Erc. Uni. Fen. Bil. Derg., 5, 1-2 (1989), 881-887

ON INVARIANT SEQUENCE SPACES

Rifat ÇOLAK, Firat University, Faculty of Science and Arts, Department of Mathematics, 23119 Elazığ, TURKEY

ABSTRACT

In this paper we define v-invariantness of a sequence space and examine the v-invariantness of the sequence spaces m. c c and $\ell_{\rm p}.$ Furthermore, we give Köthe-Toeplitz duals of some certain sequence spaces.

INVARIYANT DİZİ UZAYLARI ÜZERİNE

ÖZET

Bu çalışmada, bir dizi uzayının v-invariyantlığını tanımladık ve m, c, c_o ve l_p dizi uzaylarının v-invariyantlığını inceledik. Ayrıca, bazı dizi uzaylarının Köthe-Toeplitz duallerini verdik.

1. INTRODUCTION

Let $v=(v_k)$ be any fixed sequence of nonzero complex numbers satisfying

lim inf
$$|v_k|^{1/k} = r$$
 (0 < r $\leq \infty$). (1)

Then, we define

$$\begin{split} \mathbf{m}_{\mathbf{v}} &= \{ \ \mathbf{x} = (\mathbf{x}_{k}) \ : \ \sup_{k} | \mathbf{v}_{k} \mathbf{x}_{k} | < \omega \} \\ \\ &(\mathbf{c}_{O})_{\mathbf{v}} = \ \mathbf{x} = (\mathbf{x}_{k}) \ : \ | \mathbf{v}_{k} \mathbf{x}_{k} | \to 0 \quad \text{as } k \to \infty \} \\ \\ &\mathbf{c}_{\mathbf{v}} = \{ \ \mathbf{x} = (\mathbf{x}_{k}) \ : \ \mathbf{v}_{k} \mathbf{x}_{k} \to \ell \quad \text{as } k \to \infty \ , \ \text{for some} \ \ell \} \end{split}$$

$$(i_p)_v = \{x = (x_k) : \sum_k |v_k x_k|^p < \infty, 0 < p < \infty\}.$$

([1]). These sequence spaces also may be regarded as spaces of analytic functions ([1], [3], [4]).

In this paper, m, c, and c will denote the sequence spaces of bounded, convergent and null sequences, respectively, and ℓ_{∞} (0 < p< \circ)

will denote the space of the sequences $x=(x_k)$ such that $\sum\limits_{\nu}|x_k|^p<\infty$

2. INVARIANT SEQUENCE SPACES

In this section we define v-invariantness of a sequence space X and give necessary and sufficient conditions for m, c, and l, to be v-invariant.

DEFINITION 1. We said that a sequence space X is v-invariant if $X_{\nu}=X$, where $X_{\nu}=\{x=(x_{\nu}):(v_{\nu}x_{\nu})\in X\}$.

It is known that if a sequence space X is a Banach space then $X_{i,j}$ is also a Banach space, and if X is separable, X, is also separable ([1]).

Now, if X is v-invariant then we have the following results.

THEOREM 1. Let X be a v-invariant sequence space. Then

- (i) $\mathbf{X}_{\mathbf{v}}$ is a Banach space if and only if X is a Banach space, (ii) $\mathbf{X}_{\mathbf{v}}$ is separable if and only if X is separable.

Let $u=(u_k)$ and $v=(v_k)$ be any fixed sequences of nonzero complex numbers such that

$$\lim_{k \to \infty} \inf |u_k|^{1/k} \text{ and } \lim_{k \to \infty} |v_k|^{1/k}$$

are positive (may be infinite).

If $v_k = \lambda$ for every k, then obviously m, c, c and ℓ_p are v-invarient, where λ is a scalar.

THEOREM 2. Let $w_k = u_k v_k^{-1}$ for each k N, where $v_k^{-1} = 1/v_k$, and let X denote one of the sequence spaces m, c_0 and ℓ_p . Then

- (i) $X_v \subset X_u$ if and only if $\sup_k |w_k| < \infty$,
- (ii) $X_v = X_u$ if and only if

$$0 < \inf_{k} |w_{k}| \le |w_{k}| \le \sup_{k} |w_{k}| < \infty$$
,

PROOF. We prove the theorem for X=m. The proof for X=c and X= ℓ_{p} is similar.

(i) Sufficiency is trivial, since

$$|\mathbf{u}_{\mathbf{k}}\mathbf{x}_{\mathbf{k}}| = |\mathbf{w}_{\mathbf{k}}| |\mathbf{v}_{\mathbf{k}}\mathbf{x}_{\mathbf{k}}| \tag{2}$$

For the necessity suppose that $\mathbf{m}_{\mathbf{v}}\subset\mathbf{m}_{\mathbf{u}}$ but $\sup_{k}|\mathbf{w}_{k}|=\infty$. Then there exists a strictly increasing sequence $(\mathbf{k}_{\mathbf{i}})$ of positive integers such that $|\mathbf{w}_{\mathbf{k}_{\mathbf{i}}}|>i$. We put $\mathbf{x}_{k}=0$ $(\mathbf{k}\neq\mathbf{k}_{\mathbf{i}})$, $\mathbf{x}_{k}=i/\mathbf{u}_{\mathbf{k}_{\mathbf{i}}}$ $(\mathbf{k}=\mathbf{k}_{\mathbf{i}})$. Then we have $|\mathbf{v}_{k}\mathbf{x}_{k}|<1$ and $|\mathbf{u}_{k}\mathbf{x}_{k}|=i$, where $\mathbf{k}=\mathbf{k}_{\mathbf{i}}$. Whence $\mathbf{x}\in\mathbf{m}_{\mathbf{v}}-\mathbf{m}_{\mathbf{i}}$ contrary to the assumption that $\mathbf{m}_{\mathbf{v}}\subset\mathbf{m}_{\mathbf{i}}$.

(ii) To prove this, it is enough to show that $m_u \subset m_v$ if and only if $\inf_k |w_k| > 0$. It is obvious that $\inf_k |w_k| > 0$ if and only if

$$\sup_{\mathbf{k}} |\mathbf{w}_{\mathbf{k}}^{-1}| < \infty$$

Hence the result follows from (i).

THEOREM 3. Let X denote one of the sequence spaces m, c and l p. Then

- (i) $X \subset X_v$ if and only if $\sup_k |v_k| < \infty$,
- (ii) $X_{V} \subset X$ if and only if $\inf_{k} |v_{k}| > 0$,

(iii) $X_{v} = X$ if and only if

 $0 < \inf_k |v_k| \leqslant |v_k| \leqslant \sup_k |v_k| < \infty.$

PROOF. Taking v=(1,1,...) and replacing u by v in Theorem 2(i), we obtain (i). It is trivial that $\inf_k |v_k| > 0$ if and only if

$$\sup_{k} |v_{k}^{-1}| < \infty$$

Hence taking $u=(1,1,\ldots)$ in Theorem 2(i), we get (ii). Finally, taking $u=(1,1,\ldots)$ in Theorem 2(ii), since clearly $\inf_k |v_k|^{-1}|>0$ if and only if $\sup_k |v_k| < \infty$, we get (iii).

COROLLARY 1. Let X denote one of the sequence spaces m, c and $\ell_{\,p}.$ Then X is v-invariant if and only if

$$0 < \inf_{k} |v_{k}| \le |v_{k}| \le \sup_{k} |v_{k}| < \infty.$$
 (3)

Proof follows from Theorem 3 (iii).

THEOREM 4. (i) $c_v \subset c_u$ if and only if $w=(w_k) \in c$.

(ii)
$$c_v = c_1$$
 if and only if wec - c_0 .

PROOF. (i) The sufficiency is trivial by (2). For the necessity suppose that $c_v \subset c_u$ but $w \not\in c$. Then, either $w \not\in m$ or $w \not\in m$. Now we put $x = (w_k u_k^{-1}) = (v_k^{-1})$. Then $(v_k x_k) = (1,1,\ldots)$ and $(u_k x_k) = (w_k)$. Whence $x \in c_v - c_u$, contrary to the assumption that $c_v \subset c_u$. Hence we obtain the necessity.

(ii) Sufficiency. Let $w \in c - c_0$, then $c_v \subset c_u$ by (i). Let $x \in c_u$, so that $(u_k x_k) \in c$. Now, since $w \in c - c_0$, $\lim_k w_k^{-1}$ exists and is finite. Therefore, from the equality $v_k x_k = w_k^{-1} u_k x_k$, we have $(v_k x_k) \in c$ and hence $c_u \subset c_v$.

Necessity. Suppose that $c_v = c_u$, that is, $c_v \subset c_u$ and $c_u \subset c_v$. Then

$$\lim_{k} w_{k} = \lim_{k} u_{k} v_{k}^{-1} \text{ and } \lim_{k} w_{k}^{-1} = \lim_{k} u_{k}^{-1} v_{k}^{-1}$$

exist.

It is trivial that $\lim_{k} w_{k}^{-1}$ exists if and only if $\lim_{k} w_{k} \neq 0$. Hence w_{EC-C} . This completes the proof.

THEOREM 5. (i) ccc, if and only if vec,

(ii)
$$c_v = c$$
 if and only if $v = c$ and $\lim_k v_k \neq 0$.

PROOF. Taking v = (1,1, ...) and replacing u by v in Theorem 4(i), we obtain (i). Theorem 4(ii) gives us (ii) for u=(1,1,...).

Remark. If $v \in c$ and $\lim_{k} v_{k} = 0$, that is $v \in c_{0}$, then $c \in (c_{0})_{v}$.

If we consider Definition 1 and Theorem 5(ii), then we can express the following result:

COROLLARY 2. c is v-invariant if and only if v cc-co.

3. KÖTHE-TOEPLITZ DUAL SPACES

DEFINITION 2 ([2]). Let X be a sequence space and define

(i)
$$X^{\alpha} = \{a = (a_k) : \sum_{k} |a_k x_k| < \infty \text{ for all } x \in X \}$$

(ii)
$$X^{\beta} = \{a=(a_{k}) : \sum_{k} x_{k} \text{ converges for all } x_{\epsilon} X\},\$$

(iii)
$$X^{\gamma} = \{a = (a_k) : \sup_{n \mid \Sigma} a_k x_k \mid < \infty \text{ for all } x \in X\}.$$

Then X^α , X^β and X^γ are called the $_\alpha$ -, β - and γ -dual spaces of X, respectively. X^α is also called Köthe-Toeplitz dual space and X^β is

also caller generalized Köthe-Toeplitz dual space. It is easy to show that $\phi \in X^{\alpha} \subset X^{\beta} \subset X^{\gamma}$ If $X \subset Y$ then $Y^{\alpha} \subset X^{\gamma}$ for $\gamma = \alpha$, β or γ .

LEMMA 1 ([2]).

(i)
$$c_0^{\eta} = c^{\eta} = m^{\eta} = \ell_1$$

(ii)
$$\ell_p^n = \ell_q$$
 $(1$

(iii)
$$\ell_p^n = m \quad (0$$

where n stand for α -, β - or γ .

The α -, β - and γ -duals of the sequence spaces $(c_0)_v$, c_v , m_v and $(\ell_p)_v$ are known, ([1]), where v= (v_k) satisfies (1) without any other restriction.

Now, if we consider Lemma 1, Corollary 1 and Corollary 2. Then we have the following results:

THEOREM 6. a) Let (3) is satisfied. Then, for $\eta = \alpha$, β and γ ,

(i)
$$((c_0)_y)^{\eta} = (m_y)^{\eta} = \ell_1,$$

(ii)
$$((l_p)_v)^{\eta} = l_q$$
 $(1$

(iii)
$$((\ell_p)_v)^{\eta} = m$$
 $(0 .$

b) If $v \in c-c_0$ then, for $\eta = \alpha$, β and γ ,

(iv)
$$(c_v)^{\eta} = \ell_1$$
.

THEOREM 7. a) Let (3) is satisfied. Then, for $\eta = \alpha$, β and γ ,

(i)
$$((c_0)_V)^{\eta\eta} = (m_V)^{\eta\eta} = m,$$

R.COLAK/ON INVARIANT SEQUENCE SPACES

(ii)
$$((\ell_p)_v)^{\eta\eta} = \ell_p$$
 $(1$

(iii)
$$((\ell_p)_v)^{\eta\eta} = \ell_1$$
 (0 $\leq p < 1$).

b) If $v \in c-c$ then, for $\eta = \alpha$, β and γ ,

(iv)
$$(c_v)^{\eta\eta} = m$$
.

REFERENCES

- [1] R. Çolak., P.D. Srivastava and S. Nanda, On certain sequence spaces and their Köthe-Toeplitz duals, (under communication).
- [2] P.K. Kamtham, M. Gupta, Sequence spaces and series, Marcel Dekker Inc. New York (1981).
- [3] S. Nanda, Two applications of Functional Analysis I: Matrix transformations and sequence spaces, Queen's Papers in Pure and Appl. Math. Queen's Univ. Press No. 74 (1986).
- [4] P.D. Srivastava, A study of some aspect of certain spaces and algebras of analytic functions, Ph.D. Thesis IIT, Kanpur, India (1978).