On The Tzitzéica's Submanifolds

Baki KARLIĞA

Department of Mathematics, Arts and Sciences Faculty, Gazi University 06500 Ankara, TURKEY.

ABSTRACT

Let M be an m-dimensional submanifold in E^n . We define C^{∞} function $\tau_{M\cap W}$ by using the idea of Putinar [2]. We show that for m < n, $\tau_{M\cap W}$ is invariant under the orthogonal group O(n) and it is invariant under absolute unimodular group for m = n-1. We prove that

$$\tau_{M\cap W}\circ F=(-1)^m\frac{G(.,\ N)\circ F}{(d^{m+2})\circ F}$$

where F is parametrization of M, G(., N) is Lipschitz-Killing curvature, N is unit normal of M and d is a distance between origin and tangent plane on a point of M.

ÖZET

 M, E^n de m-boyutlu altmanifold olsun. Putinar'ın düşüncesini kullanarak bir $\tau_{M\cap W}$ fonksiyonu tanımladık. $\tau_{M\cap W}$ nın m < n için,O(n) ortogonal grubu altında, m = n-1 için de mutlak unimodular grup altında değismez kaldığını gösterdik. F, M nın parametrizasyonu ; G(., N) Lipschitz-Killing Eğriliği; N, M'nin birim normali; d de M'nin bir noktasındaki teğet düzleminin orjine uzaklığı olmak üzere

$$\tau_{M\cap W}\circ F=(-1)^m\frac{G(.,\ N)\circ F}{(d^{m+2})\circ F}$$

olduğunu gördük.

1. Introduction. M.G. Tzitzèica, Rumanian mathematician, has shown that $\frac{K}{d^4}$ is constant for some class of surfaces $M \subset E^3$ when he was studying regular tetrahedron, where K, d are Gaussian curvature and the distance of a point on M to the origin, respectively. He has also proved it [1] for some hypersurface in $M \subset E^n$. If $\frac{K}{d^{n+1}}$ is constant

B. Karlığa 79

for any hypersurface M then, M is called Tzitzéica's hypersurface and the ratio $\frac{K}{d^{n+1}}$ is called Tzitzéica's invariant. The equivalency of any two Tzitzéica's invariants are given by Putinar [2]. The aim of this present work is to generalize the Tzitzéica's invariant [2] to any m-dimensional submanifold in E^n .

Firstly, we give some basic concepts in order to understandant ℓ -vector space, a vector field over C^{∞} -map and an affine connexion on C^{∞} -map. Afterwards, we define a C^{∞} function $\tau_{M\cap W}$ by using the idea of Putinar [2] and we show that $\tau_{M\cap W}$ is invariant under the orthogonal group O(n) in the case m < n and it is invariant under absolute unimodular group in the case m = n-1. Finally, we show that

$$\tau_{M\cap W} = (-1)^m \frac{G(., N)}{d^{m+2}}$$
.

2. Background and Notations.

Definition 2.1. A subset $M \subset E^n$ is called a smooth manifold of dimension m if each $x \in M$ has a neighborhood W in M which is diffeomorphic to an open subset U of Euclidean space E^m . In addition, if m < n then, M is called an m-dimensional submanifold of E^n [3].

Definition 2.2. Let M be m-dimensional submanifold of E^n . Then the C^{∞} -diffeomorphism

$$F:U\longrightarrow M\cap W$$

is called a *local parametrization of the region* $M \cap W$ [3]. The following definitions 2.3, 2.4 and 2.5 are due to [4].

Definition 2.3. Let $\chi(F)$ be $C^{\infty}(U)$ -module of vectorfield over F. The set

$$\Lambda^{\ell}\chi(F) = \{\alpha_1 \wedge ... \wedge \alpha_{\ell} \mid \alpha_j \in \chi(F), \ j = 1, \ ..., \ \ell\}$$

is called a $C^{\infty}(U)$ -module of ℓ -vector field.

Definition 2.4. The form, given by

$$<, >_{\ell} \circ F : \Lambda^{\ell} \chi(F) x \Lambda^{\ell} \chi(F) \longrightarrow C^{\infty}(U)$$

 $< \alpha, \beta >_{\ell} \circ F = det[< \alpha_i, \beta_i > \circ F]$

is called a metric tensor of ℓ -vector fields, where $\alpha = \alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_{\ell}$, $\beta = \beta_1 \wedge ... \wedge \beta_{\ell}$, α_i , $\beta_j \in \chi(F)$.

Definition 2.5. Let

$$A: \chi(F) \longrightarrow \chi(F)$$

be a linear transformation. Then the transformation

$$\Lambda^{\ell} A(\alpha_1 \wedge ... \wedge \alpha_{\ell}) = A(\alpha_1) \wedge ... \wedge A(\alpha_{\ell}), \ \alpha_i \in \chi(F), \ 1 \leq i \leq \ell$$

is called $\ell - th$ exterior power of A.

3. Tzitzéica's invariant for Submanifolds

Lemma 3.1. Let M be C^{∞} -submanifold of E^n and $M \cap W$ be a neigebborhood of $p \in M$. if $\alpha \neq 0$ on U, there is a unique normal vector field $\vec{\xi} \in \chi(F)$ such that

$$<\vec{F}, \; \vec{\xi} > \circ F = 1, \qquad < x_i \circ F, \; \vec{\xi} > \circ F = 0, \; 1 \le i \le m$$
 (1)

hold, where $\alpha = \vec{F} \wedge x_1 \circ F \wedge ... \wedge x_m \circ F \in \Lambda^{m+1}\chi(F)$ and $x_i \circ F = F_*(\frac{\partial}{\partial y_i}) \circ F$.

Proof. Consider $\langle \alpha, \alpha \rangle > 0$ and the matrix $B = X.X^t$ for $X = [F \ x_1 \circ F... \ x_m \circ F]$, then we find a vector field

$$\vec{\xi} = (\frac{B^{oo}}{detB})\vec{F} + \sum_{i=1}^{m} (\frac{B^{oi}}{detB})(x_i \circ F),$$

where $B^{oo} = cofac$ $< \vec{F}, \ \vec{F} > \circ F$ and $B^{oi} = cofac < \vec{F}, \ x_i \circ F > \circ F$. It is known that $\vec{\xi}$ is a C^{∞} -vector field over F, since $detB \neq 0$, $B^{oi} \in C^{\infty}(U)$, $1 \leq i \leq m$. $\vec{\xi}$ is related to F and so $\vec{\xi}$ is a unique vector field over F. If we consider the cofactor of B and the properties of a determinant function, we obtain $\vec{\xi}$ such as in (1) .By the last equalities of (1), $\vec{\xi}$ is a normal vector field over F

Lemma 3.2. Let U, V be open subsets of E^m and ∇ , ∇' affine connexions on the diffeomorphisms F, $F \circ \Phi^{-1}$, respectively. Then, there exists a unique $\vec{\xi'} \in \chi(F \circ \Phi^{-1})$ for the $\vec{\xi} \in \chi(F)$ such that $\vec{\xi'} = \xi \circ \vec{\Phi}^{-1}$. Furthermore, we have the following relation

$$\bigtriangledown_{\frac{\partial}{\partial u_i}}\vec{\xi'} = (\bigtriangledown_{\Phi_{\bullet}(\frac{\partial}{\partial u_i})}\vec{\xi'}) \circ \Phi$$

Proof. If we consider the following diagrams

the proof of the Lemma is clear.

Theorem 3.3. If M is an m-dimensional submanifold of E^n and $\alpha \neq 0$ on U then, there is a unique function $\tau_{M \cap W} \in C^{\infty}(M \cap W, R)$ such that $\tau_{M \cap W} \circ F = \frac{\langle \alpha, \ \beta \rangle_{m+1} \circ F}{\langle \alpha, \ \alpha \rangle_{m+1} \circ F}$ for $\beta = \vec{\xi} \wedge \bigtriangledown \frac{\partial}{\partial u_1} \vec{\xi} \wedge \bigtriangledown \frac{\partial}{\partial u_2} \vec{\xi} \wedge \dots \wedge \bigtriangledown \frac{\partial}{\partial u_m} \vec{\xi}$.

Proof. Firstly, if we show that $M \cap W$ has the parametrization F such that $\alpha \neq 0$ on U then, every parametrization of $M \cap W$ has the same property. To this end we choose another parametrization $\mathcal G$ of $M \cap W$. Since $\alpha \neq 0$ on U, we have the diffeomorphism Φ as in the diagram

It is easy to see that

$$\vec{\mathcal{G}} \wedge \big(\mathcal{G}_{*}(\frac{\partial}{\partial v_{1}}) \circ \mathcal{G}\big) \wedge \ldots \wedge \big(\mathcal{G}_{*}(\frac{\partial}{\partial v_{m}}) \circ \mathcal{G}\big) \neq 0,$$

since $x_i \circ F = (\mathcal{G}_*(\frac{\partial}{\partial v_m}) \circ \mathcal{G})$ for $\Phi_*(\frac{\partial}{\partial u_i}) = \frac{\partial}{\partial v_i}$. Now by using Lemma 3.2, we obtain the equality

$$\tau_{M\cap W}\circ F=\frac{<\alpha',\ \beta'>_{m+1}\circ(\mathcal{G}\circ\Phi)}{<\alpha',\ \alpha'>_{m+1}\circ(\mathcal{G}\circ\Phi)}=\tau_{M\cap W}\circ(\mathcal{G}\circ\Phi),$$

where
$$\alpha' = \vec{\mathcal{G}} \wedge (\mathcal{G}_{\star}(\frac{\partial}{\partial v_1}) \circ \mathcal{G}) \wedge ... \wedge (\mathcal{G}_{\star}(\frac{\partial}{\partial v_m}) \circ \mathcal{G}), \ \beta' = \vec{\xi}' \wedge \nabla'_{\frac{\partial}{\partial v_1}} \vec{\xi}' \wedge \nabla'_{\frac{\partial}{\partial v_2}} \vec{\xi}' \wedge ... \wedge \nabla'_{\frac{\partial}{\partial v_m}} \vec{\xi}'.$$

From definition 2.3 and $\alpha \neq 0$ on U, it is routine to check that $\tau_{M\cap W} \in C^{\infty}(M\cap W, R)$. This completes the proof of theorem.

Theorem 3.4. The function $\tau_{M\cap W}$ is an invariant of O(n) in the case of m < n, and it is an invariant of the absolute unimodular group in the case m = n-1.

Proof. Let Ψ be a linear transformation which corresponds to $g \in GL(n,R)$. Then we get a C^{∞} -map

$$\tilde{\Psi} \circ F : U \to \tilde{\Psi}(M \cap W),$$

according the diagram

$$\begin{array}{cccc} & & \tilde{\Psi} \circ F & & & \\ & U & \xrightarrow{\longrightarrow} & M \cap W & & \\ F & \downarrow & & \nearrow & & \\ & & M \cap W & & & \end{array}$$

where $\tilde{\Psi}$ is a restriction of Ψ on $M \cap W$. By the equalities $\tilde{\Psi}_* = g$, $g(x_i \circ F) = (gx_i) \circ F$, $\tilde{\Psi}_*(\vec{F}) = g(\vec{F})$, we find a unique $\vec{\xi}' \in \chi(\tilde{\Psi} \circ F)$ such that

$$< g(\vec{F}), \ \vec{\xi'} > \circ F = 1 \ , \ < g(x_i \circ F), \ \vec{\xi'} > \circ F = \ 0, \ 1 \le i \le m$$
 (2)

Thus we may take the following system instead of (2).

$$<\vec{F}, \ g^t \vec{\xi'} > \circ F = 1, \ < x_i \circ F, \ g^t \vec{\xi'} > \circ F = 0, \ 1 \le i \le m$$
 (3)

Taking into account Lemma 3.1 and (3), we realize that

$$\vec{\xi} = g^t \vec{\xi'}$$

holds. By getting help from the Definition 2.5 and $(g^t)^{-1}(\bigtriangledown_{\frac{\partial}{\partial u_i}}\vec{\xi}) = (\bigtriangledown_{\frac{\partial}{\partial u_i}}\vec{\xi})$, we have

$$\tau_{\tilde{\Psi}M\cap W}\tilde{\Psi}\circ F=\frac{\langle\alpha,\ \beta\rangle_{m+1}\circ F}{\langle\alpha,\ c\alpha\rangle_{m+1}\circ F},$$

B. Karlığa 83

where $c = g^t g$. If $g \in O(n)$, then we see that the equality

$$\tau_{\tilde{\Psi}_{M\cap W}}\tilde{\Psi}\circ F=\tau_{M\cap W}\circ F$$

holds. Thus $\tau_{M\cap W}$ is the invariant of O(n). Since $\Lambda^n c(\vec{F} \wedge x_1 \circ F \wedge ... \wedge x_m \circ F) = detc\alpha$, for m = n-1, we obtain

$$\tau_{\tilde{\Psi}M\cap W}\tilde{\Psi}\circ F = \frac{\langle \alpha, \beta\rangle_n \circ F}{detc \langle \alpha, \alpha\rangle_n \circ F} = \frac{\tau_{M\cap W}\circ F}{(detg)^2} \tag{4}$$

If $|\det g| = 1$ in (4) then we have $\tau_{\bar{\Psi}M\cap W}\tilde{\Psi}\circ F = \tau_{M\cap W}\circ F$, that is, $\tau_{M\cap W}$ is an invariant of absolute unimodular group, as required.

Let M be an m-dimensional submanifold of E^n . Then, we call the function $\tau_{M\cap W}$ in Theorem 3.3, as Tzitz'eica's invariant. We also call M as Tzitz'eica's submanifold if $\tau_{M\cap W}$ is constant for all region $M\cap W$ of M.

Theorem 3.5. Let M be an m-dimensional submanifold in E^n and $\alpha \neq 0$ on U. Then the equality

$$\tau_{M \cap W} \circ F = (-1)^m \frac{G(., N) \circ F}{d^{m+2} \circ F}$$

is valid, where N is the unit normal in direction $\vec{\xi}$ of affine subspace and G(., N) is the function of Lipschitz-Killing curvature in direction N.

Proof. Let D be a connexion of E^n and ∇ be an affine connexion of F.Then we have the following three relation

$$(D_{x_i}N) \circ F = \nabla_{\left(\frac{\partial}{\partial y_i}\right)} N \circ F \tag{5}$$

$$\nabla_{(\frac{\partial}{\partial u_i})}(\frac{\vec{\xi}}{\|\vec{\xi}\|}) = (\frac{\partial}{\partial u_i}[\frac{1}{\|\vec{\xi}\|}])\vec{\xi} + \frac{1}{\|\vec{\xi}\|}\nabla_{(\frac{\partial}{\partial u_i})}\vec{\xi}$$
 (6)

$$(D_{x_i}N) \circ F = -S_N(F)(x_i \circ F) + (D^{\perp}_{x_i}N) \circ F$$
 (7)

By using (5), (6), we obtain

$$\langle (D_{x_i}N) \circ F, \ x_i \circ F \rangle \circ F = -\langle S_N(F)(x_i \circ F), \ x_i \circ F \rangle \circ F, \tag{8}$$

$$\langle (D_{x_i}N) \circ F, \ x_j \circ F \rangle \circ F = \frac{1}{\|\vec{\xi}\|} \langle \nabla_{(\frac{\partial}{\partial u_i})} \vec{\xi}, \ x_j \circ F \rangle \circ F \tag{9}$$

By following (8), (9), we find that

$$-\parallel \vec{\xi} \parallel \langle S_N(F)(x_i \circ F), x_j \circ F \rangle \circ F = \langle \bigtriangledown_{(\frac{\partial}{\partial u_i})} \vec{\xi}, x_j \circ F \rangle \circ F$$
 (10)

holds. By considering the definition of $\tau_{M \cap W} \circ F$, we get

$$\tau_{M \cap W} \circ F = \frac{\det[\langle \nabla_{(\frac{\partial}{\partial u_i})} \vec{\xi}, \ x_j \circ F \rangle \circ F]}{\langle \alpha, \ \alpha \rangle_{m+1} \circ F}$$
(11)

If we put (10) in (11), we find that

$$\tau_{M \cap W} \circ F = (-1)^m (\parallel \vec{\xi} \parallel)^m \frac{\det[\langle S_N(F)(x_i \circ F), x_j \circ F \rangle \circ F]}{\langle \alpha, \alpha \rangle_{m+1} \circ F} (12)$$

If we use the Definition 2.3, 2.4 and 2.5 in (12), we obtain that

$$\tau_{M\cap W} \circ F = (-1)^m (\parallel \vec{\xi} \parallel)^m det S_N(F) \frac{\langle \Omega, \Omega \rangle_m \circ F}{\langle \alpha, \alpha \rangle_{m+1} \circ F}$$
(13)

where $\Omega = x_1 \circ F \wedge ... \wedge x_m \circ F$. By getting help from Lemma 3.1 and Theorem 3.3, we reach

$$\tau_{M \cap W} \circ F = (-1)^m (\|\vec{\xi}\|)^{m+2} det S_N(F)$$
 (14)

On the other hand, it is not difficult to calculate that

$$d \circ F = \frac{1}{\parallel \vec{\xi} \parallel} \tag{15}$$

Finally, by using (15) in (14), we have

$$\tau_{M\cap W}\circ F=(-1)^m\frac{G(.,\ N)\circ F}{(d^{m+2})\circ F}$$

which makes end the proof of theorem.

B. Karlığa 85

References

[1] Tzitzéica, M.G., Sur quelques propriétés affines, Bull.Math.-Physique, E.P.Bucarest VI, 1935.

- [2] Putinar, M., Sur les courbes et hypersurfaces de Tzitzéica, Bull.Math.de la Soc.Sci.Math.de la R.S, de Roumanie, Tome 29(71).nr.4, 1979.
- [3] Milnor, W.J., Topology from the Differentiable Viewpoint, The University Press of Virginia Charlotesville, 1981
- [4] Flanders, H., Differential Forms with Applications to the Physical Sciences, Academic Press, New York, 1963.