ON THE SUBSHEAVES OF THE SHEAF OF THE FUNDAMENTAL GROUPS

Murat ÖZDEMİR ve Mustafa BAYRAKTAR

Atatürk University, Faculty of Arts and Sciences, Department of Mathematics 25240 Erzurum-Turkey

ABSTRACT

Let X be a connected and locally arcwise connected topological space an H be the sheaf of fundamental groups on X. In this paper, any two subsheaves of H is constructed and it is prowen that if stalks of these subsheaves are conjugate subgroups for every $x \in X$, then subsheaves are homomorphic.

ÖZET

X bağlantılı ve lokal eğrisel bağlantılı bir topolojik uzay ve H, X üzerinde esas grupların demeti olsun. Bu makalede, H nın herhangi iki altdemeti teşkil edildi ve her $x \in X$ için bu altdemetlerin sapları eşlenik altgruplar ise altdemetlerin homomorf olduğu ispatlandı.

1.INTRODUCTION

Definition 1. A sheaf of groups on X is a pair (H,π) where

- i) H is a topological space.
- ii) $\pi: H \to X$ is a local homeomorphism onto X.
- iii) Each $H_x = \pi^{-1}(x)$, for $x \in X$, is a group (and is called the stalk of H at x).
- iv) The group operations are continuous.

Let X be a connected and locally arcwise connected topological space and H_x be the fundamental group of X based any $x \in X$, that is, $H_x =$

 $\pi_1(X,x)$. Let X=(X,c) be a pointed topological spaces, for an arbitrary fixed point $c \in X$. Let us denode by H the disjoint union of the fundamental groups obtained for each $x \in X$. i.e., $H = V_{x \in X} H_x$. Also H is a set over X and the mapping $\phi: H \to X$ defined by $\phi(\sigma_X) = ([\alpha]_X) = x$, for any $\sigma_X = [\alpha]_X \in H_X \subset H$, is onto.

We introduce a topology on H as follows: Let H_c be the fundamental group of X with respect to c, $x_0 \in X$ be an arbitrary fixed point, $W=W(x_0)$ be an arcwise connected open neighborhood of x_0 and $\sigma_c = [\alpha]_c \in H_c$ be any point of H. Let us define a mapping $s: W \rightarrow H$ such that $s(x) = [(\gamma^{-1}\alpha)\gamma]_x$ for every $x \in W$, where $\gamma \in [\gamma]$ is an arc with initial point c and terminal point x. $[\gamma]$ determines s mapping between H_c and H_x . Let us chose the homotopy class $[\gamma]$ arbitrarrily fixed for each $x \in W$. Thus, $s = s(\sigma_c)$ and s a well-defined mapping from W to H such that ϕ o $s = I_w$ [1]. Let us denote the totality of the mappings s defined on W by $\Gamma(W,H)$.

If B is a base for X, then $B^* = \{s(W) : W \in B, s \in \Gamma(W,H) \}$ is a base for H. In this topology, the mappings φ and s are continuous and φ is a locally topological mapping. Then (H,φ) is a sheaf over X. (H,φ) (or only H) is called "The Sheaf of the Fundamental Groups" over X[1]. For any open set W \subset X, an element s of $\Gamma(W,H)$ is called a section of the sheaf H over W. The set $\Gamma(W,H)$ is a group with the pointwise operation of multiplication. Thus, H is a sheaf of the groups over X [2]. Furthermore, the $H_X = \pi_1(X,x)$ is called the stalk of the sheaf H for any $x \in X$.

2.CHARACTERISTIC FEATURES OF H

i) Let $W \subset X$ be an open set. Then, any section over W can be extented to a global section over X [3]. Furthermore,

$$\Gamma(W,H) = \{s\mid_{W}: s{\in}\,\Gamma(X,H)\} = \Gamma(X,H)\mid_{W}$$

ii) Any two stalks of H are isomorphic with each other [3].

- iii) Let $W_1,W_2\subset X$ be any two open sets, $s_1\in \Gamma(W_1,H)$ and $s_2\in \Gamma(W_2,H)$. If $s_1(x_0)=s_2(x_0)$ for any point $x_0\in W_1\cap W_2$, then $s_1=s_2$ over the whole $W_1\cap W_2$ [5].
- iv) Let W \subset X be an open set and $s_1, s_2 \in \Gamma(W, H)$. If $s_1(x_0) = s_2(x_0)$ for any point $x_0 \in W$, then $s_1 = s_2$ over the whole W [5].
- v) To each point $\sigma_x \in H_x \subset H$, there is uniquely corresponds a section $s \in \Gamma(W,H)$ such that $s(x) = \sigma_x$. Hence $H_x \cong \Gamma(W,H)$. In particular, $H_x \cong \Gamma(X,H)$ [2].
- vi) Let $x \in X$ be any point and W=W(x) be any open set. Then, $\pi^{-1}(W)=V_{i\in I}s_i(W)$, $s_i\in \Gamma(W,H)$ and $\pi\mid_{si(W)}:s_i(W)\to W$ is a topological mapping for every $i\in I$. Hence, W=W(x) is evenly covered by ϕ . Then, π is a cover projection and (H,x) is a covering space of X. Moreover (H,π) is regular, because the group T of cover transformations of H is isomorphic to the group H_x , that is, T is transitive on H_x [4].

Definition 2. Let (H,π) be the sheaf of fundamental groups over X and $H' \subset H$ be an open set. Then H' is called a subsheaf of groups, if:

- i) $\pi(H') = X$
- ii) For each point $x \in X$, the stalk H'_x is subgroup of H_x .

Let $H' \subset H$ be a subsheaf of groups and $W \subset X$ be an open set. Then, the set $\Gamma(W,H') \subset \Gamma(W,H)$ is a subgroup. In particular, if we take W = X, then $\Gamma(X,H') \subset \Gamma(X,H)$. Conversely, let us suppose that $\Gamma(X,H)$ is the group of global sections of H over X and $D \subset \Gamma(X,H)$ be a subgroup. Then, the set $\{s_i(x): s_i \in D\}$ is a subgroup of H_x over X for each $x \in X$. Let us denote $\{s_i(x): s_i \in D\}$ by H'_x . Then $H' = V_{x \in X}H'_x$ is a set over X with the natural projection $\pi' = \pi \mid_{H'}$ and $D = \Gamma(W,H')$. One can show that (H',π') is a subsheaf of groups [1].

If H',H" \subset H be any two subsheaves of groups, then H'_x and H''_x are two subgroups of H_x for each $x \in X$ by definition 2. Moreover,

subsheaves H' and H" have a relative topology. If $s \in \Gamma(W_1,H)$ for every $x \in X$ and $W_1 = W_1(x) \subset X$, then whenever $H' \subset H$ and $H'' \subset H$ are open subsets, the sets $s(W_1) \cap H' = s'(W)$ and $s(W_1) \cap H'' = s''(W)$ are open in H' and H'', respectively. Therefore the sets

$$B*_1 = \{s'(W) : W = W(x)\}$$

and

$$B*_2 = \{s''(W) : W = W(x)\}$$

are base for a topology on H' and H", respectively.

Definition 3. Let (H_1,π_1) , $H_2,\pi_2)$ be any two sheaf on X and $\phi: H_1 \to H_2$ be a mapping.

- i) The mapping $\phi: H_1 \to H_2$ is called stalk preserving, if $\pi_2 \circ \phi = \pi_1$ (therefore, $\phi(H_1)_x \subset (H_2)_x$ for all $x \in X$)
- ii) Let $\varphi: H_1 \rightarrow H_2$ be a stalk preserving and continuous mapping. Then the mapping φ is called a sheaf morphism between the sheaves H_1 and H_2 .
- iii) Let $\varphi: H_1 \to H_2$ be a sheaf morphism. If φ is a homomorphism on each stalk, then it is called a sheaf homomorphism between the sheaves H_1 and H_2 .
- iv) Let $\varphi: H_1 \rightarrow H_2$ be a sheaf homomorphism. If φ is a homeomorphism, then it is called a sheaf isomorphism between the sheaves H_1 and H_2 .

Theorem 4. Let X be a connected and locally arcwise connected topological space, (H,π) be the sheaf of the fundamental groups over X, (H',π_1) and (H'',π_2) be any two subsheaves of H. If H'_x and H''_x are conjugate subgroups of H_x with an element $\sigma = [\delta]_x$ for every $x \in X$, i.e., $H''_x = [\delta]_x H'[\delta]^{-1}_x$

then, the sheaves H' and H" are homomorphic, where $\pi_1 = \pi I_{H'}$ and $\pi_2 = \pi I_{H''}$.

Proof. Let $x \in X$ be an arbitrarily fixed point and β_1, β_2 be any two closed path based at x. If $\beta_1 \sim \beta_2$, then $(\delta \beta_1) \delta^{-1} \sim (\delta \beta_2) \delta^{-1}$. Thus correspondence

 $[\beta]_x \to [(\delta\beta)\delta^{-1}]_x$ is well-defined. Since the point $x \in X$ is arbitrarily fixed, the above correspondence gives us a map $\varphi : H' \to H''$ such that $\varphi([\beta]_x) = ([\delta]_x [\beta]_x) [\delta]^{-1}_x$ for every $[\beta] \in H'$.

i) φ preserves the stalks. In fact, for arbitrarily fixed point $x \in X$ and any $[\beta]_x \in H'$

$$\begin{split} \pi_2 \circ \phi)([\beta]_x) &= \pi_2(\phi[\beta]_x) \\ &= \pi_2(([\delta]_x[\beta]_x)[\delta]^{-1}_x) \\ &= \pi_2([\delta\beta]_x[\delta]^{-1}_x) \\ &= \pi_2([\delta\beta]\delta^{-1}]_x) \\ &= \pi_2([\rho]_x) \\ &= x \\ &= \pi_1([\beta]_x). \end{split}$$

Since the point $x \in X$ is arbitrarily fixed, we obtain π_2 o $h = \pi_1$.

i) ϕ is continuous. Let us show that if $U_2 \subset H''$ is any open set, then $\phi^{-1}(U_2) = U_1 \subset H'$ is an open set. Without loss of generality, we assume that $U_2 = s''(W)$, where $W \subset X$ is an open set and $s'' \in \Gamma(W,H'')$. Thus, $\pi_2(U_2) = \pi_2(s''(W)) = W$. Now let $\sigma_2 = [\rho]_x \in U_2$ be an element. Then, there exists at least one element $\sigma_1 = [\beta]_x \in U_1 = \phi^{-1}(U_2)$ such that $\phi(\sigma_1) = \sigma_2$. Since $\pi_1(\sigma_1) = \pi_1([\delta]_x) = x$, there is a section $s' \in \Gamma(W,H')$ such that s'(x) = 0

 $[\delta]_x = \sigma_1$ and $s'(W) \subset H'$ is an open. Also $s'(W) \subset U_1$. It is easily seen that $U_1 = U_{i \in I} s'_i(W_i)$. Therefore, $U_1 \subset H'$ is an open set, that is, ϕ is a sheaf morphism.

iii) φ a sheaf homomorphism. For every $x \in X$ the map $\varphi|_{(H')_X} : (H')_X \to (H'')_X$ is homomorphism. In fact, if β_1,β_2 are two arcs at $x \in X$ then $(\delta\beta_1)\delta$, $(\delta\beta_2)\delta$ are two arcs at $x \in X$. Hence,

$$\begin{split} \phi([\beta_1]_x) \; \phi \; ([\beta_2]_x) \; &= \; (([\delta][\beta_1])[\delta]^{-1}) \; (([\delta][\beta_2])[\delta]^{-1}) \\ &= \; ([\delta][\beta_1]) \; ([\beta_2])[\delta]^{-1}) \\ &= \; [\delta]([\beta_1] \; [\beta_2])[\delta]^{-1} \\ &= \; [\delta][\beta_1\beta_2][\delta]^{-1} \\ &= \; \phi([\beta_1\beta_2]_x). \end{split}$$

Theorem 5. Let X be a connected and locally arcwise connected topological space, (H, \cdot) be the sheaf of the fundamental groups over X, (H', \cdot_1) and (H', \cdot_2) be any two subsheaves of H. If subshaves H' and H" are homomorphic, then the map $\phi*:\Gamma(W,H')\to\Gamma(W,H'')$ defined by $\phi*(s')=\phi$ o s' is a group homomorphism for any $W\subset X$.

Proof. Let s'_1 ve $s'_2 \in \Gamma(W,H')$. For every $x \in W$,

$$(\phi \circ (s'_{1}.s'_{2})) (x) = \phi((s'_{1}.s'_{2}) (x))$$

$$= \phi(s'_{1}(x).s'_{2}(x))$$

$$= \phi([\beta_{1}]_{x}[\beta_{2}]_{x})$$

$$= \phi([\beta_{1}\beta_{2}]_{x})$$

$$= ([\delta]([\beta_{1}\beta_{2}])[\delta]^{-1}$$

$$= ([\delta]([\beta_{1}][\beta_{2}]))[\delta]^{-1}$$

$$= ([\delta]([\beta_{1}][\delta]^{-1}[\delta][\beta_{2}]))[\delta]^{-1}$$

$$= (([\delta][\beta_{1}])[\delta]^{-1})(([\delta][\beta_{2}])[\delta]^{-1})$$

$$= \phi([\beta_{1}]_{x}) \phi([\beta_{2}]_{x})$$

$$= \phi(s'_{1}(x)) \phi(s'_{2}(x))$$

$$= (\phi \circ s'_{1}) (x) (\phi \circ s'_{2}) (x).$$

Thus, $\phi*(s_1.s_2) = \phi*(s_1) \phi*(s_2)$.

REFERENCES

- [1] Balci, S., "On the Restricted Sheaf", Comm. Fac. Sci. Univ.Ankara, Ser.A1. Vol.37., 41-51 (1988)
- [2] Balci, S., "On the Sheaf of the Homology Groups of the Complex Manifold", Jour. Inst. Math. Comp. Sci. Math. Ser., India., Vol.1, No.2., 127-133 (1988)
- [3] Saunders, M.L. and Leke, Moerdijk., "Sheaves in Geometry and Logic", Springer- Verlag, New York, 1992.
- [4] Uluçay, C., "On Homology Covering Spaces and Sheaf Associated to the homology group", Comm. Fac. Sci. Univ. Ankara. Ser. A₁:Math., Vol.33., 22-28 (1984)
- [5] Verschoren, A., "Relative Invariants of Sheaves", Marcel Dekker, Inc., New York, 1987.