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ABSTRACT

In this paper the eigenvalues of symmetric Toeplitz matrices as in the form are
T, =T, (a,b,c,b,...,c,b) searched, where n is positive even integer. We have given a
formulae for the eigenvalues of these matrices. We have shown that there was equality
between the number of different elements of such matrices and the number of eigenvalues.
Morteover, we have shown that the eigenvectors of such matrices unchanged, even if its

elements change.

SIMETRIK TOEPLITZ MATRISLERIN
OZDEGERLERI

OZET

Bu ¢aligmada, n pozitif ¢ift sayr olmak iizere T, =T, (a,b,c,b,...,c,b)
seklindeki simetrik Toeplitz matrislerin ¢zdegerlerini aragtirdik. Bu matrislerin 6zdegerleri
igin bir formiil verip, bu matrislerin farkl: eleman sayilar ile farkht 6zdegerleri arasinda bir

egitlik oldugunu gisterdik. Ayrica matrisin elemanlart de@igse de dzvektorlerin

degigmedigini gosterdik.
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1. INTRODUCTION

There is a lot of paper about the eigenvalues of Toeplitz matrices in
the literature. In [1] Weaver, determined the number of eigenvalues real and
complex of nonnegative symmetric matrix. In [2] Trench, gave the formulas
for the characteristic polynomial and eigenvectors of Toeplitz and band
matrices. In [3] Gover, has shown that when the order of the symmetric
tridiagonal 2-Toeplitz matrix is odd, the eigenvalues can be explicitly
determined in terms of the zeros of the Chebyshev polynomials.

In this paper we give a formulae for the eigenvalue of symmetric
Toeplitz matrix T, =T (a,b,c,b,...,c,b), where the order of this matrix is
even. We have shown that there were numerical equality between the number
of different elements and the number of eigenvalues of such matrices.
Moreover, we prove the eigenvectors of such mairix are independent its

elements.

2. THE COMPUTATION OF EIGENVALUES
Definition 2.1. A matrix T, =T, (a,.4,,...,a,_,) nxn is called (real)
symmetric Toeplitz matrix if its elements a; obey the rule a; = ay_; for all 1,]

= 1,..,n. The matrix T, is a function of n parameters, i.e.,

T, =T (a,.aq,..,a,_). A symmetric Toeplitz matrix can be written in

explicit form as

aG al aZ an—-l

4 Gy & e Gy
T,=la a g a3
[ Q-1 Gyoy Oy a4 |

In its most general form, the nxn Toeplitz matrix has the following structure:
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ay a, ] Ayi

a 4 4 . Gy

T, =| a, d_, U T
_a-nﬂ Ay L D & B

where the element of T, are such that a; =a,_,.

Lemma 2.1. Consider the matrix

a -b —-¢ .. -b -¢c -b
-b a -b .. -¢c -b -
- -b a .. -b —-c -b
T, =] . . C e . o (2.1)
-b -c -b a -b -c
-c -b -c -b a -b
|-b -¢ -b - -b a ]

The matrix T_ in (2.1) has eigenvalues

n—2

-2
o ¢, Kzza—-llb+——c, A, =a-c
2 2

?u1=a+—rlb+
2

where, a,bcER, b ¢, n 4 and n is positive even integer.

Proof. Let the characteristic equation of the matrix in (2.1) be
AI-T,|=0 (2.2)

where k =1.2,...,n. Hence we have
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[t -b — -b -¢ —¢
-b t -b - -b —c¢
- =-b t .. -b —-¢ -b
AI-T|= . . . . . (2.3)
-b —¢ -b t b —c
-c -b — -b t -b
b —¢ -b ... —¢ b t
where
(=Dpa iz oo _Mpn-2p (2.4)
2 2 2 2

If the first (n-1) rows of the determinant (2.3) are added to
=9

the last row, all the elements of the last row are zero. Hence [A,1-T,
and therefore A, is eigenvalue of the matrix (2.1).

Now, let us show that A, is also an eigenvalue of the matrix (2.1)
ie. |A,I-T,|=0. Hence we have

[s -b -¢ .. =b —¢ -b]
-b s -b .. ¢ -b -
- -b s .. -b -¢c -b
PI-Tl=f . . . (2.5)
-b -~ =-b .. s -b —c
- ~-b -~ .. =b s ~b
-b - ~-b .. -¢ ~b s |

If we preduct 1,3,...,(n-1)th the odd index rows in the determinant

(2.5) with -1 and the first {n-1) rows of this determinant and also add to the
last row, then all the elements of the last row are zero. Hence [A,1-T,|=0.

Thus A, is an eigenvalue of the matrix (2.1).
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Finally, let us show that A, is the eigenvalue of the matrix (2.1). We

consider the determinant [A,I-T,|=0, i..

[-¢ -b —¢ ... =b —-¢ -b
-b ¢ -b ... —¢ -b -—¢
- ~b - .. -b —¢ -b
MI-T = . . . . . (2.6)
~b -c =-b .. =-c -b —c
- -b —¢ -b ~¢ -b
-b -¢ -b - —-b —]

The rows 1,3,...,(n-1)th of the determinant in (2.6) are linear
combination of each other and also the rows 2,4,...nth. are. Then
I}LSI—TnI =(. Hence A, is an eigenvalue of the matrix (2.1). This is
completed the proof of Lemma 2.1, ‘

Theorem 2.1. There is not the eigenvalue of the matrix (2.1) different from

the following eigenvalue

n—2 n—2

¢, M=a—c (2.7)

l1=a+-]lb+ c, )Lzza—un-tn-
2 2

i.e. there are eigenvalues cach other of the matrix (2.1). Where a,b,c(ER, b
c,n 4

and n is positive even integer.
Proof. We have shown that A,,A, and A,are eigenvalue of the matrix (2.1)

in the proof of Lemma 2.1. Now, let us show that A, = A, =..=A, = a - c.

We had optained the determinant (2.5) when we subsituted A, = a - ¢ into

(2.2). Since ¢* —b* = 0, the rank of the matrix corresponding to the
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determinant (2.6} is two. Thus the linear independent vectors are
[-c, -b, -¢, ..., -b, -¢] and [-b, -c, -b, ..., -c, -b]. (2.8)
Let us compute the eigenvectors corresponding to eigenvalue A, = a -

c. We optain the eigenvectors from the solution of the linear homogen system

cX, +bx, +cx,+...+bx,_, +cx,_ +bx, =0

bx, +c¢x, + bx,+..+cx,_, + bx,_ +cx, =0.

If we solve this system, then we find

x| [—(a,+as+..+a,_)] 17 [0 [—1] [ 0]

X, | | —(a, +a,+...+a,) (1) _(')1 8 I)l
X=|x,|= a, =a,| 0 +a,| 1 H..+a,_,10 |+a,0
0 0 1 0

x| | a, ] (0] [0] 0 | 1]

where x, =a,, X,=a,, ..., X,,=4a,_,, X,=a, are arbitrary numbers.

If we represent the eigenvectors v;, v,, ..., v _;, v, then we have

-1 0 [-1] [O]
0 -1 0 -1
| 0 0 0
vi=|0 4§ v,=l 1} .., v, =[O0} v,]O0] (2.9)
0 0 1 0
|0 | 0] 0] [1]

Since the number of the eigenvectors corresponding to eigenvalue A,

=a - c are n-2, the order of the eigenvalue A, is n-2 [4, p.351]. Thus
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A=A, =.=k, =a-c.

We have computed eigenvectors n-2 of the matrix (2.1). Since at

least eigenvector corresponding to every eigenvalue, two eigenvectors
correspond to eigenvalues A, and A,. Thus, since n eigenvectors correspond
to eigenvalues A,, A, and A,, there are eigenvalues of the matrix (2.1) as
A, A, and A
Corollary 2.1. The eigenvectors of the matrix (2.1) are independent from
its elements.
Proof. We have shown that the eigenvectors correspond to eigenvalues A,
for k=3,4,...,n, are independent from the elements of the matrix. Now, we
will show that the eigenvectors corresponding to eigenvalues A, and A, are
independent from its elements.

Consider matrix corresponding the determinant (2.3). If the first (n-
1) rows of matrix corresponding the determinant (2.3) are added to the last

row, all the elements of the last row are zero. Hence we have,

[t -b — ... =b —c -b] [ x
b t -b .. ¢ =-b -c X,
-¢c =b t ... =-b —-¢ -b X4
: x, |=10] (2.10)
-b —-¢ -b t =b —¢ :
-¢ -b -c -b t -b X,
-b —¢ -b .. —¢ -b t ] [ X, ]

Let us product the row (n-1)th with -1 and add this row to the rows
1,3,5,...,(n-3) th respectively and let us product the row (n-2)th with -1 and
add this row to rows 2, 4, 6,...,(n-4)th respectively in the system of

equations (2.10). Again let us the row
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{(n-1) th add to the (n-2)th and let us product the row (n-2)th with n/2 and

add to the row (n-2) all the rows except for the row (n-1)th, then we have

t+c O 0 o .. 0 0 -t—¢ 0 7
0 t+c 0 0 0 —t-c 0 0 [[*]
0 0 t+c O —t-¢ 0 -t-¢c O X2
0 0 0 t+c 0 -t-c 0 0 X3
. x, [=[0]
0 0 0 0 t+c 0 -t—¢ 0 :
0 0 0 0 0 t+c¢ 0 —t—c|[ X1
| ¢ ~b - -b —C -b t —b [L* ]
(2.1

Hence, we have
{t+¢) X, - (t+c)xn‘1 =0
{t+c) X, - (t+c)xn~2=0
(t+¢) X, - (t+c¢) xn_le (2.12)
(t+c)yx,-(t+c)x ,=0

(t+¢c) X ,-(t+c) xn:O

X, -bX,-¢X,-..-bx _,+tx -bx=0

If it is solved the equations system (2.12), we obtain
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X] = xn~1
X, =X
X, =X (2.13)
Xg=X0
xn- 2 = xn

If we substitute the values in (2.13) into the last equation in (2.12), we have

<X -bx,-cXx -..-bx +t1X-bx=0

-{c+ e+t c)xl -(b+b+.+b)x, +tx = 0

n—2 n
- ex, ——bx, +tx, =0
2 2
n n
bel :bez =X =X
Hence, we obtain X, =X, =X, = ... =X,_, =X,.

Since the rank of the coefficient matrix in (2.11) is n-1 and the

number of the unknowns of the linear homogen equations system in (2.12) is

n we find
X, k 1
X k 1
X = 2 = ) =k
x k 1

where k is arbitrary constant and chose and xj = k. Hence the eigenvector

corresponding to eigenvalue A, is
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Finally cigenvalue A, corresponds only one eigenvector and this
eigenvector is independent from the clements of the matrix (2.1).

Now, let us we compute the eigenvector corresponding to eigenvalue
A,. Consider matrix corresponding the determinant (2.5). If we product
1.3,...,(n-1)th the odd index rows of matrix corresponding the determinant
(2.5} with -1 and the first (n-1) rows the matrix and also add to the last row,
then all the elements of the last row are zero. Hence we have following

equation system

[s b -c¢ -b —¢ -b][ x,
-b s -b -c ~=b —c|| %,
-c ~-b s -b —c -bj| x
¢ ' |=[0] (2.14)
b —¢ ~-b ... s -b -—-ci|x,,
(—¢ ~b -¢ -b -¢ s -bj| x, |

Let us product the row {n-1)th with -1 and add this row to the rows
1,3,5,...,(n-3) th respectively and let us product the (n-2)th with -1 and add
to the rows 2, 4, 6,..., (n-4)th respectively. Again If we product the rows
(n-2)th and (n-1)th with n/2 and -n/2  respectively and add to the row (n-

2)th, we have
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s+c 0 0 0 0 0 -—s-c
0 s+c 0 0 0 =-s-¢ O
0 0 s+c O -s-¢ 0 —S$=¢
0 0 0 s+c 0 —$=C 0
0 0 0 0 s+cC 0 -s-c
0 0 0 0 0 s+c 0

| -¢ -b - -b —¢ -b $

oo o o

0

—S5—=C

_.b.J

47

(n=1)xn

(2.15)

Let us write the linear homogen equations system corresponding to

the matrix (2.15). Hence we have
(s+c)x, —(s+c)x,, =0
(s+c)x, —(s+c)x,, =0
(s+o)x, —(s+0o)x, , =0
(s+c)x, —~(s+0)x, ., =0
(s+c)x,,~(s+c)x, =0
—cX; —bx, —cx; - ... —=bx,_, +sx,, ~bx, =0

From (2.16), we obtain

X =X,
Xy =Xy0
X3 = X4
Xy =X
xn—?_ = Xn
Thus, we have
X, =Xy = o0 =X, and X, =X, = =X,

(2.16)

(2.17)
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If we substitute this values in (2.17) into the last equation in (2.16), we have

—cx, = bx, —¢x; = ... —bx, +sx, —bx, =0
—(c+c+..+e)x, —=(b+ b+ . +b)x, +tx, =0
—n—zcx1 —E-hx2 +sx, =0

2 2
—%bx, :—gbx2 =X, =X,

Since the rank of the matrix (2.15) is n-1, choose x, = r we find

x, =—r. Hence we have

X, =X;= ... =X,, =-r and Xx,=x,= ... =X,=71

where r is an arbitrary constant. The eigenvector corresponding to eigenvaluc

A, is

Hence eigenvector V, is independent from the elements of the matrix (2.1).
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