]$ for some z in the wedge. It follows that $z \in \sigma$ which is impossible. Hence B = p. Conversely, if B = p, then clearly X is $\overline{T_o}$ at p.

2.10 Theorem. X = (B, K) in ConSCO is T_1 at p iff B = p.

Proof. Suppose X is T_1 at p i.e by 1.4, 1.17, 1.6, and definition 1.15 for any stack σ on the wedge. $p_1\sigma \in K$, $\nabla \sigma \in K$, and $\nabla \sigma \supset [x]$ for some $x \in B$ iff $\sigma \supset [x]$ for some $x \in B$ such that

 $x \neq p$. Let $\sigma = ["y - axis", (x, p) \cup (p, x)]$. Clearly $p_1 \sigma = [p] \in K$, $\nabla \sigma = [x] \in K$, and consequently $\sigma \supset [x]$ for some x in the wedge which is a contradiction. Hence B = p. The converse is trivial.

2.11 Theorem.
$$X = (B, K)$$
 in $ConSCO$ is $Pre\overline{T_2}$ at p iff $K = STK(B)$.

<u>Proof.</u> Suppose $Pre\overline{T_2}$ at p i.e. by 1.6, 1.17, and definition 1.15 for any stack σ on the wedge if $p_1\sigma$ in K, then $p_2\sigma$ in K iff $\nabla \sigma \in K$. It is sufficient to show that $[B] \in K$ since every stack contains the set B. Let $\sigma = [^nx - axis^n, ^ny - axis^n]$. Clearly $p_1\sigma = [p] = p_2\sigma \in K$ and consequently $\nabla \sigma = [B] \in K$. Thus K = STK(B). The converse is obvious.

2.12 Theorem.
$$X = (B, K)$$
 in ConSCO is $PreT_2$ at p iff $B = p$.

Proof. Suppose X is $PreT_2'$ at p i.e. by 1.6., 1.17, 1.8, and definition 1.15 for any stack σ on the wedge, $p_1\sigma \in K$ and $\nabla \sigma \in K$ iff $\sigma \supset i_k\sigma_1$ for some σ_1 in K and for k=1 or 2. If $B \neq p$, then there exists $x \in B$ such that $x \neq p$. Let $\sigma = [{}^n x - axis^n, {}^n y - axis^n, (x,p) \cup (p,x)]$. Clearly $p_1\sigma = [p] \in K$ and $\nabla \sigma = [x] \in K$ and consequently $\sigma \supset i_k\sigma_1$ for some $\sigma_1 \in K$ and for some k=1 or 2. It readily follows that $\sigma_1 = [B]$ (the proof of 2.5.) and consequently K = STK(B). Let $\sigma = [(x,p) \cup (p,x)]$, where $x \neq p$. Clearly $p_1\sigma = [x \cup p] \in K = STK(B)$ and $\nabla \sigma = [x] \in K$. Since X is $PreT_2'$ at p, it follows that $\sigma \supset i_k\sigma_1$ for some $\sigma_1 \in K$. But clearly this is impossible. Hence B = p. The converse is obvious.

2.13 Theorem.
$$X = (B, K)$$
 in ConSCO is $\overline{T_2}$ at p iff $B = p$.

Proof. This follows easily from 2.9, 2.11, and definition 1.15.

2.14 Theorem.
$$X = (B, K)$$
 in ConSCO is T'_2 at p iff $B = p$.

<u>Proof.</u> Suppose X is T'_2 at p i.e by definition 1.15 X is T'_o at p and $PreT'_2$ at p. In particular, by 2.12, B = p. Conversely if B = p, then clearly X is T'_o at p and X is $PreT'_2$ at p (2.12). Hence X is T'_2 at p.

2.15 Remark. $\overline{T_2}$ at p and T_2' at p are identical and $PreT_2'$ at p implies $Pre\overline{T_2'}$ at p.

REFERENCES

- [1]. M. Baran, Separation Properties, Indian J. Pure Appl. Math. (to appear).
- [2]. M.Baran, Stacks and Filters, Turkish J. Math., DCGA (to appear).
- 13]. H. Herrlich, Topological Functors, Gen. Top. Appl. 4 (1975) 125-142.
- [4]. L.D. Nel, Initially Structured Categories And cartesian Closedness, Can. Journal of Math., Vol. XXVII, No. 6, (1975), 1361-1377.
- [5]. F. Schwarz, Connections Between Convergence And Nearness, Lecture Notes in Math. No. 719, Springer-Verlag (1978), 345-354.