ON THE PROPERTIES OF CURVES UNDER THE PARALLEL MAP PRESERVING THE CONNECTION

Rifat GÜNES

İnönü Üniversitesi Fen-Edb. Fakültesi, Malatya.

Keywords: Curve, Parallel map, Curvature.

ABSTRACT

In this study, a relationship between the absolute, normal and geodesic curvatures of the \overline{M} -vector field defined on M' parallel hypersurface has been investigated. It is shown that the Z-geodesic curve and Z-asymptotic curve given in [5] is not preserved under the parallel map preserving the connection. Also, a necessary and sufficient condition for the two parallel hypersurfaces to be tangent along σ' differentiable curve has been given.

KONNEKSİYONU KORUYAN PARALEL DÖNÜŞÜMLER ALTINDA EĞRİLERİN BAZI ÖZELLİKLERİ ÜZERİNE

ÖZET

Bu çalışmada M' paralel hiperyüzeyi üzerinde tanımlanan \overline{M} - vektör alanının mutlak, normal ve geodezik eğrilikleri arasındaki ilişki incelendi. Konneksiyonu koruyan paralel dönüşümler altında [5] de verilen Z-geodezik eğri ve Z-asimptotik olma durumunun korunmadığı gösterildi. Ayrıca iki paralel hiperyüzeyin diferensiyellenebilirbir σ' eğrisi boyunca teğet olmaları için gerek ve yeter şart verildi.

1.INTRODUCTION

Let M be a hypersurface of a C^{∞} Riemannian n-manifold \overline{M} with the metric tensor \langle , \rangle . Let \overline{D} be the riemannian connection on \overline{M} , and N be as unit normal vector field that is C^{∞} on M. We have $\langle N_p, N_p \rangle = 1$ and $\langle N_p, X \rangle = 0$, where $P \in M$ and $X \in \chi(M)$. Let $S: T_M(P) \to T_M(P)$ be the weingarten map defined by

$$S(X) = \overline{D}_X N. \tag{1.1}$$

for any C^{∞} vector field Y defined about P in M and X in $\chi(M)$ we have the gauss equation given by

$$\overline{D}_{\mathbf{Y}}N = D_{\mathbf{Y}}N - \langle S(X), Y \rangle N \tag{1.2}$$

Equation (1.2) induces a Riemannian connection D on M. Hence D assings to each pair of C^{∞} vector fields X and Y on an open set U of M, a C^{∞} vector field D_XY called the covariant derivative of Y in the direction X. If X,Y are C^{∞} vector fields on U and f is real valued C^{∞} function on U, then we have the following relation which will be used later [4]:

$$D_{X}(fY) = (Xf)Y + fD_{X}Y. \tag{1.3}$$

Let M be a hypersurface of the manifold \overline{M} and let $N = \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}$, $a_i \in C^{\infty}(M, IR)$ a unit normal vector field of M. Let us define a set $M' = \{P + N_p | P \in M\}$ in which r is any real constant. A map $f: M \to M'$ is called a parellel map for each member P of M if it is defined to be

$$f(P) = P + rN_{p}$$

In this case, M' is a called parallel hypersurface of M. For each point P in M, $N_p = N_{f(p)}^r[1]$.

The following theorem can be give for parallel hypersurfaces.

Theorem. Let \overline{M} be a C^{∞} Riemannian n-manifold. Let M and M' be respectively a hypersurface of \overline{M} and a hypersurface being parallel to M of \overline{M} . Then, for each X in $\chi(M)$

$$f_*(X) = X + rS(X) \tag{1.4}$$

$$S'(f_*(X)) = S(X) \tag{1.5}$$

in which S and S' denote the Weingarten maps of M and M' respectively, and f_* is a map defined to be

$$f_*: T_M(P) \to T_{M'}(f(P))$$

which is known to be a jacobian map of f

Let M and M' be C^{∞} manifolds with connection D and D' respectively. A C^{∞} map $f:M\to M'$ is connection preserving if

$$f_*(D_X Y) = D'_{f_*(X)} f_*(Y)$$
 (1.6)

for all vector fields X and Y in $\chi(M)$ [2].

Let Z be mapping that attaches a vector Z_p in $T_{\overline{M}}(P)$ to each point P in M. Z is called an \overline{M} -vector field dfined on M and said to be C^{∞} on M if about each point P in M there are local coordinate functions $x_1x_2,...,x_n$ such that $Z = \sum_{i=1}^n \lambda_i \frac{\partial}{\partial x_i}$ on U, where $\lambda_i \in C^{\infty}(M,IR)$ $1 \le i \le n$. Z can be

decomposed uniquely into its tangential and normal components as

$$Z = Z_T + Z_N \tag{1.7}$$

in which Z_T is tangent vector field on M and Z_N is a vector field of \overline{M} defined on M, which is normal to M at every point. The normal vector Z_N of Z can be written as $Z_N = \alpha N$ if $\alpha = \langle Z, N \rangle$, where α is a C^{∞} function on the neighbourhood U of M and N is the unit normal vector to M at P along Z_N [5].

2. SOME PROPERTIES OF CURVES UNDER THE PARALLEL MAP PRESERVING THE CONNECTION

Let M be a hypersurface of \overline{M} -manifold and let M' be parallel hypersurface of M. If σ is curve passing through apoint P on M and T is the tangent vector field of σ on M, then $\sigma' = f \circ \sigma$ is a curve passing through a point f(P) on M' and $f_*(T) \in T_{M'}(f(P))$ is a tangent of σ' at f(P).

Z defined by \overline{M} vector field on M' can also be decomposed into its tangential and normal components as

$$Z = Z_{T'} + Z_{N'} \tag{2.1}$$

where $Z_{T'}$ is tangent vector to be $Z_{T'} = f_*(Z_T) = Z_T + rS(Z_T)$ on M' and $Z_{N'}$ vector field of \overline{M} is the normal vector field to M' at every point of M'

The second term on the right hand side of equation (2.1) can be written as $Z_{N'} = \beta N'$ to be $\beta = \langle Z, N' \rangle$ since $N'_{f(p)} = N_p$ and $\alpha(P) = \beta(f(P))$, $\forall P \in M$ this term can also be written as $Z_{N'} = \alpha N$. Hence

equation (2.1) takes the form

$$Z = Z_{T'} + \alpha N \tag{2.2}$$

the covariant derivative of Z in the direction T' is

$$\overline{D}_{T'}Z = \overline{D}_{T'} \left(Z_{T'} + \alpha N \right)$$

or

$$\overline{D}_{T'}Z = \overline{D}_{T'}Z_{T'} + \overline{D}_{T'}(\alpha N)$$
 (2.3)

where $T' = \frac{f_*(T)}{\|f_*(T)\|}$. Using (1.1)-(1.7), the terms $\overline{D}_{T'}Z_{T'}$ and $\overline{D}_{T'}(\alpha N)$ in

equation (2.3) can be expressed in terms of invariants of M as follows:

Let D' be a connection of M' parallel hypersurface.

$$\overline{D}_{f_*(T)} Z_{T'} = D'_{f_*(T)} Z_{T'} - \langle S'(f_*(T)), Z_{T'} \rangle N'$$

$$\overline{D}_{f_{*}(T)} Z_{T'} = D_{f_{*}(T)}^{r} f_{*}(Z_{T}) - \langle S'(f_{*}(T)), Z_{T'} \rangle N^{r}$$

$$= D_{T} Z_{T} + rS(D_{T} Z_{T}) - (\langle S(T), Z_{T} \rangle + r\langle S(T), S(Z_{T}) \rangle) N$$
(2.4)

Using equation (1.3), but only D, X and fY are replaced by \overline{D} , $f_*(T)$ and N, respectively, we have

$$\overline{D}_{f_{*}(T)} Z_{T'} = \alpha \overline{D}_{f_{*}(T)} N' + (f_{*}(T)[\alpha]) N$$

$$= \alpha S' (f_{*}(T)) + (T + rS(T))[\alpha] N$$

$$= \alpha S(T) + \left(\frac{d\alpha}{dt} + rS(T)[\alpha]\right) N$$
(2.5)

substitution of equations (2.4) and (2.5) into equation (2.3) gives

$$\overline{D}_{T'}Z = \frac{1}{\|f_{*}(T)\|} \left[D_{T}Z_{T} + \alpha S(T) + r \left(D_{T}Z_{T} \right) + \left(\frac{d\alpha}{dt} - \langle S(T), Z_{T} \rangle + r \left(S(T)[\alpha] - \langle S(T), S(Z_{T}) \rangle \right) \right] N \right]$$
(2.6)

Let

$$\begin{split} & \left\| f_*(T) \right\| = \mathbf{I}, \quad \tan \overline{D}_{T'} Z = \frac{1}{\mathbf{I}} \bigg(D_T Z_T + \alpha S(T) + r \Big(D_T Z_T \Big) \bigg) \\ & nor \overline{D}_{T'} Z = \frac{1}{\mathbf{I}} \bigg(\bigg(\frac{d\alpha}{dt} - \langle S(T), Z_T \rangle + r \Big(S(T) [\alpha] - \langle S(T), S(Z_T) \rangle \Big) \bigg) N \bigg) \end{split}$$

then equation (2.6) can be written as

$$\overline{D}_{T'}Z = \tan \overline{D}_{T'}Z + nor\overline{D}_{T'}Z \tag{2.7}$$

 $\overline{D}_{T'}Z$, $\tan \overline{D}_{T'}Z$ and $nor\overline{D}_{T'}Z$ are called respectively the absolute, geodesic and normal curvature vectoors of vector field Z with respect to σ' . Equation (2.7) cann be written in the form

$$\overline{K}'\overline{N}' = K_n'N + K_o'X \tag{2.8}$$

iin which \overline{N}' , N and X are all uniit vectors in the directions of the absolute ,normal and geodesic curvature vectors of the vector field Z with respect to σ' , respectively. They are defined as follows:

$$(\overline{K}^r)^2 = \langle \overline{D}_{T^r} Z, \overline{D}_{T^r} Z \rangle$$

$$(K_n^r)^2 = \frac{1}{\mathbb{I}^2} \left(\frac{d\alpha}{dt} - \langle S(T), Z_T \rangle \right)^2 + ra$$
(2.9)

and

$$\left(K_{s}^{\prime}\right)^{2} = \frac{1}{\mathbf{I}^{2}} \left(\langle D_{T} Z_{T} + \alpha S(T), D_{T} Z_{T} + \alpha S(T) + rb \rangle \right) \tag{2.10}$$

where

$$a = 2\left(\frac{d\alpha}{dt} - \langle S(T), Z_T \rangle\right) \left(S(T)[\alpha] - \langle S(T), S(Z_T) \rangle\right) + r\left(S(T)[\alpha] - \langle S(T), S(Z_T) \rangle\right)$$
(2.11)

and

$$b = \left(\langle D_T Z_T + \alpha S(T), S(D_T Z_T) \rangle + r \langle S(D_T Z_T), S(D_T Z_T) \rangle \right). \tag{2.12}$$

from equations (2.9) and (2.10), $(\overline{K}^r)^2$ can be expressed in terms of $(K_n^r)^2$ and $(K_n^r)^2$ as

$$\left(\overline{K}^r\right)^2 = \left(K_g^r\right)^2 + \left(K_n^r\right)^2 \tag{2.13}$$

K. Nirmala shown that

$$\overline{K}^2 = K_n^2 + K_g^2$$

in which

$$\overline{K}^2 = \langle \overline{D}_T Z, \overline{D}_T Z \rangle, \quad K_n^2 = \left(\frac{d\alpha}{dt} - \langle S(T), Z_T \rangle \right)$$

and

$$K_g^2 = \langle D_T Z_T + \alpha S(T), D_T Z_T + \alpha S(T) \rangle.$$

Therefore

$$\left(\overline{K}^r\right)^2 = \frac{1}{\mathbb{I}^2} \left(K_n^2 + K_g^2 + r(a+b) \right)$$

or

On the properties of curves.....

$$\left(\overline{K}^r\right)^2 = \frac{1}{\mathbf{I}^2} \left(\overline{K}^2 + r(a+b)\right),$$

where a and b are giveen by equations (2.11) and (2.12), respectively.

Corollary 1. A relationship between the absolute, normal and geodesic curvatures of the \overline{M} -vector field Z with respect to σ^r can be by equation (2.13).

Corollary 2. In the case of r=0, we obtain the same results given by K. Nirmala [5].

Therefore, the results given in above can be considered as a generalised of the results proposed by K. Nirmala [5].

From equation (2.8) we have

$$\overline{K}^r \cos \theta = K_n^r, \tag{2.14}$$

which is clearly the analogue of meusnier's theorem for the \overline{M} -vector field Z with respect to σ' , where θ is the angle between the direction of $\overline{D}_{T'}Z$ and N.

From equations (2.8) we can given the following definitions.

Definition 1. σ' is in absolute geodesic curve of the absolute curvature of the vector field Z vanishes along σ' . Thus absolute geodesic curvatures of Z with respect to σ' satisfy the equation

$$\langle \overline{D}_{T'} Z, \overline{D}_{T'} Z \rangle = 0$$

Definition 2. Let σ' be a curve on M'. σ' is defined to be a Z-geodesic curve if the geodesic curvature of the \overline{M} -vector field Z with respect to σ' vanishes at every point of σ' . Hence, Z-geodesic satisfy the equation

$$\langle D_T Z_T + \alpha S(T) + rS(D_T Z_T), D_T Z_T + \alpha S(T) + rS(D_T Z_T) \rangle = 0$$

Definition 3. The curve σ' is called an asymptotic curvature of Z if $K'_{\sigma}=0$.

From equation (2.12) and definitions given above, we can give the following theorems.

Theorem 1. Z- geodesic and asymptotic curvatures of Z under the parallel map preserving the connection are not preserved.

Theorem 2. The curve σ' in M' is an absolute geodesic curvature of the \overline{M} -vector field Z if and only if σ' is an asymptotic geodesic of Z.

Particulary, if \overline{M} -vector field Z is defined to be a tangent vector on M^r along σ^r , then \overline{K}^r, K_n^r and K_g^r become absolute, normal and geodesic curvatures of M^r , respectively.

Now, let M_1 and M_2 be two hypersurfaces of Riemannian manifold \overline{M} . Let $\sigma = \{x(t)|0 \le t \le 1\}$ be differentiable curve on $M_1 \cap M_2$. Let D^1 and D^2 be Riemannian connections of M_1 and M_2 , respectively, and N_1 and N_2 be unit normal vector fields of M_1 and M_2 , respectively. Then it is easily shown that $f \circ \sigma = \sigma' = \{y(t)|0 \le t \le 1\}$ is also a differentiable curve on $M_1' \cap M_2'$, where f is a parallel map preserving the connection.

If S_1' and S_2' are respectively , Weingarten mappings defined on $T_{M_2'}(y(t))$ and $T_{M_2'}(y(t))$, then

$$S'_1(f_*(X)) = \overline{D}_{f_*(X)} N_1, f_*(X) \in T_{M'_1}(y(t)),$$

$$S_2^r(f_*(Y)) = \overline{D}_{f_*(Y)} N_2, f_*(Y) \in T_{M_2^r}(y(t)),$$

Let Z be \overline{M} -vector field on $M'_1 \cap M'_2$. Then

$$Z = Z_r + \alpha_1 N = Z_r + \alpha_2 N$$

such that $\alpha_1 \in C^{\infty}(M_1, IR)$ and $\alpha_2 \in C^{\infty}(M_2, IR)$. The covariant derivatives of (2.15) in the direction of T' along σ' is

$$\overline{D}_{T'}Z = \frac{1}{I} \left\{ D_{T}^{1} Z_{T} + \alpha_{1} S_{1}(T) + r S_{1} \left(D_{T}^{1} Z_{T} \right) + \left(\frac{d\alpha_{1}}{dt} - \langle S(T), Z_{T} \rangle + r \left(S(T) [\alpha] - \langle S(T), S(Z_{T}) \rangle \right) \right) N_{1} \right\}$$

$$= \frac{1}{I} \left\{ D_{T}^{2} Z_{T} + \alpha_{2} S_{2}(T) + r S_{2} \left(D_{T}^{2} Z_{T} \right) + \left(\frac{d\alpha_{2}}{dt} - \langle S(T), Z_{T} \rangle + r \left(S(T) [\alpha] - \langle S(T), S(Z_{T}) \rangle \right) \right) N_{2} \right\} \tag{2.16}$$

If the curve σ' is chosen as a Z-geodesic on M_1' then, $\tan \overline{D}_{T'}Z = 0$ which implies that $\overline{D}_{T'}Z \in \chi(M_1')^{\perp}$.

Assume that parallel hypersurfaces M_1^r and M_2^r are tangents along σ^r . In this case, $T_{M_1^r}(y(t)) = T_{M_2^r}(y(t)) \ \forall \ y(t) \in \sigma^r$. Thus the vectors $\overline{D}_{T'}Z$ is normal to M_2^r at y(t) This is meant to be

$$D_T^2 Z_T + \alpha_2 S_2(T) + r S_2 \left(D_T^2 Z_T \right) = 0$$

In other words, σ' on M'_2 is a Z-geodesic. Therefore, properties given in above can be summarised with the following theorem.

Theorem. Let M_1^r and M_2^r be parallel hypersurfaces of Riemannian manifold \overline{M} . If the curve σ^r is a Z-geodesic on M_1^r then is a Z-geodesic on M_2^r , also . Here σ^r is a curve on $M_1^r \cap M_2^r$ and Z is an \overline{M} -vector field defined on $M_1^r \cap M_2^r$.

Conversely, let σ^r be a Z-geodesic curvature on both M_1^r and M_2^r . Thus,

$$D_T^1 Z_T + \alpha_1 S_1(T) + r S_2(D_T^1 Z_T) = 0$$

and

$$D_T^2 Z_T + \alpha_2 S_2(T) + r S_2(D_T^2 Z_T) = 0$$

from (2.16), normal curvature vectors of Z with respect to σ' in both M'_1 and M'_2 are the same with $\overline{D}_{T'}Z$. So, tangent spaces of M'_1 and M'_2 are on

each other. In other words, it is $T_{M_1'}(y(t)) = T_{M_2'}(y(t))$ along σ' .

Therefore, we can give this as a corollary.

Corollary. If Z is an \overline{M} -vector field of an \overline{M} -Riemannian manifold on $M_1' \cap M_2'$ and $\sigma' = \{y(t) | 0 \le t \le 1\}$ is differentiable curve on $M_1' \cap M_2'$ to be a geodesiic on both M_1' and M_2' , then two parallel hypersurfaces M_1' and M_2' of \overline{M} are tangent along σ' .

REFERENCES

- [1] Hick, N.J., Notes on Differential Geometry, (1965).
- [2] Hick, N.J., Connection Preserving, Conformal and Parallel Maps, Micg.Math. J. 10, 295-302, (1963).
- [3] Kobayashi, S. and Nomizu K., Fouundations of Differential Geometry Vol.2, (1969)
- [4] Nirmala, P., Differential Geometry An Integrated Approach, (1981)
- [5] Nirmala, K., Curves Associated with an \overline{M} -vector Field on a Hypersurface M of a Riemannian manifold \overline{M} , Tensor. N. Vol.28, (1974)