EFFECTS OF SUBSTITUTION FOR CU IN YBa₂Cu₃O_{7-d} AND YBa₂Cu₄O₈ ## Azmi GENÇTEN Department of Physics, Faculty of Education Ondokuz Mayıs University, 55100 Atakum-SAMSUN, TURKEY **Key Words:** Superconductivity, Substitution, YBa₂Cu₃O_{7-d} and YBa₂Cu₄O₈. ### **ABSTRACT** Structural and superconducting effects of substitution for Cu in YBa2Cu3O7-d and YBa2Cu4O8 high T_C superconductors have been investigated. A structural change has been observed for Fe,Co,Al and Ga substitutions in YBa2Cu3O7-d and for Fe substitution in YBa2Cu4O8. It was found that all substitutions in YBa2Cu3O7-d and YBa2Cu4O8 reduce T_C with very different rates. # YBa₂Cu₃O_{7-d} VE YBa₂Cu₄O₈'DE BAKIRA KATKI YAPMANIN ETKİLERİ # ÖZET Yüksek T_c'li YBa₂Cu₃O_{7-d} ve YBa₂Cu₄O₈ süperiletkenlerde bakıra katkı yapmanın yapıya ve süperiletkenliğe etkileri incelendi. YBa₂Cu₃O_{7-d} 'de Fe,Co,Al and Ga katkıları için ve YBa₂Cu₄O₈' de Fe katkısı için yapısal bir değişme gözlendi. YBa₂Cu₃O_{7-d} ve YBa₂Cu₄O₈'de bütün katkı maddelerinin T_c yi çok farklı oranlarda düşürdükleri bulundu. A.Gençten 50 #### 1. INTRODUCTION The discovery of YBa₂Cu₃O_{7-d} high T_c superconductor [1] was significant because its T_c (92K) is higher than the boiling point of nitrogen (77K). For d<0.6, it has an orthorhombic structure. In this system Cu has two sites: namely; Cu(1) chain site (CuO) and Cu(2) plane site (CuO₂) with one Cu(1) and two Cu(2) sites in the unit cell. The oxygen stoichiometry is not stable, thus d in YBa₂Cu₃O_{7-d} can take any value between 0 and 1. As a result of this, the structure and superconductivity are sensitive to the oxygen stoichiometry. The first evidence for the existence of YBa₂Cu₄O₈ came from the electron microscopy study of lattice defects in YBa₂Cu₃O_{7-d}[2]. Later it was prepared as a bulk superconductor by several research groups using a high oxygen pressure [3,4] and finally under one atmosphere air pressure [5]. YBa₂Cu₄O₈ has a T_c of 80K. The crystal structure of this compound is closely related to YBa₂Cu₃O_{7-d} having an additional CuO chain. The existence of additional CuO chains results in a much longer c lattice parameter and a stable oxygen content. Substitution studies for Cu in YBa₂Cu₃O_{7-d} and YBa₂Cu₄O₈ are of interest from both the structural and superconducting point of view. Since YBa₂Cu₃O_{7-d} and YBa₂Cu₄O₈ have two copper sites, the contrasting effects of substitution for Cu in these two sites of these superconductors are of considerable interest. It is widely believed that superconductivity in these superconductors occurs at CuO₂ planes. Therefore it is important to determine the role of the chains and the planes in the superconductivity of YBa₂Cu₃O_{7-d} and YBa₂Cu₄O₈. In this study, structural and superconducting properties of Cu site substituted YBa₂Cu₃O_{7-d} and YBa₂Cu₄O₈ have been investigated. ### 2. EXPERIMENTAL The superconducting $YBa_2(Cu_{1-x}M_x)_3O_7$ (M=V, Fe, Co, Ni, Zn, Al and Ga) samples were prepared by the solid state reaction method [6]. $YBa_2(Cu_{1-y}M_y)_4O_8$ (M=Fe and Zn) samples were prepared at one atmosphere oxygen pressure using two step process first developed by Cava et. al. [5]. X-Ray Diffraction (XRD) measurements of the fully oxygenated samples were carried out at room temperature. A typical XRD powder pattern of orthorhombic YBa₂Cu₃O_{7-d} is given in Fig.1. The (200), (020) and (006) peaks correspond to the lattice parameters a, b and c, respectively. XRD Powder pattern for YBa₂Cu₄O₈ is presented in Fig.2. The (200), (020) and (0014) peaks in YBa₂Cu₄O₈ correspond to the (200), (020) and (006) peaks in the powder pattern of YBa₂Cu₃O_{7-d}. For each substitution, the T_c values were determined from A.C. susceptibility measurements. Figure 1. XRD Powder Pattern of Orthorhombic YBa₂Cu₃O_{7-d} at Room Temperature. Fligure 2. XRD Powder Pattern of YBa2Cu4O8 at Room Temperature. ## 3. RESULTS AND DISCUSSION XRD measurements have been carried out to identify the crystal structure of substituted YBa₂(Cu_{1-x}M_x)₃O_{7-d} (M=V, Fe, Co, Ni, Zn, Ga and Al) and YBa₂(Cu_{1-v} M_v)₄O₈ (M=Fe and Zn) samples. For undoped YBa₂Cu₃O_{7-d}, the lattice parameters calculated from the (200), (020) and (006) peaks are a=3.827Å, b=3.882Å and c=11.682Å. The splitting of the (200) and (020) peaks in the XRD patterns of YBa2Cu3O7-d and YBa2Cu4O8 systems simply indicate that the structure is orthorhombic. It has been observed that, for some of the substitutions (Fe, Co, Ga and Al), XRD powder patterns present a tetragonal structure for x>0.025. XRD powder patterns of YBa2(Cu₁. _xCo_x)₃O_{7-d} for 2q=45-50 are displayed in Fig.3 as an example. The splitting of the (200) and (020) peaks disappears for x>0.025 as the structure becomes tetragonal. Also XRD powder patterns of YBa2(Cu_{1-x}M_x)₃O_{7-d} (where M=Cu, V, Ni, Zn, Fe, Co, Ga and Al; and x=0.1) are presented in Fig.4 for 2q=45-50. Again the nonexistence of the splitting of the (020) and (200) peaks shows that the structure is tetragonal for Fe, Co, Ga and Al substitution. For other substitutions (V, Ni and Zn) the structure remains orthorhombic. There have been many structural studies in substituted YBa₂(Cu_{1-x}M_x)₃O_{7-d} [e.g.7-10]. Our XRD results are in good agreement with these studies. A 89Y NMR study giving a clear evidence for the structural change was also reported elsewhere [11]. As known, YBa₂Cu₄O₈ has an orthorhombic structure. The lattice parameters of YBa₂(Cu_{1-y}M_y)₄O₈ obtained from the XRD powder patterns are plotted in Fig.5(a) and (b) for Zn and Fe substitution, respectively. As seen from Fig.5(a), for Zn doped YBa₂Cu₄O₈ samples, the crystal structure remains orthorhombic with only very small changes in the lattice parameters. For Fe substitution (Fig.5(b)), a and b lattice parameters move closer as the dopant concentration increases. By 3% substitution of Fe, a and b are almost equal and the structure is close to being tetragonal. It is clear that the structure will be entirely tetragonal by 5% Fe substitution. These results are in good agreement with a paper by Felner and Brosh which states that the structure becomes tetragonal by 5% Fe substitution [12]. Figure 3. XRD Powder Patterns for $YBa_2(Cu_{1-x}Co_x)_3O_7$ with x=0-0.1 and 2q=45-50. Figure 4. XRD powder patterns for YBa2($Cu_{1-x}M_x$)3O7 with 2q=45-50. Where x=0.1 and M=Cu, V, Ni, Zn, Fe, Co, Ga and Al. Figure 5. The Lattice Parameters of YBa2(Cu_{1-y}M_y)₄O₈ as a Function of Substitution rate y. (a)M=Zn and (b) M=Fe. The Lines are Drawn to Guide the Eye. A.Gençten 58 It is now agreed that Co, Al and Ga substitute for the Cu(1) site whereas Ni and Zn go into the Cu(2) site [7,9,13]. In the case of Fe, most substitution occurs onto the Cu(1) site although at higher concentrations Fe substitutes on both Cu(1) and Cu(2) sites [14]. It is noteworthy that the chain site substitutions (Fe, Co, Al and Ga in YBa₂Cu₃O_{7-d} and Fe substitution in YBa₂Cu₄O₈) cause a structural change from orthorhombic to tetragonal. This suggests that Fe in YBa₂Cu₄O₈ might mostly substitute into Cu(1) site. A.C. susceptibility measurements of fully oxygenated powder samples of YBa₂(Cu_{1-x}M_x)₃O_{7-d}(M=V, Fe, Co, Ni, Zn, Ga and Al) and YBa₂(Cu_{1-y}M_y)₄O₈ (M=Fe and Zn) have been performed in order to determine the transition temperatures. The transition temperatures as a function of dopant concentration are plotted in Fig.6(a) for Fe, Co, Ga and Al and in Fig.6(b) for Zn, Ni and V substitution in YBa₂(Cu_{1-x}M_x)₃O_{7-d}. All substitutions reduce T_c but with very different rates as given in Table.1. The largest reduction rates are ~7K/% for Zn substitution on the plane site and 5K/% for Co substitution on the chain site. Doping with V slightly reduces the T_c . As seen in Fig.6(a) and 6(b), 3% Ni and Zn substitutions are more effective in reducing the T_c . Transition temperature results presented here are in agreement with literature [12,15,16] to within experimental errors. Table 1. The Reduction Rates in T_C for a variety of Substitutions in YBa2(Cu₁. $_xM_x)_3O_{7\text{-d}}$. | Substitution | DT _c /Dx(K/%)±0.5 | |--------------|------------------------------| | Al | 1.5 | | Ga | 2.0 | | Fe | 4.0 | | Со | 5.0 | | V | 0.5 | | Ni | 3.0 | | Zn | 7.0 | Figure 6. The Transition Temperatures as a Function of Dopant Concentration x for a variety of substitutions in $YBa_2(Cu_{1-x}M_x)_3O_7$. (a) M=Al, Ga, Fe and Co; (b) M=V, Ni and Zn. The lines are drawn to guide the eye In Fig.7 the transition temperatures determined from A.C. susceptibility measurements are plotted against dopant concentration y in YBa₂(Cu_{1-y}M_y)₄O₈ (where M=Zn and Fe and y=0-0.03). Both Fe and Zn substitutions cause a dramatic decrease in T_c with a rate of about 20K/%. The decreases in T_c are much faster than that for Fe and Zn substituted YBa₂Cu₃O_{7-d}. These results are in good agreement with those reported elsewhere [12]. Figure 7. The transition temperatures as a function of dopant concentration y for Zn and Fe substitution in $YBa_2(Cu_{1-y}M_y)_4O_8$. The lines are drawn to guide the eye. A.Gencten 62 #### 4. CONCLUSION In summary, Fe, Co, Ga and Al substitutions in $YBa_2Cu_3O_{7-d}$ and Fe substitution in $YBa_2Cu_4O_8$ cause a structural change from orthorhombic to tetragonal. The structure remains orthorhombic for Ni, Zn and V substitution in $YBa_2Cu_3O_{7-d}$ and Zn substitution in $YBa_2Cu_4O_8$. We concluded that all these substitution elements which cause structural change go into chain site. It was found that the decreases in T_c with Fe and Zn substitution for Cu in $YBa_2Cu_4O_8$ are much more rapid than those observed for Fe and Zn substitution for Cu in $YBa_2Cu_3O_{7-d}$. #### REFERENCES - [1] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang and C.W. Chu, "Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure", Phys. Rev. Lett., 58, 908-910 (1987). - [2] H.W. Zandbergen, R. Gronsky, K. Wang and G. Thomas, "Structure of (CuO)₂ double layers in superconducting YBa₂Cu₃O₇", Nature, 331, 596-599 (1988). - [3] J. Karpinski, E. Kaldis, E. Jilek, S. Rusiecki and B. Bucker, "Bulk synthesis of the 81-K superconductor YBa₂Cu₄O₈ at high oxygen pressure", Nature 336, 660-662 (1988). - [4] D.E. Morris, J.H. Nickel, J.Y.T. Wei, N.G. Asmar, J.S. Scott, U.M. S cheven, C.T. Hultgren and A. G. Markelz, "Eight new high-temperature superconductors with the 1:2:4 structure", Phys. Rev. B39, 7347-7350 (1989). - [5] R.J. Cava, J.J. Krajewski, W.F. Peck Jr, B. Batlogg, L.W. Rupp Jr, R.M. Fleeming, A.C.W.P. James and P. Marsh, "Synthesis of bulk superconducting YBa₂Cu₄O₈ at one atmosphere oxygen pressure", Nature 338, 328-330 (1989). - [6] R. Dupree, A. Gencten and D.McK, Paul, "A ⁸⁹Y NMR Study of substitution for Copper in YBa₂(Cu_{1-x}M_x)₃O_{7-d}", Physica C 193, 81-89 (1992). - [7] G.Xiao, M.Z.Cieplak, D.Musser, A.Gavrin, F.H.Streitz, C.L. Chien, J.J.Rhyne and J.A.Gotaas, "Significance of plane versus chain sites in hightemperature superconductors", Nature 332, 238-240 (1988). - [8] Y.Maeno, T.Tomita, M.Kyogoku, S.Awaji, Y.Aoki, K.Hoshino, A.Minami and T.Fujita, "Substitution for copper in a high-T_c superconductor YBa₂Cu₃O_{7-d}", Nature 328, 512-514 (1987). - [9] J.M.Tarascon, P.Barboux, P.F.Miceli, L.H.Greene, G.W. Hull, M.Eibschutz and S.A.Sunshine, "Structural and physical properties of the metal (M) substituted YBa₂Cu_{3-x}M_xO_{7-y} perovskite", Phys.Rev. B37, 7458-7469 (1988). - [10] P.Bordet, J.L.Hodeau, P.Strobel, M.Marezio and A.Santoro, "Neutron and Electron Diffraction study of YBa₂Cu₂2Cu_{10.77}Fe_{0.23}O_{7.13}", Solid State Comm. 66, 435-439 (1988). - [11] A. Gencten, R. Dupree and D.McK. Paul, "NMR evidence for the O-T structural transition in YBa₂(Cu_{1-x}M_x)₃O_{7-d} (M=Co,Al and Ga)", Physica C 216, 491-494 (1993). - [12] I. Felner and B. Brosh, "Effects of Fe and Zn substitution upon superconductivity in YBa₂Cu₄O₈", Phys. Rev. B43, 10364-10367 (1991). - [13] T.Kajitani, K.Kusaba, M.Kikuchi, Y.Syono and M. Hirabayashi, "Crystal Structures of YBa₂Cu_{3-d}A_dO_{9-y} (A=Ni, Zn and Co)", Jpn.J.Appl.Phys. 27, L354-357 (1988). - [14] M.E.Lines and M.Eibschutz, "The Ligand Coordinations and Valencies of the Primary Iron Sites in YBa₂Cu_{3-x}Fe_xO_y", Physica C 166,235-247 (1990). 64 - [15] I. Felner, I. Nowik, B. Brosh, D. Heckel and E. R. Bauminger,"Superconductivity and Magnetic Order in the Cu(2) planes in Fe-dopedYBa₂Cu₄O₈", Phys. Rev. B43, 8737-8740 (1991). - Y. Wu, S. Pradhan and P. Boolchand, "Motional Broadening of ⁵⁷Fe Mössbauer-Effect Resonance in Cuprate Superconductors", Phys. Rev. Lett. 67, 3184-3187 (1991).