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ABSTRACT

In this study, a relationship between the absolute, normal and geodesic curvatures
of the M -vector field defined on M" parallel hypersurface has been investigated. It is
shown that the Z-geodesic curve and Z-asymptotic curve given in [5] is not preserved under
the parallel map preserving the connection, Also, a necessary and sufficient condition for

the two parailel hypersurfaces to be tangent along o’ differentiable curve has been given.

KONNEKSIYONU KORUYAN PARALEL
DONUSUMLER ALTINDA EGRILERIN BAZI
OZELLIKLERI UZERINE

OZET

Bu galigmada M paralel hiperyiizeyi iizerinde tanimlanan M - vektor alaninm
mutlak, normal ve geodezik egrilikleri arasindaki iligki incelendi. Konneksiyonu koruyan
parale!l diniigtimler altinda [5] de verilen Z-geodezik efri ve Z-asimptotik olma durumunun
korunmadig gosterildi. Ayrica iki paralel hiperyiizeyin diferensiyellenebilitbir ¢ egrisi

boyunca tefiet olmalan i¢in gerek ve yeter gart verildi.
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1.INTRODUCTION

Let M be a hypersurface of a C* Riemannian n-manifold M with
the metric tensor {,). Let D be the riemannian connection on M , and N be
aa unit normal vector field thatis C” on M. We have (N,,N,)=1 and
(N,,X)=0, where PeM and X € y(M). Let §:T,(P)~— T,(P) be the

weingarten map defined by

S(X)=DyN. (1.1)
for any C” vector field ¥ defined abouut P in M and X in y(M) we have

the gauss equation given by

1_)XN =Dy N —(S(X), )N (1.2)

Equation (1.2) induces a Riemannian connection D on M . Hence D assings

to each pair of C” vector fields X and Y on an open set U of M, a C” vector

field DXY called the covartant derivative of Y in the direction X, IT X, Y are

C~ vector fields on U and f is real valued C™ function on U, then we have

the following relation which will be used later [4]:

DX(fY)z(Xf)Y+fDXY. (1.3)
Let M be a hypersurface of the manifold M and

let N= Zaiai, a, € C”(M,IR) a unit normal vector ficld of M. Let us
X

i=1 i

definc a set M’ = {P+ NPIP € M} in which r is any real constant. A map
f:M — M’ is called a parellel map for each member P of M if it is defined

to be
f(P)= P+rN,

In this case , M’ is a called parallel hypersurface of M. For each point P in
M.N, =N 1]
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The following theorem can be give for parallel hypersurfaces.
Theorem. Let M be a C” Riemannian n-manifold. Let M and M" be
respectively a hypersurface of M and a hypersurface being parallel to M of
M . Then, for each X in y(M)

f(X)= X +r5(X) (1.4)

ST(£.(X))=S5(X) (1.5)
in which S and S denote the Weingarten maps of M and M’ respectively ,

and f. is a map defined to be

£ (P> T, (F(P)

which is known to be a jacobian map of f
Let M and M’ be C” manifolds with connection D and I¥
respectively. A C” map f:M — M’ is connection preserving if

f(D Y) f*fX] £.(Y) (1.6)

for all vector fields X and ¥ in y{M) [2].
Let Z be mapping that attaches a vector Z, in T;;(P) to each point P

in M. 7 is called an M -vector field dfined on M and said to be C” on M if

about cach point P in M there are local coordinate functions xx,,...,x, such

that Zzzl..g-— on U, where A, eC”(M,IR) 1<i<n.Z can be

i=l f
decomposed uniquely into its tangential and normal components as
Z=Z,+2Z, (1.7)
in which Z, is tangent vector field on M and Z, is a vector field of M
defined on M,which is normal to M at every point. The normal vector Z, of
Z can be written as Z, = aN if a=(Z,N), where o isaC” function on the

neighbourhood U of M and N is the unit normal vector to M at P along

Zy {5}
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2. SOME PROPERTIES OF CURVES UNDER THE PARALLEL
MAP PRESERVING THE CONNECTION

Let M be a hypersurface of M -manifold and let M’ be parallel
hypersurface of M. If o is curve passing through apoint Pon M and T is

the tangent vector field of o on M, then 6" = foo is a curve passing
through a point fAP) on M" and f.(T)eT,.(f(P)) is a tangent of o” at

fiP).
Z defined by M vector field on M” can also be decomposed into its

tangential and normal components as
Z=Z_ +Z 2.1)

T N"
where ZT’ is tangent vector tobe Z_, = fu(Z,)=2Z, +r8(Z,;) on M and

T
Z N vector field of M is the normai vector field to M" at every point of M’

The second term on the right hand side of equation (2.1) can bewritten

as  Z,,=PBN’ to be B=(ZN') since Ny, =N, and

a(P)=B(f(P)), VP e M this term can also be written as ZN’ = aN. Hence

equation (2.1) takes the form
Z=ZT, +aN (2.2)

the covariant derivative of Z in the direction 77 is

D, ,zzi)“T,(z +aN)

T T
or
D,z=D,Z,+D(eN) 2.3)
where 7" = . Using (1.1)-(1.7), the terms D_ Z__ and D_, (aN) in
()| T T

equation (2.3) can be expresed in terms of invariants of M as follows:

Let D' be a connection of M" parallel hypersurface.
D, Z =D_,.Z —(S(f(T),Z_,)N’
rnfr = P SOV

or
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D, e =D oy 20) =S (D)2 0V 04

= DpZ, +75(DpZy | = ((S(T) 2) + KS(T).S(Z )N
Using equation (1.3), but only D, X and fY are replaced by D, f.(T) and N,
respec,tlvely, we have
Dy (ryPp = g )N+ DIV
= oS (£ (T))+(T +rS(T))[a]N (2.5)

= aS(T)+ (5;% + rS(T)[cx])N

substitution of equations (2.4) and (2.5) into equation (2.3) gives

b,z= [D 7, +aS(T)+1(Dyz,)
2.6)
(4~ sty 20+ (st~ (5 5(20 )
Let

I7.(
norD_,Z = —((%”ﬁ ~(S(T), Z;) + r( (TY ] - (S(T),S(Z,.))))N)

T)|=1 tan ET, Z= TI(DTZT +aS(T) + :-(DTZT ))
77|

then equation (2.6) can be written as
ET,Z =tanD  Z+ norDT,z 2.7

D - Z, tan b_T’Z and norﬁT,Z are called respectively the absolute, geodesic
and normal curvature vectoors of vector field Z with respect to ”. Equation
(2.7) caan be written in the form

K'N' =K,N+KX (2.8)
iin which N', N and X are all uniit vectors in the directions of the absolute

,normal and geodesic curvature vectors of the vector field Z with respect to

o’, respectively. They are defined as follows:
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T 2.9
A2 1 fda : .
(K,,) =|—2(E—<S(T) zr)) tra
and
(k) = l_lz_(szT +0S(T), D2y + aS(T) + b)) (2.10)
where

a= 2(%‘;--(S(T),ZT))(S(T)[a]-(S(T),S(ZT)))+r(S(T)[a]—(S(T),S(ZT ")

(2.11)
and
b= ((DTZT +aS(T).5( D2, )+ r(5(Dy 22, S(DTZT))). 2.12)
from equations (2.9) and (2.10), (R’"’)zcan be expressed in terms of (K,:)2

and (K;)Z as

(&Y =(k;) +(K) (2.13)
K.Nirmala shown that

K=K +K,
in which

B =(D.Z.D.7), K'=[%*_(s(1)2,)

e A P .

and

K; =(DypZ; +aS(T), DypZy + oS(T)).
Therefore

(R = (K4 K} +r(a+b)

or
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where @ and b are giveen by equations (2.11) and (2.12), respectively.
Corollary 1. A relaitonship between the absolute , normal and geodesic
curvatures of the M -vector field Z with respect to ¢” can be by equation
(2.13).
Corollary 2. In the case of r=0, we obtain the same results given by K.
Nirmala [5].

Therefore, the results given in above can be considered as a
generalised of the results proposed by K. Nirmala [5].

From equation (2.8) we have

K cosf=K, (2.14)

which is clearly the analoguc of meusnier's theorem for the M -vector field Z
with respect to o”, where 8 is the angle between the direction of ET,Zand

N.

From equations (2.8) we can given the following definitions.
Definition 1.0  isin absolute geodesic curve of the absolute curvature of
the vector field Z vanishes along ¢”. Thus absolute geodesic curvatures of
Z with respect 0o satisfy the equation

<DT’Z’DT’ Zy=0
Definition 2. Let ¢ be a curve on M'. o’ is defined to be a Z-geodesic
curve if the geodesic curvature of the M -vector field Z with respect to o
vanishes at every point of o’. Hence , Z-geodesic satisfy the equation

(DyZ, +oS(T)+ 18Dy Z, ) Dy Zy +aS(T)+ rS(DTZT )) =0
Definition 3. The curve o’ is called an asymptotic curvature of Z if
K’ =0,

From equation (2.12) and definitions given above , we can give the

following theorems.
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Theorem 1. Z- geodesic and asymptotic curvatures of Z under the parallel
map preserving the connection are not preserved.
Theorem 2, The curve ¢’ in M’ is an absolute geodesic curvature of the
M -vector field Z if and only if ¢” is an asymptotic geodesic of Z.
Particulary, if M -vector field Z is defined to be a tangent vector on
M’ along ¢, then K',K] and K; become absolute, normal and geodesic
curvatures of M', respectively.
Now, let M, and M, be two hypersurfaces of Riemannian manifold
M. Leto = {x(1)0 <t <1} be diferentiable curve on M, " M,. Let D' and
D’ be Riemannian connections of M, and M,, respectively, and N, and N,
be unit normal vector fields of M, and M,, respectively. Then it is easily
shown that foo=0' ={y(t)|0 <t< 1} is also a differentiable curve on

M m M, where f is a parallel map preserving the connection.

If S and S, are respectively , Weingarten mappings defined on
Ty 00 and T (5(0) , then

S (f(X) =D, N f(X)eT, (1))

t

Sz:(f*(y)) = ﬁf*{y)

Let Z be M -vector field on M{ N M;. Then
Z=7, +aN=27+aN
such that @, € C*(M,,IR) and «, € C"(M,,IR). The covariant derivatives

NﬁfNHETMJﬂﬂL

of (2.15) in the direction of 7" along o’ is
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ET,Z = HD}.ZT + 8, (T)+ rSI(D}Zr)
+(d—j:L ~(S(T), Zy) + r{S(T) o] = (S(T),8(Z; D)JNI}
= %{D,}ZT + aZSZ(T) + rSz(D;'ZT)

. (2.16)
(2 - (5(1).2,) (SN S V)

If thc curve o’ is chosen as a Z-geodesic on M| then, tan J"D_T,Z=()
which implies that D], Z e z(M[ )"

Assume that parallel hypersurfaces M, and M, are tangents along

o’ In this case, TM,(y(t)) = TMr(y(t)) ¥ y(t)e o’. Thus the vectors
1 Z

D - Z is normal to M; at y(z) This is meant to be

D32y + 0,8, (T)+ rSZ(D;,ZT) =0

In other words, ¢’ onM; is a Z-geodesic. Therefore, properties given in
above can be summarised with the following theorem.
Theorem. Let M/ and M, be parallel hypersurfaces of Riemannian
manifold M . If the curve ¢ is a Z-geodesic on M| then is a Z-geodesic on
M}, also . Here ¢’ is a curve on M; "M, and Z is an M -vector field
defined on M{ N M.

Conversely, let ¢ be a Z-geodesic curvature on both M| and M.
Thus,

DiZy +0,S,(T) +18,{ Dy 2, | =0
and

DLZ, + 0,8, (T)+ 18, (D} 2, ) =0

from (2.16), normal curvature vectors of Z with respect to ¢’ in both M/
and M, are the same with D T’Z . So, tangent spaces of M and M, are on
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each other. In other words, itis 7 (y(f)}) = T, (y(t)) along o".
Ml M2

Therefore , we can give this as a corollary.

Corollary. If Z is an M -vector field of an M -Riemannian manifold on
M NM; and o’ = {y(t)[ 0<gt< l} is differentiable curve on M| N M, to be
a geodesiic on both M| and M, then two parallel hypersurfaces M| and

M; of M are tangent along o’ .
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