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1. Introduction

From 1988 to date, 72.360 forest fire incidents are reported [1]. As a result of these disasters, in Turkey, around 
300.000 hectares of forest are lost. While 5.8 hectares per fire forest area is destroyed before the last five years 
period, this rate dropped to 2.4 hectares per fire in the last five years. Clearly, besides enhancements on firefighting 
techniques and development of related technology, this progress is due to efficient surveillance techniques and 
timely reports. Since December 2016, 23% of reported forest fires and 47 % of city fires in Istanbul occurred at no 
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Abstract: In this paper, a wildfire detection algorithm from dark videos is proposed. 
Unlike the daytime wildfires, in the dark videos, neither the fire nor its surrounding 
has visually clearly perceptible texture. Its unique visual characteristics make it 
challenging to extract descriptive object features. This paper addresses the 
challenging problem by tracking the glowing objects in the darkness and extracting 
features based on the spatio-temporal behavior of them. It is experimentally shown 
that the proposed features are descriptive enough to classify wildfires with over 
90% accuracy even there exists deceptive light sources such as city lights, 
flashlights, car headlights and reflections in the scene. Moreover, we investigate 
several conventional machine learning algorithms such as ensemble and kernel-
based methods on the same spatio-temporal feature set. Comprehensive empirical 
test results demonstrate that the most accurate detection is obtained when the 
spatio-temporal feature set is classified using Random Forest. 

Anahtar Kelimeler 
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Çoğunluk Oylaması, 
Rastgele Orman, 
Adaboost, 
IBk 

Öz: Bu makalede, karanlık videolardan orman yangınının tespitine yönelik bir 
yöntem önerilmiştir. Gündüz orman yangınlarından farklı olarak, karanlık 
videolarda yangının kendisi de çevresi de görsel olarak açıkça algılanabilir bir 
desene sahip değildir. Karanlık videolardaki yangının bunun gibi kendine özgü 
görsel özellikleri, tanımlayıcı nesne öznitelikleri çıkarmayı zorlaştırmaktadır. Bu 
makale, karanlıkta parlayan nesneleri takip edip, uzaysal-zamansal davranışlarına 
dayalı öznitelikleri çıkararak bu zorlayıcı duruma çözüm üretmektedir. Önerilen 
özniteliklerin, videoda şehir ışıkları, el fenerleri, araba farları ve olay yerindeki 
yansımalar gibi aldatıcı ışık kaynakları olsa bile, orman yangınlarını %90'ın 
üzerinde doğrulukla sınıflandırmak için yeterince temsil edici olduğu deneysel 
olarak gösterilmiştir. Ayrıca, aynı uzaysal-zamansal öznitelik kümesinde topluluk ve 
çekirdek tabanlı sınıflandırma yöntemleri gibi çeşitli geleneksel makine öğrenmesi 
algoritmaları da karşılaştırma amacıyla denenmiştir. Kapsamlı deneysel test 
sonuçları, en yüksek tespit doğruluğunun, önerilen uzaysal-zamansal öznitelik 
kümesinin Rastgele Orman sınıflandırma yöntemi elde edildiğini göstermektedir. 
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daylight conditions [1-3]. Beginning from 1900s, watch towers have been an important part of fire detection across 
the world. However, due to human factors, fire announcement process didn't work properly all the time which 
increased forest loses especially at rural areas. For this reason, computer vision based automatic fire detection 
methods have been an important part of the forestry departments due to the fact that they don't require any 
human deployment to the risky areas and they support visual information via remote monitoring systems. 

In order to overcome fire detection problem from video surveillance systems, various techniques have been 
proposed [8-20]. Front runner techniques include detection of fire, smoke or both depending on spatial and 
temporal features of objects and colors in a video and using different spectral or physical range cameras [16]. After 
processing video sequences, those techniques decide if a pixel, frame, sequence, or the whole video contain a fire.  

However, very limited number of these works considered the fire detection in dark videos. Recent works shows 
evidence of semi or full daytime fires. Tasdemir's work at [22] proposes a method on distant night fire detection. 
Since the fire event is assumed to be at far distance, fire is considered as a slow-moving object. Even though this 
approach is fine for distant fires, it may not be correct for short or mid-range ones. In this paper, we propose a fire 
detection method that is able to detect wildfires from dark videos while overcoming false alarm sources, such as 
city lights, car headlights, streetlights, etc. This work extends the approach introduced in [23] with comprehensive 
comparisons with other machine learning methods and improves it by making structural additions. 

Contribution of this paper can be counted as three folds: 
1. A spatio-temporal feature extraction method including object tracking in dark video is proposed,
2. Comprehensive comparison of ensemble and kernel-based classification methods on wildfire detection in dark
videos are demonstrated,
3. A final wildfire detection method which is robust against common source of false alarm sources in dark videos
such as city lights or car headlights is proposed.

The organization of the paper is as follows: the proposed fire detection method is explained in Section II. It follows 
with the experimental setup section, Section III, then Section IV demonstrates the test and comparison results. The 
findings are discussed and concluded in Section V. 

2. Material and Method

2.1. Extraction of Foreground Objects in Dark Videos

One challenging part of working on light emitting objects on the dark videos is they have limited visual features to 
be tracked or make any in depth visual analysis. For that reason, instead of visual ques of the object, we target to 
investigate its temporal behavior. However, we need to track an object throughout the video despite of the 
challenge. Light-emitting objects appear, disappear, flicker, move and even intersect with others or unmerge from 
the others in the video. All these cases are handled by the proposed object extraction and tracking algorithm. 

Contrary to daytime counterparts, night-time videos contain very limited color information. They are very akin to 
digital binary images. Thus, without any color processing, each frame is first converted to a black & white image 
with a threshold of  τ0 by using Otsu's method [24]. As a result, the dark pixels are represented by 0 and bright 
ones by 1. Binary blobs in each frame are detected with 8 connectivity adjacency rule. This eliminated 
disconnected or isolated foreground pixels. Moreover, blobs having fewer pixels than 𝜏0 are discarded to reduce 
number of blobs considered as noise. The reason 8 connectivity is used instead of 4 is the nature of a fire which 
has a very fragmented structure, thus, when 4 connectivity is used there will be many small blobs belonging to 
same fire flame which makes analysis difficult.  

Let bn,k be k’th fire candidate blob of n’th video frame and om be m’th object in the whole video. While in one frame 
𝑜𝑚 can be represented by k’th blob, 𝑏𝑛,𝑘 , in the succeeding frame it can be represented by k+1’th blob, bn+1,k+1. 
Then a tagging procedure should be implemented for each blob in each frame to uniquely index each object across 
the video with an ID. A tag will have a lifetime; a tag is born, lives for a while, and then dies as the object disappears 
from the video. Basically, light blobs not only appear and disappear from the video, but they also move, intersect 
or unmerge. For that reason, we need to have an algorithm to track these light emitting objects. If the subsequent 
frames have intersecting blobs, then it is considered that they are the same objects and so tagged with the same 
ID. In other words, if tagging function, bn,k → om,  is known, tagging procedure is performed as follows: 
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𝑏𝑛+1,𝑖 → {
𝑜𝑚

𝑜𝑚+1

, 𝑏𝑛,𝑘 ∩ 𝑏𝑛+1,𝑘 ≠ ∅

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1) 

The equation indicates that if two object in consecutive frames are spatially intersecting, they are the same objects 
and they need to have the same ID. Initially, blobs in the first frame also tagged with their arbitrarily initialized 
blob numbers. However, this approach has some difficulties. For example, if both 𝑏𝑛,𝑘 and 𝑏𝑛,𝑘+1 intersect with 
𝑏𝑛+1,𝑖, are those all the same objects? Another difficulty is if both 𝑏𝑛+1,𝑖 and 𝑏𝑛+1,i+1 intersect with 𝑏𝑛,𝑘, which 
objects are to be as separate? In Figure 1, both difficulties given above are represented. Assume the first frame n=1 
contains seven blobs drawn in black circles and the second frame n=2 contains eight blobs drawn in red circles. 
Blobs in the first frame take their blob numbers as ID tags, i.e., 𝑏1,1 gets tag 1, 𝑏1,2  gets tag 2, etc. Now consider 𝑏1,1 
and 𝑏2,4 intersect most, then 𝑏2,4 gets the tag ID: 1. Next, 𝑏1,2 intersects with 𝑏2,2 most, thus 𝑏2,1 dies, 𝑏2,2 pairs with 
𝑏1,2  and gets the tag ID 2. Third, 𝑏1,3 intersects with 𝑏2,2 most, and thus both 𝑏2,3 and 𝑏2,5 die, 𝑏2,2 pairs with 𝑏1,3 
and gets the tag 3. Fourth, 𝑏1,4 intersects only with 𝑏2,6 and  𝑏2,6 gets the tag 4. Fifth, 𝑏1,5 intersects only with 𝑏2,6 
and  𝑏2,6 this time gets the tag 5. In similar way 𝑏2,7 gets the tag 7, 𝑏1,6 intersects with no one and dies. 𝑏2,8 intersects 
with no one and is born by getting a new tag 8. This operation made the second difficulty apparent: 𝑏2,2 and 𝑏2,6 
have two distinct tags transferred to them. This conflict is resolved in a similar way: 𝑏2,2 intersects with 𝑏1,3 more 
than 𝑏1,2 does. Thus, it gets the tag 3 and 𝑏1,2 dies; 𝑏2,6 intersects with 𝑏1,4 most, gets the tag 4, and 𝑏1,5 dies. In 
summary, tags 2, 5, and 6 dies, tags 1, 3, and 4 survives, tag 8 is newly born, however 𝑏2,3 and 𝑏2,5 are stillbirths. 

Figure 1. The figure shows possible scenarios that might come up during glowing object tracking in a dark video. Black and 
red circles indicate the foreground object location in the nth and the next frame, i.e. (n+1)’th frame. Since the flame has limited 
visual ques, their spatio-temporal locations are used to track the objects throughout the video. 

2.2 Spatio-temporal Feature Extraction

In order to capture the temporal behavior of the flickering flame, the features are extracted from a number of video 
sequences. Size of the temporal window is a tradeoff between detection time of fire alarm and its accuracy. In order 
to extract features from same number of frames, a tag that is not apparent along a full window is discarded from 
computations. 

Features of a full-window tag are extracted from change in various motion variables of the tagged object. Thirty 
features are derived from these 6 variables which can be listed as: pixel area of the object in frame, 2D position of 
the mass center of the object, height, width and area of smallest bounding box (BB) of the object. 

By using these variables, we can realize distinctive characteristics of a night fire that are flickering and motion 
behavior. The variables are followed along a window and various features are extracted as explained presently.  

While an object's variance of pixel area is large along a window, it is small for moving vehicles and fixed sources 
such as street, city, or house lights since area of such non-fire light sources does not change suddenly along a video. 
However, due to flickering motion of a fire, the area will change rapidly. Similarly, variance of height and width of 
BB will usually be large for fire objects and small for others. It is for this reason, mean and variance of height and 
width of a BB as well as their first and second order derivatives will be distinctive between fire and non-fire objects. 

Let  ψn be value of a variable at n’th frame in a window with N number of frames. For many of these variables, 
mean and variance is computed as follows, respectively: 
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𝜇0 =
1

𝑁
∑ 𝜓𝑛

𝑁

𝑛=1

 (2) 

𝜎0
2 =

1

𝑁 − 1
∑ ∣ 𝜓𝑛 − 𝜇0 ∣2

𝑁

𝑛=1

(3) 

Mean and variance of first and second order derivative of some variables are computed as in Eq. (4-7), respectively. 

𝜇1 =
1

𝑁 − 1
∑(𝜓𝑛 − 𝜓𝑛−1)

𝑁

𝑛=2

 (4) 

𝜎1
2 =

1

𝑁 − 2
∑ ∣ (𝜓𝑛 − 𝜓𝑛−1) − 𝜇1 ∣2

𝑁

𝑛=2

(5) 

𝜇2 =
1

𝑁 − 2
∑(𝜓𝑛 + 𝜓𝑛−2)

𝑁

𝑛=3

 (6) 

𝜎2
2 =

1

𝑁 − 3
∑ ∣ (𝜓𝑛 + 𝜓𝑛−2) − 𝜇2 ∣2

𝑁

𝑛=3

(7) 

For a fire object, variance of center of mass (CoM) is higher in vertical axis than in lateral axis. For a car moving 
horizontally, variance of CoM of headlights in vertical axis is very small. In the same manner, variance of CoM of 
fixed light sources in both axis is very small. These are the reasons we used variance of CoM as a feature. 

Here, it is important to note that horizontal and vertical location of CoM is not considered as features since a fire 
can take place anywhere in the video. Otherwise, the system can be trained for a specific location that fire is 
expected to start. That's why position free features (i.e., mean and variance of first and second order derivatives) 
are used. In Table 1, variables and features are summarized. 

If a feature belongs to a greater interval than other features, impact of small-bounded ones may be reduced. 
Normalization is the solution to avoid such a problem. Min-max normalization has the ability to preserve relation 
between elements of a feature vector, thus it is chosen. Let δi,j be value of j’th feature at sample i. Then, min-max 
normalization is defined as 

𝛿𝑖,𝑗 =
𝛿𝑖,𝑗 − 𝑚𝑖𝑛𝛿𝑖,𝑗

𝑚𝑎𝑥𝛿𝑖,𝑗 − 𝑚𝑖𝑛𝛿𝑖,𝑗
(8) 

Table 1. Extraction of Features from Variables. 
Feature Feature 1st Der Feature 2nd Der  

Mean Var Mean Var Mean Var    
Pixel Area x x x x 
CoM x axis x x x x 
CoM y axis x x x x 
BB width x x x x x x 
BB height x x x x x x 
BB area x x x x x x 

In real-time applications, video stream may be continuous. Therefore, after adding a new window, normalization 
should be implemented throughout up-to-date data. 

2.3 Training

In this work, as a base classifier, Support Vector Machines (SVM) is used. Besides SVM, majority voting, Random 
Forests, AdaBoostM1, and IBk classifiers used and their performance compared to SVM. First a classifier model is 
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constructed and then the model predicts class of any test instance it is supplied. Here, we used LIBSVM library 
with radial based function (RBF) kernel since our data set has a nonlinear classification characteristic. 

In order to get most accurate classification, best c ∈ I+ cost and γ ∈ I+ impact range parameters should be found. 
If c2 > c1 > 0 and γ2 > γ1 > 0 are predetermined intervals, then optimization requires a  [c1, c2] × [γ1, γ2] size 
grid search for the best (c∗, γ∗) pair [25]. In our tests, an accelerating intervention to optimization saved time and 
gave a better (c∗, γ∗) pair compared to pairs obtained when not intervened. The intervention is simple: after at 
least ten trials, if the last five trials produce a mean absolute deviation of accuracy no greater than 1.5, halt the 
search and use current pair as (c∗, γ∗). 

Classes of instances in training set is determined by a professional for fire objects as 1 and for non-fire objects -1. 
With (c∗, γ∗) pair, a model is constructed in SVM and class of all instances from a distinct test set is predicted from 
the set {−1,1}. Accuracy and elements of confusion matrix (i.e., true positive rate, false negative rate, true negative 
rate, and false positive rate) are used as performance measures. 

While SVM gives good results of predictions, majority voting (MV) improves these results significantly. In a test 
set, MV is implemented between distribution of fire or non-fire classification of an object tag. Then, class of the 
object is redetermined according to result of MV. 

3. Setup of Experiments

Experiments implemented on a video dataset curated by the authors. Sketch of place that fire videos are recorded 
given in Figure 2. The maximum distance a camera can see in the night is 1km and distance between fires and 
cameras changes from 30m to 100m. Besides fires, in  360𝑜  sight of the cameras there are a series of streetlights, 
both bright and dark roads, city lights, tower lights flashing on and off, moving vehicle headlights in low- or high-
density traffic, short distance house and streetlights. 

Figure 2.  Dataset videos are intentionally taken from a place where possible negative light sources appear in the scene 

such as city lights or car lights. Location of test fires (stars), cameras (arrows) and sight of the scene is shown in red circle. 

The maximum distance of the sight from cameras is around 1 km. The road section (blue circle) generated challenging 

fire-like vehicle headlights during the fire recordings. 

Four different cameras are used recording fires usually in 640x480 resolution: Casio Exilim EX-Z350, Nikon 
D3200, Samsung S850, and Samsung WB100. In total 15 night fires are recorded. In Table 2, some characteristics 
of the videos are tabulated. A montage of the videos are given in the Figure 3. 

The global image threshold is experimentally determined to be τ0 = 0.5, thus objects with low luminance and noise 
can be eliminated. Furthermore, objects having pixels fewer than 𝜏1 = 16 also discarded even fire objects since an 
event size lower then 16 pixels is not considered significant. Remaining fire candidates are labelled as 1, and other 
objects are labelled as -1. An object is decided to be fire if only the object represents a flame object. Some very 
close reflections of a flame object, mostly on the ground, also behave exactly as the flame object; however, these 
objects are considered as not-fire. 

Analysis implemented in MATLAB® environment for window sizes of 5, 10, 20, 50, 100, and 200 pixels. SVM 
parameter optimization intervals are experimentally determined to be c1 = 5, 𝑐2 = 9, γ1 = 4, 𝛾2 = 8. 
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Table 2. Properties of the samples in the video dataset.
Video Duration # of frames # of negative

samples
# of positive
samples

1 9:41 17439 99 178 
2 16:09 29091 265 148 
3 21:23 38518 27 307 
4 29:00 52231 17 671 
5 04:00 6009 505 175 
6 11:04 16608 2044 471 
7 12:46 19158 530 405 
8 20:00 30003 6 1343 
9 12:05 21746 81 1508 

10 14:14 25608 89 1608 
11 18:10 32688 1208 927 
12 20:00 35977 266 1876 
13 08:34 15435 2681 1113 
14 13:17 23913 7758 1839 
15 03:25 6145 222 624 

Figure 3. Representative images of the dataset videos indicated in Section 3. The videos include both fire and not-fire 

frames. 

When a video is chosen for test, remaining ones are used for training (leave-one-out). For a total number of 90 
experiments, average training and test set sizes are 7437 and 5058 instances, respectively. It should be noted that 
number of instances in a training set is limited to a maximum 10,000 while no restriction applied to test sets. 
Average distribution of fire and not-fire instances over 6 windows are tabulated in Table 3 and number of 
instances per window size is given in Table 4. 
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1 56.31 9 0.09 
2 66.86 10 0.40 
3 63.89 11 10.35 
4 62.20 12 01.36 
5 03.34 13 92.54 
6 08.89 14 91.23 
7 08.10 15 18.32 
8 0.08 - - 

Table 4. Number of instances among windows. 
Window size # of instances

5 280.381 
10 102.588 
20 44.584 
50 16.243 

100 7.758 
200 3.723 

Some fires were able to reach up to 3m height under low wind conditions. In videos 1, 2, 3, and 4, a very deceptive 
streetlight is apparent. From video 9 to 15, very deceptive city lights combined with semi-intense traffic are 
apparent. Besides these not-fire objects, a torch is also used to create false objects (Figure 4, video 3). 

4. Experimental Results

In this section, performance of our method evaluated and experimental results are analyzed. The measures we use 
for evaluation are accuracy, true positive rate which implies state of "true alarm", and false negative rate which 
implies state of "false alarm". Other measures can be false negative rate or "missed alarm" and true negative rate 
or "true silent". 

4.1 SVM Results

Selected performance measurements of the proposed method are shown in Table 5. When proposed features are 
used for a night fire, SVM is able to classify new instances correctly with an accuracy of usually over 90%. 
Implementing MV after SVM classification boosts accuracy rates usually over 95%. True Positive Rate (TPR) values 
are over 94% on average, however in some videos True Negative Rate (TNR) values are low due to reasons given 
below. 

Table 5. Accuracy, TPR and TNR measurements on the videos. SVM and SVM+MV methods are compared. 
Video SVM

(Accuracy)
SVM+MV
(Accuracy)

SVM
(TPR)

SVM
(TNR)

1 0.90 0.97 0.91 0.89 
2 0.88 0.99 0.78 0.92 
3 0.96 0.99 0.92 0.98 
4 0.98 0.99 0.97 0.99 
5 0.84 0.84 0.84 0.69 
6 0.92 0.95 0.95 0.45 
7 0.93 0.93 0.99 0.30 
8 0.98 0.99 0.97 0.00 
9 0.95 0.98 0.95 0.22 

10 0.96 0.99 0.97 0.15 
11 0.92 0.93 0.99 0.19 
12 0.97 0.99 0.97 0.52 
13 0.98 0.99 0.99 0.97 
14 0.97 0.99 0.99 0.97 
15 0.81 0.81 0.99 0.02 

In videos 5 and 6, the false alarm generating frame region is a sharp turn which is part of the road in the scene 
(Blue circle in Figure 2). This part of the road extends from front to back on the scene, which makes vehicles move 
not quite linearly. Since traffic is semi-intense or intense during the recording time, vehicles slowed down, and 

Video Average #of
negative

objects (%)

Video Average #of
negative objects

(%)

Table 3. Distribution of Not-Fire classes among the videos. 
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overhead lights clustered to form fire-like moving objects. In Figure 4, on top, a sample frame is shown. Even 
though tag 11 is a not-fire object, it is detected as fire and boxed.  

In videos 7, 8, 10, 12, and 15, reflections at not-fire regions on the ground up to half or one meter close to fire origin 
and intense luminance on objects very close to fire cause an error. In Figure 4, on middle, tag 30 is a fire objects 
that is predicted as fire, however though tag 172 is a reflection and not a fire, it is classified as fire. Notice that, 
since these types of errors appear when a fire is the case, they do not really cause a false alarm. 

In videos 9 and 11, a moving torch initially turns to the camera and then turns quickly back which makes the 
illuminated area first grow and then suddenly shrink, eventually causes an error. In Figure 4, on bottom, both tags 
1873 and 1975 predicted as fire while tag 1975 is a not-fire object. 

Figure 4.  Examples of false detections are shown. TOP: The fire on the left (Object tag: #1) is correctly detected. 
However, flashlights of the cars passing by (Object tag: #11) are falsely labeled as fire object. MIDDLE: Fire (Object 
tag: #30) is correctly detected while its reflection (Object tag: #172) is also falsely detected, BOTTOM: (Object tag: 
#1975) is a correctly detected fire. (Object tag: #1873) is a flashlight and it is a false detection. 

Window size also has an effect on accuracy. When window size increases, more evidence per window is collected 
for decision process which allows better predictions. For pre-processing, which includes tagging procedure, more 
computation is required. However, for SVM runs, less computation is the case. When window size decreases less 
evidence per window is collected, less pre-processing computation and more SVM computation is required. Table 
5 shows performance measures for two windows: N=5 and N=200. When N=5, average accuracy is 89.47% and 
when N=200, accuracy also increases to an average of 96.63%. An increase in window size also decreases false 
alarm rates. For example, in Figure 4 and video 1, the street, the house, and a torch light are predicted as fire 
objects, When window size is 200, at the beginning of the video house lights very short time, the torch never and 
due to move of the camera at the end of the video the streetlight very short time are predicted as fire. Even though 
this encourages us to use longer windows (preferably with high fps cameras) due to heavy work of pre-process, 
alarm response time will eventually decrease. In Table 6, NaN corresponds to existence of no not-fire objects in 
the video. In videos 11 and 15, TNR value is 0 due to misclassification of intense luminance of a vehicle standing 
very close to fire (Figure 4). 

Table 6. Investigation of effect of window size on the classification accuracy. Window sizes N=5 and N=200 are 
used in the tests. 

Video SVM
(Accuracy)

SVM
(TPR)

SVM
(TNR)

N=5 N=200 N=5 N=200 N=5 N=200 
1 88.28 91.09 0.96 0.87 0.81 0.93 
2 82.98 91.32 0.77 0.80 0.85 0.96 
3 92.25 98.00 0.88 0.94 0.94 1.00 
4 97.43 98.78 0.95 0.97 0.98 0.99 
5 79.03 91.89 0.79 0.91 0.78 NaN 
6 86.61 100.0 0.93 1.00 0.61 - 
7 88.03 100.0 0.99 1.00 0.12 1.00 
8 95.87 99.20 0.95 0.99 0.00 NaN 
9 89.59 100.0 0.89 1.00 0.43 NaN 

10 94.90 98.04 0.95 0.98 0.17 NaN 
11 87.68 98.47 0.99 1.00 0.36 0.00 
12 95.10 98.78 0.96 0.98 0.51 NaN 
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13 95.66 99.34 0.94 0.98 0.95 0.99 
14 94,61 99.54 0.98 1.00 0.94 0.99 
15 73.95 85.00 0.96 1.00 0.01 0.00 

Apart from errors explained above, the proposed method successfully does not classify street or city lights, 
headlights of vehicles and many other not-fire objects. 

4. 2. Comparisons with the other classification methods

SVM is a standard tool for image classification problems. However, there exist some other tools performs equally, 
some even better. In this section, we implement Random Forests (RF), AdaBoostM1 (AB), IBk and J48 machine 
learning tools on our data. Performance measures are the same as we used for SVM at previous section. The 
platform used for implementation is Weka data mining software by The University of Waikato. Default parameter 
set up is used for the tests. Contrary to SVM experiments, training data is not limited and full training set is used 
for building a model (see Table 4). In addition to SVM, 360 more tests are implemented, one test per video per 
window size, and per machine learning tool.  

Accuracy results are given in Table 7, In the table, except videos 11 and 15, RF showed the best performance among 
other tools. Second best performance belongs to SVM. AB showed best performance for video 15 and IBk for video 
11. Videos 3, 4, 6, 7, 8, 10, 11, 12,13, and 14 show a robust performance under any machine learning tool while
videos 1, 2, 5, 9, 15 shows unstable performance. Performance of these methods is summarized in Figure 5. In
Table 8, TNR values are tabulated. On average, IBk gives lowest average false alarm rate of 32.01% and SVM gives
the highest average rate of 44.75%. Most robust videos in terms of TNR value are videos 3, 4, 13, and 14. After all,
all these analysis shows us in terms of fire catch RF performs best, however in terms of false alarm avoidance IBk
performs best.

Table 7. Comparison of the accuracies of SVM, Random Forest (RF) AdaBoostM1 (AB), IBk 
Video SVM RF AB IBk

1  90.0  94.4  83.9  91.5 
2  88.0  94.0  83.1  89.6 
3  96.0  98.6  92.8  94.0 
4  98.0  98.4  95.0  95.6 
5  84.0  88.3  72.8  78.4 
6  92.0 92.6  86.3  87.6 
7  93.0  95.1  92.8  93.8 
8  98.0  98.8  95.5  94.4 
9  95.0  97.2  85.4  86.5 

10  96.0  98.9  96.8  94.0 
11  92.0  93.8  93.6  94.0
12  97.0  98.6  95.6  93.1 
13  98.0  99.3  98.1  97.8 
14  97.0 98.3  97.3  97.2 
15  81.0  84.6  88.0  79.3 
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Figure 5.  Comparison of the accuracies of SVM, Random Forest (RF) AdaBoostM1 (AB), and IBk given in the Table 
7. 

Table 8. Comparison of TNR of SVM, Random Forest (RF) AdaBoostM1 (AB), IBk 
Video SVM RF AB IBk

1 10.40 08.38 17.20 09.00 
2 07.70 05.55 21.26 03.90 
3 01.90 00.76 07.58 01.50 
4 01.10 01.12 04.29 01.30 
5 30.80 13.31 15.77 18.86 
6 54.50 53.91 51.19 58.10 
7 69.90 68.90 84.50 78.00 
8 100.0 83.30 100.0 00.00 
9 77.20 54.70 80.00 29.70 

10 85.30 89.20 93.90 85.52 
11 80.20 57.12 60.80 48.60 
12 47.70 04.84 56.60 44.20 
13 02.00 00.72 01.70 01.90 
14 02.80 01.86 02.83 02.90 
15 99.80 68.90 37.72 96.70 

5. Discussion and Conclusion

In this paper, a video-based wildfire detection method for under-illuminated environments is proposed. The 
experimental results show that temporal behavior of the flickering flame in a dark video has a distinct 
characteristic, and it is well suited for flame and fire detection in low light conditions. This temporal behavior of 
the fire allows us to extract descriptive spatio-temporal features from a fire video even the visual texture of the 
objects in the dark video are not visible. The proposed object features are taking advantage of temporal flickering 
motion of a night fire. The classification method can distinguish the deceptive false alarm sources such as city and 
streetlights, vehicle headlights and flickering reflections.  

It is experimentally verified that the fire detection accuracy of the proposed method is over 90% on the average. 
The method is tested with various hyper-parameters such as temporal window size. It is shown that when the 
temporal window size is increased to include 200 consecutive frames, over 95% accuracy on average was 
obtained.  

The proposed object features are tested with various classification methods such as SVM, Random Forests, 
AdaBoostM1, and IBk. The comprehensive comparison shows that Random Forests classification attains the 
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highest accuracy on the extracted features. It is also shown that the detection accuracy of IBk is comparable to the 
most accurate model. Moreover, among all tested machine learning algorithms, IBk gives the smallest false alarm 
rate, 32.01%, while SVM gives the highest. Therefore, when the reduction of the false alarm rate is more critical, 
IBk can be employed. The method is fundamentally applied to fires that are not far away. The method is based on 
temporal features of the fire object, which are derived from fires videos that are captured low to mid-range 
distances. It should be expected that flickering and other temporal behavior of a far distance fire should have 
differing features then that of a low to mid-range fire. Therefore, future research efforts can extend the method for 
detection of fire at far distance.  
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