ON INVARIANT SEQUENCE SPACES

Rifat ÇOLAK, Firat University, Faculty of Science and Arts,
Department of Mathematics, 23119 Elazığ, TURKEY

ABSTRACT

In this paper we define v-invariantness of a sequence space and examine the v-invariantness of the sequence spaces m, c, c_0 and l_p. Furthermore, we give Köthe-Toeplitz duals of some certain sequence spaces.

INVARIYANT DIZİ UZAYLARI ÜZERINE

ÖZET

Bu çalışmada, bir dizinin v-invaryantlığını tanımladık ve m, c, c_0 ve l_p dizilerinin v-invaryantlığını inceledik. Ayrıca, bazı dizilerinin Köthe-Toeplitz duallerini verdik.

1. INTRODUCTION

Let $v=(v_k)$ be any fixed sequence of nonzero complex numbers satisfying

$$\liminf \frac{|v_k|^{1/k}}{v_k} = r \quad (0 < r < \infty). \quad (1)$$

Then, we define

$$m_v = \{ x=(x_k) : \sup_k |v_k x_k| < \infty \}$$

$$(c_0)_v = \{ x=(x_k) : |v_k x_k| \to 0 \text{ as } k \to \infty \}$$

$$c_v = \{ x=(x_k) : v_k x_k \to \varepsilon \quad \text{as } k \to \infty \text{, for some } \varepsilon \}$$

881
$$(\ell_p)_v = \{ x = (x_k) : \sum_k |v_k x_k|^p < \infty, \ 0 < p \leq \infty \}.$$

([1]). These sequence spaces also may be regarded as spaces of analytic functions ([1], [3], [4]).

In this paper, m, c, and c_0 will denote the sequence spaces of bounded, convergent and null sequences, respectively, and ℓ_p \((0 < p \leq \infty)\) will denote the space of the sequences $x = (x_k)$ such that $\sum_k |x_k|^p < \infty$.

2. INvariant SEQUENCE SPACES

In this section we define v-invariantness of a sequence space X and give necessary and sufficient conditions for m, c, and ℓ_p to be v-invariant.

DEFINITION 1. We said that a sequence space X is v-invariant if $X_v = X$, where $X_v = \{ x = (x_k) : (v_k x_k) \subset X \}$.

It is known that if a sequence space X is a Banach space then X_v is also a Banach space, and if X is separable, X_v is also separable ([1]).

Now, if X is v-invariant then we have the following results.

THEOREM 1. Let X be a v-invariant sequence space. Then

(i) X_v is a Banach space if and only if X is a Banach space,

(ii) X_v is separable if and only if X is separable.

Let $u=(u_k)$ and $v=(v_k)$ be any fixed sequences of nonzero complex numbers such that

$$\liminf_{k \to \infty} |u_k|^{1/k} \quad \text{and} \quad \liminf_{k \to \infty} |v_k|^{1/k}$$

are positive (may be infinite).

If $v_k = \lambda$ for every k, then obviously m, c, c_0 and ℓ_p are v-invariant, where λ is a scalar.
THEOREM 2. Let \(w_k = u_k v_k^{-1} \) for each \(k \in \mathbb{N} \), where \(v_k^{-1} = 1/v_k \), and let \(X \) denote one of the sequence spaces \(m, c_0 \) and \(l_p \). Then

(i) \(X_v \subseteq X_u \) if and only if \(\sup_k |w_k| < \infty \),

(ii) \(X_v = X_u \) if and only if

\[
0 < \inf_k |w_k| \leq |w_k| \leq \sup_k |w_k| < \infty ,
\]

PROOF. We prove the theorem for \(X = m \). The proof for \(X = c_0 \) and \(X = l_p \) is similar.

(i) Sufficiency is trivial, since

\[
|u_k x_k| = |w_k| |v_k x_k| \tag{2}
\]

For the necessity suppose that \(m_v \subseteq m_u \) but \(\sup_k |w_k| = \infty \). Then there exists a strictly increasing sequence \((k_i) \) of positive integers such that \(|w_{k_i}| > i \). We put \(x_k = 0 \) \((k \neq k_i) \), \(x_k = i/u_{k_i} \) \((k = k_i) \). Then we have \(|v_k x_k| < 1 \) and \(|u_k x_k| = i \), where \(k = k_i \). Whence \(x \in m_v - m_u \) contrary to the assumption that \(m_v \subseteq m_u \).

(ii) To prove this, it is enough to show that \(m_u \subseteq m_v \) if and only if \(\inf_k |w_k| > 0 \). It is obvious that \(\inf_k |w_k| > 0 \) if and only if

\[
\sup_k |w_k| < \infty .
\]

Hence the result follows from (i).

THEOREM 3. Let \(X \) denote one of the sequence spaces \(m, c_0 \) and \(l_p \). Then

(i) \(X \subseteq X_v \) if and only if \(\sup_k |v_k| < \infty \),

(ii) \(X_v \subseteq X \) if and only if \(\inf_k |v_k| > 0 \),

883
R. ÇOLAK/ON INVARIANT SEQUENCE SPACES

(iii) \(X_v = X \) if and only if

\[0 < \inf_k |v_k| \leq |v_k| \leq \sup_k |v_k| < \infty. \]

PROOF. Taking \(v=(1,1,...) \) and replacing \(u \) by \(v \) in Theorem 2(i), we obtain (i). It is trivial that \(\inf_k |v_k| > 0 \) if and only if

\[\sup_k |v_k^{-1}| < \infty. \]

Hence taking \(u=(1,1,...) \) in Theorem 2(i), we get (ii). Finally, taking \(u=(1,1,...) \) in Theorem 2(ii), since clearly \(\inf_k |v_k^{-1}| > 0 \) if and only if \(\sup_k |v_k| < \infty \), we get (iii).

COROLLARY 1. Let \(X \) denote one of the sequence spaces \(\ell^p \) and \(c_0 \). Then \(X \) is \(v \)-invariant if and only if

\[0 < \inf_k |v_k| \leq |v_k| \leq \sup_k |v_k| < \infty. \]

(3)

Proof follows from Theorem 3 (iii).

THEOREM 4. (i) \(c_v \subset c_u \) if and only if \(w=(w_k) \subset c \).

(ii) \(c_v = c_u \) if and only if \(w \subset c - c_0 \).

PROOF. (i) The sufficiency is trivial by (2). For the necessity suppose that \(c_v \subset c_u \) but \(w \not\subset c \). Then, either \(w \not\subset \ell^p \) or \(w \not\subset c \). Now we put \(x=(w_k^{-1})(v_k^{-1}) \). Then \((v_k x_k) = (1,1,...) \) and \((u_k x_k) = (w_k) \). Hence \(x \not\in c_v - c_u \), contrary to the assumption that \(c_v \subset c_u \). Hence we obtain the necessity.

(ii) Sufficiency. Let \(w \subset c - c_0 \), then \(c_v \subset c_u \) by (i). Let \(x \in c_u \), so that \((u_k x_k) \subset c \). Now, since \(w \subset c - c_0 \), \(\lim_{k} w_k^{-1} \) exists and is finite.

Therefore, from the equality \(v_k x_k = w_k^{-1} u_k x_k \), we have \((v_k x_k) \subset c \) and hence \(c_u \subset c_v \).

884
R. Çolak/ On Invariant Sequence Spaces

Necessity. Suppose that \(c_v = c_u \), that is, \(c_v \subseteq c_u \) and \(c_v \subseteq c_v \). Then

\[
\lim_{k \to \infty} w_k = \lim_{k \to \infty} u_k v_k^{-1} \quad \text{and} \quad \lim_{k \to \infty} w_k^{-1} = \lim_{k \to \infty} u_k^{-1} v_k^{-1}.
\]

exist.

It is trivial that \(\lim_{k \to \infty} w_k^{-1} \) exists if and only if \(\lim_{k \to \infty} w_k \neq 0 \). Hence \(w \in c \). This completes the proof.

Theorem 5. (i) \(c \subseteq c_v \) if and only if \(v \in c \),

(ii) \(c_v = c \) if and only if \(v \in c \) and \(\lim_{k \to \infty} v_k \neq 0 \).

Proof. Taking \(v = (1, 1, \ldots) \) and replacing \(u \) by \(v \) in Theorem 4(i), we obtain (i).

Theorem 4(ii) gives us (ii) for \(u = (1, 1, \ldots) \).

Remark. If \(v \in c \) and \(\lim_{k \to \infty} v_k = 0 \), that is \(v \in c_0 \), then \(c \subseteq (c_0)_v \).

If we consider Definition 1 and Theorem 5(ii), then we can express the following result:

Corollary 2. \(c \) is \(v \)-invariant if and only if \(v \in c_0 \).

3. Köthe-Teoplitz Dual Spaces

Definition 2 ([2]). Let \(X \) be a sequence space and define

(i) \(X^\alpha = \{ a = (a_k) : \sum_{k=1}^\infty |a_kx_k| < \infty \text{ for all } x \in X \} \)

(ii) \(X^\beta = \{ a = (a_k) : \sum_{k=1}^\infty a_kx_k \text{ converges for all } x \in X \} \)

(iii) \(X^\gamma = \{ a = (a_k) : \sup_{n} \sum_{k=1}^n |a_kx_k| < \infty \text{ for all } x \in X \} \).

Then \(X^\alpha, X^\beta \) and \(X^\gamma \) are called the \(\alpha \)-, \(\beta \)- and \(\gamma \)-dual spaces of \(X \), respectively. \(X^\alpha \) is also called Köthe-Teoplitz dual space and \(X^\beta \) is
also called generalized Köthe-Toeplitz dual space. It is easy to show that $\varphi X^\alpha \subset X^\beta \subset X^\gamma$. If $X \subset Y$ then $Y^n \subset X^n$ for $\eta = \alpha$, β or γ.

Lemma 1 ([2]).

(i) $c^n_0 = c^n = m^n = \ell_1$,

(ii) $\ell^n_p = \ell_q$ \hspace{1cm} ($1 < p < \infty$, $p^{-1} + q^{-1} = 1$)

(iii) $\ell^n_p = m$ \hspace{1cm} ($0 < p < 1$)

where η stand for α, β or γ.

The α, β and γ-duals of the sequence spaces $(c_0)_v$, c_v, m_v and $(\ell_p)_v$ are known, ([1]), where $v = (v_k)$ satisfies (1) without any other restriction.

Now, if we consider Lemma 1, Corollary 1 and Corollary 2. Then we have the following results:

Theorem 6. a) Let (3) is satisfied. Then, for $\eta = \alpha$, β and γ,

(i) $((c_0)_v)^n = (m_v)^n = \ell_1$,

(ii) $((\ell_p)_v)^n = \ell_q$ \hspace{1cm} ($1 < p < \infty$, $p^{-1} + q^{-1} = 1$),

(iii) $((\ell_p)_v)^n = m$ \hspace{1cm} ($0 < p < 1$).

b) If $v \in c_0$, then, for $\eta = \alpha$, β and γ,

(iv) $(c_v)^n = \ell_1$.

Theorem 7. a) Let (3) is satisfied. Then, for $\eta = \alpha$, β and γ,

(i) $((c_0)_v)^{n \eta} = (m_v)^{n \eta} = m$.

886
(ii) \((\ell_p)_v)^{\infty} = \ell_p \quad (1 < p < \infty)\).

(iii) \((\ell_p)_v)^{\infty} = \ell_1 \quad (0 \leq p \leq 1)\).

b) If \(v \in c_0\) then, for \(n = a, b\) and \(c\),

(iv) \((c_v)^{\infty} = m\).

REFERENCES

