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ON THE ULTIMATE BOUNDEDNES RESULT FOR
THE SOLUTIONS OF CERTAIN FOURTH ORDER
DIFFERENTIAL EQATIONS

Cemil TUNC
Yiiziincii Y1l University, Education Faculty, 65080, Van.

ABSTRACT
The main purpose of this paper is to give sufficient conditions, which that all solutions of

(1.1) are ultimately bounded.

BELLI FORMDA DORDUNCU BASAMAKTAN
DIFERENSIYEL DENKLEMLERIN COZUMLERININ
SINIRLILIGI UZERINE

OZET
Bu ¢ahigmanin amact (1.1)'in biitiin ¢oziimlerinin smurlt olmasin saglayan yeter sartlars

vermektir.

1. INTRODUCTION AND STATEMENT OF THE RESULT

Consider the equation

O(%, XXX+ £(x %, X) + g(x, %) + hix) = p(t,x, %, X,X) 1.1
where j, f, g, h and p are continuous functions for the arguments displayed

explicitly and are such that the existence and uniqueness of solutions, as well
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as their continuous dependence on the initial conditions, are guaranteed. The
dots as usual indicate differentiation with respect to t.
Further it will be supposed that the den'vatives

aJ
——»(o(y,a,u), <p(y,z,u) f(x,y,Z), g(x y)——g(x ¥Y) and

h' (x) exist and are continuous for all x, v, z and u,

Key words: Non-linear differential equations of the fourth order,
Boundedness.
AMS Classification number: 34D20.

We shall examine here a specific property of solutions of (1.1),
namely the strong boundedness property of solutions in which the bounding
constant is independent of solutions.

Special cases of the differential equation (1.1) have been treated in
Abou-El-Ela ({11, [3]). Asmussen [4], Ezeilo& Tejumola [7] , Harrow [8],
Tejumola [9] and others.

In [3], Abou-El-Ela dealt with the equation of the form

x(4)+f1('k,)i)i'c’+f2(k,5i)+f3(x, X)+ f4(x)= p(t,X,%,%, X)
and presented sufficient conditions for the ultimately boundedness of
solutions for that equation.

This work is the generalization of Abou-El-Ela [3].

We shall prove here;

Theorem . In addition to the basic assumptions on @, f, g, h and p suppose
that:
m There are positive constants ¢, o2, 3, 04 an dp such that
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[al o, 0, -, a%g(x,y) o, (p(y,z,O)] P 60

forall x, yand z
n g(x,0) =0and 5; g(x,y) o3 forallxandy.
(ILI) 0 (y,70) ap forally, zandu
(IVv) 0 OS[%g(x,y) -—g(-)—;i)Jsél forallx andy 0, where
d] is a positive constant satisfying
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yJ'(Z)._a_ f(x,y,)d¢ <0 forall x, y and 2z, where ) is a positive
dx

constant such that

1, 2)
£p<e=min
] o 5 o (2016 \a(25 ﬂ
2% % 3 17470 17l ™% I
e a 16 o d 40501(050:2 1l4d Laza 2”
1% [130 4% 13 ) el )
o o
with dg i()gog-‘—zz[
[ e
a )

o & (e—e )
(VIID) [0 12 _1_0_._'L

Lo —glx, y)J < T for all x and y, and

o le-e
( ny —g(x,n)dn < 7} forallxandy 0.

dX) hi0)=0, 0 og4-h'(x) edp ‘xxz for all x, and h(x) sgn x — >
as Ixl ——s .

(X) z~a—q0(y,z,u)+dy% ©(y,z,u)=0 forally, z and u, where

dy=Zh =gy (1,3)

az

e > () being the constant in (1,2).
(XI) Ip(t, x,v,2z ul < for all values of t, x, y, z and u. Then
there exists a constant D¢ which depends only on , @, f, g and h such that
every solution x(t) of (1.1) satisfies:
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< Dl < Dol D Fols D (1,4)

for all sufficiently large t.
Remark 1. When

@(X,X,X) = [xl, f(%X,X) = Ozz, X, g{x,x) = Ot3 , X and h(x) :a4x3

equation (1.1) reduces to the linear constant coefficient differential equation
and conditions (I) - (X) of the theorem reduce to the corresponding Routh-
Hurwitz criterion.

Remark 2. When we take f(x,%,X,X) =@ (x,X,X) in [6}, our conditions
far less restrictive than those obtained in [6].

Notation. In what follows the capitals D, Dy, D1, ... denote finite positive
constants whose magnitudes depend only on the functions @, f, g, hand p as
well as on the constants o/, 019, 0.3, &4, &g, 61, 82, €9, and €; but are
independent of solutions of the differential equation under consideration. The
D's are not necessarily the same each time they occur, but each D, 1=1,2,
3, ... retains its identity throughout.

2. THE FUNCTION W(x, y, z, u)
It will be convenient in what follows to use the equivalent system:

X=vy,y=ZZ=1
1= -0y, zuu-f(x,y 2} -gx y) -hx) +pt,x,y,z u)2.1)
which is obtained from (1.1) by setting y = %, z = X and u = X.
In the proof of the theorem, our main tool is the piecewise
continuously differrentiable function W, which is defined as follows
W=Wop+ W, (2,2)
where
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(2.3)

x 2
2Wo(x,y.2,0)=2d2 | (E)d +(d2 @, -d a4) y

ZJoyg(x, n)d1+2d1zh(x)+2yh(x) +2 jz[d]f(x,y,g") - dzg]d.g

2 2 2
2[[0(y.50) Lal +d w424, y[l0(n£0) A +2d yu + 2,

a PN (2.4)
o
and
(xsgau, if ol > xl (2,5)
W (x.0) =1
) usgn x, if lul < IxI,

¢ and d7 being the constant defined by (1,2), (1.3), respectively.

The function W here is the same as the function Wq of [3] except
that we have @, f, g, h in place of f1, f2. f3, and fa respectively and @, f
are the generalized of fy, 2, respectively.

Firstly we discuss some important inequalities. From (2.4) and (III)
it is clear that

dy. 1 forall y and z. (2.6)
9(y.2,0)

1t is also easy to show that the functions @ and g satisfy
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é
@ g Ly -d, 00002 — el @D
d y o a
1 2
for all x, y and z.
Let 1 be the function defined by
f[(1) ¢z
| ) e Eodt %0 2. 8)
0, 12,0 =1
tqp(y, 0,0, 2=0
Then from conditions (III) and (V) we obtain.
01 (y,20) o1>0 forallyand z, (2,9)
61 (y, 2 0)-¢1(y,20) & forallyandz, (2,10)
We get also from (2.4) and (2.9)
d1~—-1—— ¢ forallyandz
01(y,2.0) (2,11)

Since ¢ . z, 0 =@,20),zZ=206z0¢c< 8 < 1, then

o0 l—yg(x,y)—dszl(y,z,())zas((; - edg
13 (2.12)

for all x, y and z by the mean value theorem.

The properties of the function W, which are required for the proof of
the theorem are summarized in Lemma 1 and Lemma 2.
Lemma 1. Suppose that conditions (I) - (X) of the theorem are hold. Then
there is a constant D} such that

W (X,y,z,u) -D1 forallx,y, z and u, 2,13)

2o — . (2.14)

Wy, 2,0 —> asx?+y +z2+u
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Proof. Clearly, from (2.5), Wil [|ul for all x and u, then it follows

W1l -lul forall x and u. (2.158)
It can be seen from the similar estimates arising in the course of the [2;
Lemma 2] and [1] that

(2.16)
, 2
2W, 2¢ hE)dE+ ( ) 4{4) »52 2 +eu
1‘13 0‘10‘3
Summing up (2.15) and (2.16) we obtain
W, 2 h(&)dg+(z) 420'51 y+{z{) . 2+eu —2|u{
0y o0
20,0 i
=2 h(&)d§+(i—) 1.3, y2+{z) L7
EaNE o 0y
¢
‘ ,u,-f-(i)
g N 2.17)

From (IX) it follows that the integral on the right-hand side is nonnegative
and tends to infinity when Ixl —s . Also, it is obvious that the coefficients

of y2: 22 and ¢ are positive. The refore we deduce that (2.13) and (2.14) are

verified, where

D1=’£.
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Lemma 2. Let ( x(t), y(0), z(t), u(t) ) be any solution of (2.1). Define
w(t) = W ( x(1), (1), 2(t), u(t) ). Then the limit
W (x(t+h),y(t+h),z(t+ h},u(t+h)) - W (x(t}, y(t),z(t),u([))}
h

@ (t) = lim sup[

h—s of

exists and there is a constant D3 such that

.+
®(@® -1 wheneverx2 (D+y2 (®+22 (O +u? () Da. (2.18)

—+

Proof. The existence of @ is immediate, because of the fact that W has
continuous first partial derivatives and W1 can easily be shown to be locally
Lipschitzian in x and u so that the composite function W = Wgo + W is at
least locally Lipschitzian in x, y, z and u.
From (2.3) and (2.1) we have

¥

d ' o

dvtwo(x,y,z,u) = [dzaz—d1a4] yz+y Tg(x,n)dn-t—d lyf —)—‘-f(x,y,g)

+dgz f S0y DdE 42 | Co(nL0dg —d 0°0(y,2,u) +y h'(x)+d h'(X)yz
[} 0

+ dzzf @(y,£.0dE +d, zf yfy{p(y,C,O)dC -d O g(x,y) +d LZz_vg(x,y)

o
- d,vE(x,y,2) - doyg(x,y) + uz-zf(x,y,z) - [qo(y,z,u)—(p(y,z,()) ]zu

-dz[(p(y,z,())] yu Hdoy+z+d ju) p(tx,y,z,0) .
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From (VI) we have

Thus it follows that

Y, Z, U)
where

o) -(V3+Va+Vs+Ve+V7+Vg)+(d2y+z+diuw)p(t,x,

y .
2
Vi=dyyg(xy)-ay -y | - glnldn-dyz—exy),

o

V= ocz-d]—yg(x,y)]zz-dzz 0(y,5,0) dC-dz f S 6y,8)dg

Vs=[d1+9 (y,z v - 1]u?

Ve =2f(x, v, 2) - o2 22+ dy yE (x, v, 2) - d2 0p vz,

Vizoay?- y2 ' (0 -dih’ () yz+oqd; yz,

Vg = [0y, 20 -9 (v, 7 0] zu+dy [@ (y, 2 W) - (. 2 )] yu.

From (XI) we obtain

(D)

-V3+V44+V5+Ve+Vr+Vg)+Dy (Iy +1zl +1ul), (2.19)

where D4 = max (dp, 1, dj) . The function V3 and V7 can be estimated as

in [2]. In fact the estimates there show that

and

2 Y oo -
\L (E%)y V} gaxmdn —dyz —gxy), (2.20)

0

V7 - (edo)y? (2.21)

Consider the expression.

Vy :{(x2~d 178(1(1}’) - d2¢1(y72,0)J 2-d 1Zf Tf(x,y,C)dC .

0
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We have by using (2.12)

3, dy 2
- £d0-7 —f(x,y,0)dg . |z
()Ll(l3 [ :

Va4

Further we find from (VII) and (2.4) forz 0O

d, 3 8 5

—Lf —f(x,y,)dl E-iL : =(Ea1+1) ) 0 sincee —

£y, Y o Jdo, 4o 0ty 200,005 o,

3 2
by (1.2) .Thus we get forz 0, V42|- -deglz” ,but V. =0 whenz
20,0, 4
=0, therefore we obtain.
8
V42 0 - edg z forall x,y and z. (2.22)
20,004

From (III) and (2.4) we get
Vs (oge) u2
We now consider the expression
Vg = zf(x,y,Z) -0y 22 + dp yE(x, y, 2) - dp 00 YZ.
By similar estimation, using condition (VII) and (1.3) we have forz 0

2 2
f(x,y,z d daffix,y,z 2 2
V6={——( zy ) 0521 z+72y] _Tz{ ( Zy ). az}y —(£O(x3)y ,

) 0y
since & |—| by (1.2).
®s

Thus it follows that Vg - (Eg+ 3 ) y2 forallx,yandz 0,

but Ve =0 whenz=20, hence we have
Vg -(€g+0a3)y2 forall x,yand z. (2.23)
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By reasoning as in the proof of [2; Lemma 2], it can be shown

€y

V+V v, (2.24)

%‘) (3 Eo) oy

401,0t3

by using (VIII) and (2.4). From (X) for x = O we obtain

Vg =[z9y (v.2,0u) + d2 you (v, z,8u)Ju?2 0,0 8 1 (2.25)

but Vg = 0 when u = (. Therefore V§ 0 for all y, z and u. Further it is

obvious from (2.5) and (2.1) that

.t
1=
y sgn u, ifful2Ixl,

{h(x)sgnx -lo(y, 2w+ £(x,y,2) + g(x,y) + h(x) - p(t,x,y,2, w)]sgrx, if lul<Ix|

From conditions (VII) and (XI) we obtain

.+
o WY iflui,
b nosgnxHg(e y)f + Ds (Litlz +lal L if ol 0 (2.26)

where in obtaining (2.26) we also used the fact, arising from (I) and (III),

that
1

@ (Y, 2, U} < O30, for all y, zand u,
.+ . .+
As can be shown from (2.19) and (2.21) - (2.26) o = wp + @1 necessarily

satisfies:
+

O Bl

0y

)zz-ea;uﬂDéuszrAun, ifful x|
(2.27)

or
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.t

©  -[Vslgxy) |- Ve~

- ZSdO)ZZ—G(XluZ—h(X) sgn X

2¢ 0Ly

+D7 (L4 1yl+ 1z + ul) , if lal X, (2.28)

Proceeding as in [3; Lemma 2] it can be shown that
« t

o -1ifx2+y2+22+u2+ D3,
which verifies (2.18), and concludes the proof of Lemma 2.

3.COMPLETION OF THE PROOF

We proved throught Lemma 1 and Lemma 2, that the function W=
W1+ Wp has the following properties:
W(x.y.z,u) -Dp forallx,y,zandu, 3,1
W, y,z,0) —  asxZ+y2 +22 +u2 (3,2)
-(% W (x, v,z u) -1 whenever x2+y2 +z2 +u2 D3 (3.3)
The usual Yoshizawa-type argument, Theorem 1 in [5], applied to
(3.1) - (3.3) would then show that: For any solution (x(t), y(t), z(t), u(t) of
(2.1) we have
x(© Dgp, Iy Dy, lz(t) Dg, lu@) Dg,
for all sufficiently larget, which are equivalent to (1.4).
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