# A SEMİ-SYMMETRIC CONNECTION ON A RIAMANNIAN MANIFOLD

### Mehmet ÖZDEMİR and Nural YÜKSEL

University of Erciyes, Department of Mathematics 38039 Kayseri / TURKEY.

### **ABSTRACT**

We define a linear Connection on a Riemannian manifold which is semisymmetric but non-metric and study some properties of the curvature tensor and Weyl projective curvature tensor with respect to semi-symmetric connection.

### ÖZET

Bir Riemann Manifoldu Üzerinde semi-symmetric non-metric lineer konneksiyon tanımlamak suretiyle eğrilik tensörünün ve Weyl projektif eğrilik tensörünün bazı özellikleri incelendi.

## 1. SEMİ-SYMMETRIC NON-METRİK CONNECTION

Let M be a n-dimensional Riemannian manifold with Riemannian metric g. I define a linear connection  $\overset{*}{\nabla}$  on a Riemannian manifold M by

$$\nabla \mathbf{y} = \nabla \mathbf{y} + \mathbf{w} (\mathbf{y}) \mathbf{x}$$
 (1.1.)

where  $\nabla$  is the Riemannian connection on M and w is a 1-form associated with the vector field u on M by

$$w(x) = g(u, x) = \langle u, x \rangle.$$
 (1.2)

Using (1.1), the torsion tensor  $\overset{*}{\mathbf{T}}$  of  $\mathbf{M}$  with respect to connection  $\overset{*}{\mathbf{V}}$  is given by

$$T(x,y) = \nabla y - \nabla x - [x,y] = \nabla y + w(y)x - \nabla x - w(x)y - [x,y] = w(y)x - w(x)y.$$
 (1.3)

A linear connection satisfying (1.3) is called a semi-symmetric connection [1].

Further, Using (1.1), we have,

$$\overset{*}{\overset{\nabla}{\nabla}}(g(y,z) = (\overset{*}{\overset{\nabla}{\nabla}}g)(y,z) + g(\overset{*}{\overset{\nabla}{\nabla}}y,z) + g(y,\overset{*}{\overset{\nabla}{\nabla}}z)$$

$$= (\bigvee_{X}^{*} g(y,z) + \bigvee_{X} (g(y,z)) + w(y)g(x,z) + w(z)g(x,y)$$
which implies

$$(\stackrel{*}{\nabla} g)(y,z = -w(y)g(x,z) - w(z)g(x,y)$$
 (1.4)

for vector fields x, y, z on M.

A linear connection  $\overset{\bigstar}{\nabla}$  defined by (1.1) satisfies (1.3) and (1.4) and hence we call  $\overset{\bigstar}{\nabla}$  a semi-symmetric non-metric connection.

Conversely, we will show that a linear connection satisfying (1.3) and (1.4) is defined by (1.1).

Let  $\overset{*}{\nabla}$  be a linear connection defined on M by

$$\overset{*}{\nabla} y = \overset{\nabla}{\nabla} y + T(x, y) \tag{1.5}$$

where  $\nabla$  is the Riemannian connection and T is a tensor of type (1.2) defined on M and  $\overset{*}{\nabla}$  satisfies (1.3) and (1.4).

From (1.4) and (1.5), we have

$$\overset{*}{\nabla}(g(y,z)) = g(\overset{*}{\nabla}y,z) + g(y,\overset{*}{\nabla}z) - w(y)g(x,y) -$$

w(z)g(x,y)

$$= \bigvee_{X} (g(y,z)) = g(T(x,y),z) + g(T(x,z),y) -w(y)g(x,z) - w(z)g(x,y).$$

which implies

$$g(T(x,y),z) + g(T(x,z),y) = w(y)g(x,z) + w(z)g(x,y)$$
(1.6)

On the other hand, from (1.5), we have

From (1.2), (1.6) and (1.7), we have

$$g(T(x,y),z)+g(T(z,x),y)+g(T(z,y),x)$$

$$= g(T(x,y)-T(y,x),z)+g(T(z,x)-T(x,z),y) + g(T(z,y)-T(y,z),x)$$

$$= g(T(x,y),z) - g(T(y,x),z) + g(T(z,x),y) + g(T(x,z),y)$$

$$+g(T(z,y),x)-g(T(y,z),x)$$
  
=  $2\{g(T(x,y),z)-w(z)g(x,y)\}$ 

$$= 2\{g(T(x,y),z) - g(z,u)g(x,y)\}$$
(1.8)

Hence we obtain

$$T(x,y) = \frac{1}{2} \{ T(x,y) + T(x,y) + T(y,x) \} + g(x,y)u$$
 (1.9)

where the tensor T of type (1.2) is defined on M by

$$g(\mathring{T}(z,x),y) = g(\mathring{T}(x,y),z)$$
 (1.10)

From (1.3) and (1.10), we have

$$g(T'(x,y),z) = g(w(x)z - w(z)x,y)$$
  
=  $w(x)g(z,y) - w(z)g(x,y)$  (1.11)

which implies

$$T(x,y) = w(x)y - g(x,y)u.$$
 (1.12)

Hence from (1.3), (1.9) and (1.12), we have

$$T(x,y) = \frac{1}{2} \{w(y)x - w(x)y + w(x)y - g(x,y)u + w(y)x - g(y,x)u\} + g(x,y)u$$

$$= w(y)x.$$
(1.13)

on M. Hence from (1.5) and (1.13), we obtain

$$\bigvee_{X}^{*} y = \bigvee_{X} y + w(y)x.$$

Further, for a 1-form U on M, we have

$$= (\bigvee_{X}^{*} U)y + \bigvee_{X} (U(y) - (\bigvee_{X} U)y + w(y)U(x)$$

which implies

$$(\overset{*}{\underset{X}{\nabla}}U)y = (\overset{*}{\underset{X}{\nabla}}U)y - w(y)U(x)$$
 (1.14)

for vector fields x,y on M.

Convariant differentiation of the torsion tensor  $\hat{T}$  is given by

$$(\overset{*}{\nabla}\overset{*}{T})(y,z) = \overset{*}{\nabla}(\overset{*}{T}(y,z)) - \overset{*}{T}(\overset{*}{\nabla}y,z) - \overset{*}{T}(y,\overset{*}{\nabla}z)$$
$$= ((\overset{*}{\nabla}w)z)y - ((\overset{*}{\nabla}U)y)z. \qquad (1.15)$$

Further we define

$$\dot{T}(x,y,z) = g(T(x,y),z)$$
 (1.16)

From (1.3) and (1.16), we have

$${}^{*}_{T}(x,y,z) + {}^{*}_{T}(y,z,x) + {}^{*}_{T}(z,x,y) = 0.$$
 (1.17)

This identify is true for any semi-symmetric connection on M.

## 2. CURVATURE TENSOR OF M WITH RESPECT TO SEMI-SYMMETRIC CONNECTION

Analogous to the definition of curvature tensor of a Riemannian manifold M with respect to the Riemannian connection  $\nabla$ , we define the curvature tenior of M with respect to semi-symmetric non-metric connection  $\overset{*}{\nabla}$  by

From (1.5) and (2.1), we have

$$R(x,y)z = \nabla (\nabla z + w(z)y) - \nabla (\nabla z + w(z)x)$$

$$-\nabla (x,y)z - w(z)[x,y]$$

$$= \nabla (\nabla z + w(z)y) + w(\nabla z + w(z)y)x$$

$$x y y$$

$$-\nabla (\nabla z + w(z)x - w(\nabla z + w(z)x)y$$

$$y x x$$

$$-\nabla (x,y)z - w(z)[x,y]$$

$$= R(x,y)z + s(x,z)y - s(y,z)x - s(y,z)x$$
 (2.2)

where

$$R(x,y)z = \bigvee_{X} \bigvee_{Y} z - \bigvee_{Y} \bigvee_{X} z - \bigvee_{[x,y]} z.$$

is the curvature tensor of a Riemannion manifold M with respect to the Riemannion Connection  $\nabla$  and S is a tensor of type (0,2) defined on M by

$$S(x,y) = (\nabla w)y - w(x)w(y)$$

$$= (\nabla w)y. \qquad (2.3)$$

A relation between the curvature tensors of M with respect to the semi-symmetric non-metric Connection  $\overset{*}{\nabla}$  and the Riemannion Connection  $\nabla$  is given by (2.2).

Using (2.3), we have

$$S(x,y)-S(y,x) = (\overset{*}{\nabla}w)y - (\overset{*}{\nabla}w)x$$

$$= xw(y)-yw(x)-w[x,y]$$

$$= dw(x,y)$$
(2.4)

Thus a tensor S is symmetric iff the 1-form w is closed. Let

$$R(x,y,z,w) = g(R(x,y)z,w)$$

and

$$R(x,y;z,w) = g(R(x,y)z,w)$$
 (2.5)

for vector fields x,y,z,w on M. From (2.2) and (2.5),we have

From (2.1) and (2.5) we have

$$\overset{*}{R}(x,y,z,w) + \overset{*}{R}(x,y,z,w) = 0.$$
(2.7)

Using (2.2),(2.6) and first Bianchi identify with respect to the Riemannian Connection, we have

and hence

$$R(x,y,z,w) + R(y,z,x,w) + R(z,x,y,w)$$

$$= \{S(z,y) - S(y,z)\}g(x,w) + \{S(x,z) - S(z,x)\}g(y,w) + \{S(y,x) - S(x,y)\}g(z,w)$$

We call (2.8) as the first Bianchi identify with respect to semi-symmetric non-metric connection  $\overset{*}{\nabla}$ .

In particular, if the 1-form w is closed, then (2.8) reduces to

$${\stackrel{*}{R}}(x,y)z + {\stackrel{*}{R}}(y,z)x + {\stackrel{*}{R}}(z,x)y = 0.$$
 (2.9)

Using (2.6), we have

$$R(x,y,z,w) + R(x,y,w,z) = S(x,z)g(y,w) + S(x,w)g(y,z)$$

$$-S(y,z)g(x,w)-S(y,w)g(x,z)$$
. (2.10)

and

$$\overset{*}{R}(x,y,z,w) - \overset{*}{R}(z,w,x,y) = \{S(x,z) - S(z,x)\}g(y,w) 
+S(w,x)g(y,z) - S(y,z)g(x,w).$$
(2.11)

Using (1.1), (2.7) and the second Bianchi identify for the Riemannion Connection, we obtain the second Bianchi identify associated with semi-symmetric non-metric connection which is given by

$$(\overset{*}{\nabla}\overset{*}{R})(y,z) + (\overset{*}{\nabla}\overset{*}{R})(z,x) + (\overset{*}{\nabla}\overset{*}{R})(x,y)$$

$$= -\overset{*}{R}(\overset{*}{T}(x,y),z) - \overset{*}{R}(\overset{*}{T}(y,z),x) - \overset{*}{R}(\overset{*}{T}(z,x),y)$$

$$= 2\{w(x)\overset{*}{R}(y,z) + w(y)\overset{*}{R}(z,x) + w(z)\overset{*}{R}(x,y)\} \qquad (2.12)$$

Analogous to the definition of Ricci tensor of a Riemannion manifold M with respect to the Reimannion connection  $\nabla$ , we define Ricci tensor of M with respect to semi-symmetric non-metric Connection  $\overset{*}{\nabla}$  by.

$${\stackrel{*}{R}}_{ic}(y,z) = \sum_{i=1}^{n} {\stackrel{*}{R}}(E_{i},y,z,E_{i})$$
 (2.13)

where  $E_i$ ,  $(I \le i \le n)$  are orthonormal vector fields on M. From (2.5) and (2.13) we have

$$\overset{*}{R}_{ic}(y,z) = \overset{*}{R}_{ic}(y,z) - (n \to) S(y,z)$$
(2.14)

where

$$\stackrel{*}{R}_{ic}(y,z) = \sum_{i=1}^{n} R(E_{i},y,z,E_{i})$$

is Ricci tensor of M with respect to the Riemannian Connection.

A relation between Ricci tensor with respect to semi-symmetric nonmetric connection  $\overset{*}{\nabla}$  and the Riemannian Connection  $\overset{*}{\nabla}$  is given by (2.14).

Further, if 
$$\overset{*}{R}_{iC}(x,y) = 0$$
 on M, then (2.14).

implies is symmetric. From (2.4) and (2.14), we have

$${\stackrel{*}{R}}_{ic}(x,y) - {\stackrel{*}{R}}_{ic}(y,x) = -(n \rightarrow)dw(x,y).$$

Hence, Ricci tensor with respect to semi-symmetric non-metric  $\overset{*}{\nabla}$  Connection  $\overset{*}{\nabla}$  is symmetric iff the I-form w is closed and hence if S is symmetric.

Using (1.15) and (2.3), we have.

$$(\mathring{\nabla} \mathring{T})(y,x) = S(x,z)y - S(x,y)z.$$
 (2.15)

In particular, if either the I-form w is closed or Ricci tensor with respect to semi-symmetric non-metric connection  $\overset{*}{\nabla}$  vanishes then from (2.15), we have

$$(\mathring{\mathbf{v}} \mathring{\mathbf{T}})(\mathbf{y}, \mathbf{z}) + (\mathring{\mathbf{v}} \mathring{\mathbf{T}})(\mathbf{z}, \mathbf{x}) + (\mathring{\mathbf{v}} \mathring{\mathbf{T}})(\mathbf{x}, \mathbf{y}) = 0.$$
 (2.16)

Analogous to the definition of the scalar curvature of a Riemannian manifold M with respect to the Riemannian Connection, we define the scalar curvature of M with respect to semi-symmetric non-metric Connection by

$$r = \sum_{i=1}^{n} R (E_i, E_i)$$
 (2.17)

From (2.14) and (2.17), we obtain a relation between the scalar curvature of M with respect to the Riemmannian Connection and the semi-symmetric non-metric connection which is given by

$$r = r - (n \rightarrow) traceS$$
 (2.18)

where

$$r = \sum_{i=1}^{n} R_{ic}(E_{i'}E_{i})$$

Is the scalar curvature of M with respect to the Riemannion Connection and s is a tensor of type (1.1) defined on M by

$$s(x,y) = g(Sx,y).$$

## 3. PROJECTIVE CURVATURE TENSOR OF A RIEMMANNIAN MANIFOLD

Weyl projective curvature tensor of a Riemmanian Manifold M wth respect to the Riemmannian Connection is given by

$$P(x,y)z = R(x,y)z - \frac{1}{n-1} \{ R_{ic}^*(y,z)x - R_{ic}^*(x,z)y \}_{(3.1)}$$
(3.1)

$$P(x,y)z = R(x,y)z - \frac{1}{n-1} \{ \stackrel{*}{R}_{ic}(y,z)x - \stackrel{*}{R}_{ic}(x,z)y \} (3.1)$$
(3.1)

Analogous to fhis definition, we define projective curvature tensor of M with respect to semi-symmetric non-metric connection by

$$\overset{*}{P}(x,y)z = \overset{*}{R}(x,y)z - \frac{1}{n-1} {\overset{*}{R}_{ic}(y,z)x - \overset{*}{R}_{ic}(x,z)y}$$
(3.2)

From (2.2), (2.14), (3.1) and (3.2), we have

$$\mathring{P}(x,y)z = P(x,y)z \tag{3.3}$$

on M.

**Theorem 3.1.** If M is a Riemmanian manifold admitting semi-symmetric non-metric connection, then the weyl projective curvature tensor with respect to semi-symmetric non-metric connection is equal to the Weyl projective curvature tensor with respect to Riemannian Connection.

From (3.3), we have, the projective curvature tensor with respect to semi-symmetric non-metric connection satisfies the following algebraic properties

$$P(x,y)z + P(y,x)z = 0$$

and

$$\overset{*}{P}(x,y)z + \overset{*}{P}(y,z)x + \overset{*}{P}(z,x)y = 0$$
(3.4)

for vector fields x,y,z on M.

In particular, Let M be a Riemmanian Manifold Satisfying

$$\mathring{R}(x,y)z = 0 \tag{3.5}$$

which implies

$${\rm R}_{\rm ic}^*(y,z) = 0 \tag{3.6}$$

on M. From (3.2), (3.3), (3.5) and (3.6), we have

$$P(x,y)z = 0$$

on M.

Necessary and sufficient condition for a manifold with a symmetric linear connection to be projectively flat is that the projective curvature tensor with respect to it vanishes identically on a manifold [2].

From (2.3), (2,14) and (3.6), we have

$$(\nabla_{\mathbf{X}} \mathbf{w}) \mathbf{y} = \frac{1}{n-1} \mathbf{R}_{ic}(\mathbf{x}, \mathbf{y}) + \mathbf{w}(\mathbf{x}) \mathbf{w}(\mathbf{y})$$
 (3.7)

Using (3.7), we have

$$-w(R(x,y)z) = (\bigvee_{x} \bigvee_{y} w - \bigvee_{y} \bigvee_{x} w - \bigvee_{[x,y]} w)z$$

$$= \frac{1}{n-1} ((\bigvee_{x} R_{ic})(y,z) - (\bigvee_{y} R_{ic}(x,z)$$

$$+w(y)R_{ic}(x,z) - w(x)R_{ic}(y,z)$$
(3.8)

Further, from (3.1), we have

$$w(R(x,y,z) = \frac{1}{n-1}(R_{ic}(x,z)w(x) - R_{ic}(x,z)w(y))$$
(3.9)

From (3.8) and (3.9), we have

$$(\nabla R_{ic})(y,z) - (\nabla R_{ic})(x,z) = 0.$$

**Theorem 3.2.** If M is a Riemmannian manifold with vanishing curvature tensor with respect to semi-symmetric non-metric connection, then M is projektively flat and

$$(\nabla R_{ic})(y,z) = (\nabla R_{ic})(x,z)$$

on M.

It is well Known that a Riemannian manifold is of constant curvature if it is projectively flat and a Riemannian manifold of constant is Conformally flat [4].

**Theorem 3.3.** If M is a Riemannian manifold with vanishing curvature tensor, with respect to semi-symmetric non-metric connection, then M is a space of constant curvature and hence is confarmally flat.

From (2.2), (2,15), (3,5) and (3.6), we have
$$R(x,y)z = S(z,y)x - S(z,x)y$$

$$= (\overset{*}{\nabla} T)(x,y). \tag{3.10}$$

Theorem 3.4. If M is a Riemannian manifold with vanishing curvature tensor with respect to semi-symmetric non-metric connection, then M is flat iff

$$(\overset{*}{\nabla} T)(y,z) = 0$$

on M.

A Riemannian manifold M is a group manifold [5] with respect to semi-symmetric non-metric connection if

$$\mathring{R}(x,y)z = 0$$

and

$$(\nabla^*_X T)(y,z) = 0$$
 (3.11)

on M.

**Theorem 3.5.** If a Riemannian manifold M is a group manifold with respect to semi-symmetric non-metric connection, then M is flat and consequently M is projectively flat and conformally flat.

In particular if either the 1-form w is closed or Ricci tensor with respect to semi-symmetric non-metric connection vanishes, then from (2.2) and (2.15), we have

$$\overset{*}{R}(x,y)z = R(x,y)z + (\overset{*}{\nabla}\overset{*}{T})(y,x).$$
(3.12)

**Theorem 3.6.** Let M be a Riemannian manifold with semi-symmetric nonmetric connection. If either the 1-form w is closed or Ricci tensor with respect to semi-symmetric non-metric connection vanishes, then

$$R(x,y)z = \mathring{R}(x,y)z + (\mathring{\nabla} \mathring{T})(x,y)$$

on M.

In particular, if M is a Riemannian manifold with vanishing Ricci tensor with respect to semi-symmetric non-metric connection, then from (3.2), (3.3) and (3.12), we have.

$$P(x,y)z = \mathring{R}(x,y)z = R(x,y)z + (\mathring{\nabla} \mathring{T})(y,x)$$
(3.13)

on M.

**Theorem 3.7.** If a Riemannian manifold M with vanishing Ricci tensor with respect to semi-symmetric non-metric connection is projectively flat, then the curvature tensor with respect to semi-symmetric non-metric connection vanishes.

**Theorem 3.8.** If M is a Riemmanian manifold with vanishing Ricci tensor with respect to semi-symmetric non-metric connection, then M is projectively flat iff the curvature tensor with respect to semi-symmetric non-metric connection vanishes.

Since a flat manifold is projectively flat, from (3.13), we have

$$\mathring{R}(x,y)z = 0$$
 and  $(\mathring{\nabla} \mathring{T})(x,y)$ 

on M.

#### REFERENCES

- 1. Kobayashi S., Nomizu K.: Foundations of differential Geometry I,II, New York. Interscience publishers, 1969.
- 2. Weyl H.: Gottingen Nachrichten, 99-112 (1912).
- 3. Weyl H.: Math Z. 384-411 (1918).
- 4. Sinha B.B.: An Introduction to Modern differential Geometry, New Delhi. Kalyani Publishers, 1982.
- Eisenhart L. P.: Continuous Groups of Transformations Princeton University. Press, 1933.
- 6. Yano K.: Rev. Roumaine Math. Pures Appl. 1579-86 15 (1970).
- Yano K.: Integral Formulas in Riemannian Geometry, Decker Inc. New York, 1970.
- 8. Imai T. Tensor N.S. 293 96 24 (1972).
- 9. Hayden H. A.: Proc. London Math. Soc. 27-50 34 (1932).
- 10. Schouten J. A.: Ricci-Calculus, Springer Verlug, Berlin, 1954.