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ABSTRACT
In this study, the shape operator of (tCOS8, tSING, etAy surface is calculated

where t is real parameters, AE|R§ is an anti - symmetric matrix, COS8 = cosbl3, SINO
= sinB.13, and g(t) = etA is an (orthogonal) matrix which corresponds to an orthogonal

mapping [6].

In addition the principal curvatures, the mean curvature, Gaussian curvature of this
surface are obtained by making use of the matrix of this shape operator. The Gaussian
curvature obtained by zero.

Further more, some relations are considered in the space L3 (Lorentzian) which

correspond to the curvatures defined in the space E3 (Euclidean), and we obtain the

relations of curvatures between the space L3,
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E* VE L° DE X EKSENi ETRAFINDA DONEN USTEL FONKSIYON
iLE BAGLANTILI YUZEYLERIN CEBIRSEL INVARYANTLARI
ILE ILGILI BAZI BAGINTILAR

OZET
Bu galigmada (tCOS6, tSING, etA) ylizeyinin sekil operatdril hesapland:, Burada t

reel parametre, Ae |R§ bir antisimetrik matris, COS8 = cos6l3, SIND = sinf.13, ve g(t) =
otA fistel donigiime karsilik gelen ortogonal bir matristir.
Bu sekil operatriiniin matrisi kullanilarak yiizeyin Gaus egriligi, ortalama egriligi
ve esas egrilikleri hesapland:. Sonugta Gaus egriliginin sifira esit oldugu elde edildi.
Bundan baska, E* uzaymnda tanimlanan egriliklere karsilik gelen bazi bagmtilar L°

uzayinda g6z oniine alinarak bu iki uzay arasinda egrilik i¢in bazi bagmtilar elde edildi.

1. INTRODUCTION

We denote by OF the 2-dimensional Riemannian manifold defined
on the unit disk D2 : u2+v2 < 1 in the uv - plane with the following metric:
ds2 = (1-u2-v22 {(1-v2) du? + 2 uvdudv + (1 - w) dv2}  (1.1)
which is called Otsuki manifold, '

On the other hand, O3 is the hyperbolic plane H2 of curvature -1, and
(1.1) is the metric described in the Cayley - Kleins model of H2. 0% is the
semii - sphere; u2 + v2+ w2 =1 and w> 0 and (1.1) is the metric described
in the plane of the equator; w = 0 through the orthogonal projecttion.

As it is well known, some part of H2 but not whole plane can be

represented as a surface of revolution in Euclidean 3 - Space E3.
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Let IR3 denote the Cartesian product IR x IR x IR where IR is the set
of real numbers. On IR3 with the canonical coordinates, x|, x2, x3 the

Euclidean 3 - space E3 and Lorentzian 3 - space L3 are defined by the

metrices.
E3.ds2=dxf+dxj+dx3 | [3:ds2=dx}+dx3-dx3 (1.2)

respectively.

We denote the inner products, in E3 and L3 of any two vectors
- s . 3

XK= i — and Y= F—
E‘l % ax; igl Ti 3x; by

<X, Y>=X1Y1 +X2Y2 + X3Y3
<X, Y>1L=X1Y1 +X2Y2-X3Y3 (1.3)
respectively, denote the symmetry of E3 with respect to the x2y2 - plane by

0, and extend ¢ to vectors as follows:

d d d
=¥ —+ ¥ —- g —
¢(X) 135 28}{2 sv,axs (1.4)
Then we have
<X, Y>L = <X, o(Y)> = <o(X), Y> [5] (1.5)

Proposition 1.1: For any X, Y € the set I' (T(M)) of smooth cross sections

of the tangent bundle T(M) of M at any regular point of M in L3, we have
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AXY)

ViY = VoY - g s

Proje (e3)

AXY)

TXY=<€3,83> (P (e3) (16)

Proj (e3) = <e], e3> e] +<e),e3>e2.
where A(X, Y) is the 2" fundamental form of M in E3. [5]

Definition 1.1: exp : IR x IRA = GL (n, IR) < IR
(t, A) ™ exp (tA) =g (V)

or
[

k
g=F Loar
=0 k!

is called on exponential motion [3].

Definition 1.2: <A, B> = tr (ABT) is called an inner product where A, B
€ IR% matrices [2].
Theorem 1.1: Let A be an anti - symmetric matrix and n€ IN", Then

i) If n is odd, A is an anti - symmettic matrix

ii) If n is even, A is a symmetric matrix

iii) The trace of ani symmetric mattix is zero [6].

2. The algebraic invaryant of the surface connected with the
expenential function of revolution around the x3 - axis in E3.

$ (1, 8) = (t COSB, t SING, etA) is represent a surface connected with
the exponential functional of revolution around the x3 - axis in E3. Then,
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Theorem 2.1: The shape operator of the surface connected to the

exponential function of M < E3 is

+3 Alg 0
g= @3- trA2)3/2
- S—
7 (3 - uA?)12 2.n

Proof: The derivatives of the surface with respect to the parameters t, 6 as

follows:
v, = @ (COS6, SING, Ag)
o] (3 - rA2)12
and
_ (-tSING, tCOS6,0) _ 1 3
V, = SING, C086,0), 0 € IR3
e T A o

are obtained.
Here the system {V{, V2} is an orthonormal basis of X (M) is the

normal vector field of M.
The matrix of map weingarten for surfaces with respect to {V1, V2}

denoted as follows:

-det (O, @, Pg) 0
g= lof lod

0 -det (®gg Py, Dg)

fodlof 2.2)

By considering (2.2) and definition 1.2 together, (2.1) is obtained.
Definition 2.1: The curvatures on surfaces are vector - valued functionals.
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Conclusion 2.1: The fundamental curvatures of surface are

2
kit, 8) = _ﬁ__Azgy_z_
(3 - wAd) 2.3)

and
ka(t, 0) = - = 12
13 (3 -1rA”) Q4

Conclusion 2.2: The mean curvature of the surface correspends to matrix.

Proof: Since H = tarece S, then

V3 Alg N Ag
(3-uA?? 33 -ua?)?t 2.5

H=trace S=ki tkz=-

Conclusion 2.3: The Gauss curvature K of the surface corresponds to a
matrix and K=0.
Proof: The Gauss curvature K of the surface is

<A2g Ag>
(3 - trA2)t 2.6)

where <A2g, Ag> from definition 1.2 and Teorem 1.1,

K:k] k2=

<Ng, Ag> =1r[(A%) (A)"] | (Ag)T=gl AT , AT=-A
_u[a2ggT(-A) g €0
=1tr( A
=0
So, K is zero.
Theorem 2.2: The only surface of revolution with K = 0 are the right
circular cylinder, the right circular cone, and the plane [4].
Now let us consider a surface connected with the exponential
function of revolution around the x3 - axis in L3 given by
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@ (1, 0) = (1 COSH, t SING, etA) X))
Take the orthonormal frame (D (t, ), e, €2, e3™) of E3 given by

e = % (- SINB, COS8, 0) = p(ez)

=1 .
P RRRWeNT: (- Ag COS6, - Ag SING, I3)

=1f3_e3
<p(e§)—————-—( Ag COS9, - Ag SING, -I3)

(3 - trA2)l2
from which we obtain

<63, 8> =1 /p=-<e],e|> <e2,e2>=1 2.8)
where

p=(3-1rA2)/ (3 +rA2)
Then putting

ei=Vue,&=e, &=V ole) (2.9)

We see that (D (1, 0), €l , €2, €3) is an orthonormal frame of L3 in

the following sense;

<€, 8 >=<8 G>=.<€ 6>=]

<e|, e>=<€,83>= <€ ,§>=(

Proposition 2.1: The relation of curvtures between of surface connected
with the exponential function of revolution around the x3 - axis in L3 and
E3is given by.

=gk, k=ywk
Where kl k2 and k1, k7 respectively of surfaces in L3, E3 are curvatures.
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Proof: Let us compute in principal curvatures ki and k2 of this surface inL3
by means of the frame (¢ (4 €); €1, €2, €3) gated above. Define the 2nd
fundamental from A (X.Y) of this surface in L3 by,

TY=AXY)& , X, Y e [(T(M) 2.10)

From (1.6), (2.8), (2.9), (2.10) we can easily obtain,
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