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Abstract
The increase of the product variety in the financial markets requires a clear understanding
of the dependence between such instruments for the decision-makers. For a few decades,
such dependence structures were often modeled with symmetric copula families. How-
ever, financial data may reveal an asymmetric structure, which can be determined via
directional dependence measures in the context of copulas. Previously, some asymmetric
copula models were proposed in different ways using Khoudraji’s device. But they are
merely used for financial time series data in a broader sense. In this study, a new set of
asymmetric copulas were defined by using one parameter of Archimedean copula families.
For this aim, widely used copula families were studied and the corresponding directional
dependence measures were analyzed. To illustrate the efficiency of the parameter estima-
tion method, a small simulation scenario consisting of an asymmetric dependence pattern
was carried out. Thereafter, the proposed asymmetric bi-variate copulas with directional
dependence coefficients were investigated for two different stock market data. The study’s
primary findings suggested that the newly generated asymmetric models might be useful
for directional dependence. Especially, the estimated directional dependence coefficients
can serve as an indicator to explain the variability of one stock in terms of the other.
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1. Introduction
In the past three decades, copulas have gained popularity for modeling dependence

structures between random variables, especially in finance and risk management. The
main advantage of copulas relies on the fact that the joint distribution of the variables
and their distribution functions are considered separately for dependence modeling. Be-
sides, copula functions, which arise from Sklar’s theorem, are really flexible modeling
tools for multivariate data in various research fields. The widely used normal distribution
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assumption for the multivariate data can be properly relaxed and they allow the identifi-
cation of possible tail dependencies. For a general overview of the foundations of copula
theory, the books of [17] and [30] are referred for interested readers.

With these main advantages, the use of copulas has accelerated with real-life applica-
tions in finance, actuarial science, econometrics, bio-statistics, medical research, engineer-
ing, and hydrology. Mainly, for the bivariate distribution of continuous random variables,
the parametric approach has been investigated over different copula families. On the other
hand, most of the existing copulas preserve symmetric dependence patterns, equivalently,
the exchangeability of the variables. For that reason, the necessity for the proposed asym-
metric copulas appears since classical symmetric copulas are not suitable for all data sets.
Regarding this issue, as a new measure between the variables, directional dependence was
introduced based on asymmetric copulas.

By the 2000s, many researchers studied the asymmetric class of copulas by introducing
different construction methods. Firstly, Rodriguez-Lallena and Ùbeda-Flores [34] intro-
duced a generalization of some widely used bivariate copulas, later that inspires [21] and
[27] for deriving new asymmetric models. Thereafter, Alfonsi and Brigo [2] introduced
an asymmetric copula based on the periodic functions. Later on, Liebscher [26] proposed
new methods, close to the study of [19], for the construction of asymmetric multivariate
copulas. Before this study, the asymmetry concept is discussed by [25, 30, 31]. After the
study of [26], a new technique for asymmetric copulas is introduced by [7]. The idea is
mainly similar to the first approach of [26] so that the products of copulas with powered
arguments are used for that construction. Most recently, the mixture of symmetric copulas
and the convex combination of asymmetric copulas are proposed by [42] as a new method
for the reliability data. As an extension of the study of [7], Mukherjee et al. [29] have
investigated various combinations of asymmetric copulas over the car rental data set. As
a general understanding of the above constructions, Siburg et al. [37] studied the order of
asymmetry of bivariate copulas to fill that theoretical gap. Mainly, the departure point of
all the above studies about asymmetric copulas dates back to the earlier study of [19].

On the other side, the directional dependence measure was studied with the help of
asymmetric copula families by [6,28,39,40]. Briefly, this measure corresponds to the likely
direction of influence between two random variables [18]. In the earlier studies, Sungur
[39] mentioned the importance of copula regression for modeling directional dependence.
Under the copula regression setting, Sungur [39] described this measure using both mar-
ginal and joint behavior of random variables. Additionally, it is possible to detect the
existence of directional dependence with a quantified degree. After this contribution, sev-
eral researchers used that idea by considering asymmetric copulas. To illustrate, Jung et
al. [18] and Uhm et al. [41] investigated the asymmetry of financial data using an asym-
metric version of the Farlie-Gumbel-Morgenstren (FGM) copula. In addition, Kim et al.
[22] and Kim et al. [20] considered both [34] and survival truncated FGM to understand
the directional dependence using gene data. In recent work, the previous limitations of
the studies for directional dependence were properly addressed and a multi-step procedure
is proposed for optimal parameter estimation by [23]. However, the considered asymmet-
ric copula families are limited to the use of independent copula and main Archimedean
families.

As an extension of cites existing literature, the main contributions of our study are
two-fold: (1) to investigate Archimedean family based asymmetric copulas, for completing
the missing models not mentioned by [23] and [29], and (2) to discuss the model selection
with the interpretation of directional dependence coefficients, not even mentioned by [29]
before. Apart from the use of FGM or Ali-Mikhail-Haq (AMH) type families during
the construction, widely considered Archimedean families; Clayton, Gumbel, Frank and
copulas are incorporated with the independence copula. Previously, in the study of [23],
only the combinations with same families are studied for the construction of asymmetric
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families using the general formula introduced by [7]. On the other hand, even if different
constructions are considered using nine main symmetric copula functions by [29], the
directional dependence interpretation has not been discussed. In that respect, our study
aims to harmonize the concepts of asymmetric copulas and directional dependence by
constructing new asymmetric families and investigating their benefits over the financial
data set.

In this paper, dissimilar to real life applications performed earlier, the existence of
the directional dependence in the financial data was empirically verified rather than fo-
cusing on the estimation of directional dependence directly. Besides, after modeling the
financial market time series data, the asymmetric behavior is tested for the residuals of
the fitted model. In order to show the performance of the asymmetric copula models,
the numerical findings of the study were obtained by studying two different stock mar-
ket datasets, including a comprehensive model selection. The first dataset was taken
from the CDVine R package [5] while the second up-to-date data is retrieved taken
from the world stock market between 01.01.2019-24.04.2020 including Covid-19 impact
(https://tr.investing.com/indices/world-indices). Recently, one of the hot top-
ics of economic studies is to unravel the possible impacts of the pandemic on the economics
of countries [1, 3, 4, 8, 15, 32, 35, 43]). Besides, many of the opponents declared that the
possible impacts of this worldwide health and economic crisis might outrun the conse-
quences of the 2008 economic crisis. In that respect, the directional dependence measures
might be a good subsidiary instrument to understand the influence between the consid-
ered stock data pairs. For this motivation, the second stock market data belongs to the
beginning period of the worldwide Covid-19 crisis. The most widely applied log-return
series are extracted for the first four months of the Covid-19 pandemic to apply time series
analysis and asymmetric testing before copula modeling. In that respect, the findings of
the proposed asymmetric models can serve as good complementary research for the above
mentioned contributions in this field.

This article is organized as follows. In Section 2, with its six subsections, we briefly
review the concept of the symmetric and asymmetric copula models with their main prop-
erties, asymmetric tests, the directional dependence measure, and primary time series
modeling. The same section describes briefly the considered visual and non-visual tools
for parameter estimation and model selection. To illustrate the proposed procedure, Sec-
tion 3 provides the main findings for the parameter estimation of a simulated data set.
Thereafter, two empirical financial datasets are studied, one of them including the stock
market returns during the initial months of the Covid-19 health crisis. Finally, the main
conclusion of the study is summarized with its pros and cons in Section 4.

2. Material and method
2.1. Copulas

Copula is a probabilistic modeling tool, first described by [38]. It is often used to model
the dependence structure of multivariate data, especially in the areas such as finance,
economics, and actuarial science. Copulas allow us to model the structure of the joint
distribution independent of marginal distributions, equivalently saying that a copula is
an approach that eliminates the effects of marginal distributions. In this respect, copula
modeling has the advantage of using it as an alternative to other joint distributions.
Additionally, another important advantage of copulas over joint models is that they can
model dependency even if the multivariate normality assumption is violated. Although
it is difficult to capture the relationship between variables when they are not normally
distributed, the dependence pattern between these variables can be determined by choosing
the appropriate copula.

(https://tr.investing.com/indices/world-indices)
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In general, a copula is an n-dimensional joint distribution function, defined over [0, 1]n
with uniformly distributed marginals. Specifically, a bivariate copula is a function C :
[0, 1]2 → [0, 1] satisfying the following properties:

• C(u, 0) = C(0, v) = 0,
• C(u, 1) = u and C(1, v) = v for all u, v ∈ [0, 1] ,
• C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0, for all u1, u2, v1, v2 ∈ [0, 1] where

u1 ≤ u2 and v1 ≤ v2.

Due to Sklar’s theorem [38], any bivariate continuous distribution function, FXY (x, y),
can be represented as a function of its marginal distribution of random variables X and
Y , FX (x) and FY (y), by using a two-dimensional copula. There exists a unique bivariate
copula C : [0, 1]2 → [0, 1] that can be written as

FXY (x, y) = C(FX(x), FY (y) = C(u, v),

where u and v show the continuous empirical marginal distribution functions of FX (x)
and FY (y), with uniform distribution U(0, 1), respectively. Originally, the most widely
considered copula families satisfy the ex-changeability, i.e. C(u, v) = C(v, u). However,
the asymmetric copula setting emerges from the unsatisfied ex-changeability. This prop-
erty brings us to the next subsection for the construction of asymmetric copulas using
symmetric ones.

2.2. Symmetric and asymmetric copulas
According to the theorem defined by [7], for all α, β ∈ (0, 1) and for all copulas C1 and

C2, the function Cα,β : [0, 1]2 → [0, 1], defined by

Cα,β (u, v) = C1
(
uα, vβ

)
C2

(
uα, vβ

)
, (2.1)

is a copula, where α = 1 − α and β = 1 − β. Here, an asymmetric copula is formed for
α ̸= 1/2, β ̸= 1/2. If α = β then Cα,β is symmetric. For two symmetric copulas, C1and
C2, if Cα,β (u, v) = Cβ,α (v, u) then Cα,β is a symmetric copula. On the other side, if
Cα,β (u, v) ̸= Cβ,α (v, u) then Cα,β is defined as the asymmetric copula.

According to the Lemma 1 given in [29], if C1 and C2 are two symmetric copulas
with α, β ∈ (0, 1) then ρ(Cα,β) = ρ(Cβ,α) and τ(Cα,β) = τ(Cβ,α), where Spearman’s
rho and Kendall’s tau correlation coefficients depend on copula, are defined as ρ =
12

∫ 1
0

∫ 1
0 C(u, v)dudv − 3 and τ = 4

∫ 1
0

∫ 1
0 C(u, v)dudv − 1, respectively. With this propo-

sition, it is said that in asymmetric models, the correlation values calculated depending
on the copula for the selected (α, β) parameters are different from the correlation values
calculated for (β, α) (i.e. Cα,β (u, v) ̸= Cβ,α (v, u) ). In order to see this relationship, inter-
ested readers referred to the previous study of [29] with reproducible Mathematica codes,
(available at https://goo.gl/plkJ7).

In order to choose the right model for the data, the symmetry test (or ex-changeability
of the variables) must be performed first. For symmetry tests, Rn, S∗

n and Tn mea-
sures given by [12] are used in the literature. In this paper, Cramer-von Mises statis-
tics, S∗

n=
∫ 1

0
∫ 1

0

{
Ĉn (u, v) −Ĉn (v, u)

}2
dĈn (v, u) was used for testing symmetry. If the

p-value corresponding to this statistic is less than 0.05, the null hypothesis established as
H0 : Ĉn(u, v) = Ĉn(v, u), which means the symmetry of the data, is rejected. In other
words, it is concluded that the data are asymmetrically dependent. In our study, this
ex-changeability test was conducted with the “exchTest” function in the “copula” package
[16].

The constructed asymmetric copula models used in this paper are given in Table 1.
Here, the C12-C15 copula family formed using Equation (2.1) by choosing the independent
copula for C1 and one of the symmetrical Archimedean copulas for C2, called the Khoudraji

https://goo.gl/plkJ7
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copula family [11,19,23]. Similarly, C22-C33-C44 are previously studied by [23] by setting
both C1 and C2 as the same Archimedean families. Additionally, new proposed models
C23-C25, C34-C35, C45 and C55 are investigated in this study. These added combinations
are the new asymmetric copula models, not mentioned in [23] before.

Table 1. Proposed asymmetric copula models (θ, θ1 and θ2 show the dependence
parameters with α, β are shape parameters).

Cα,β (u, v) C1(uα, vβ) C2(uα, vβ)
C12 Independent Clayton (θ)
C13 Independent Frank (θ)
C14 Independent Gumbel (θ)
C15 Independent Joe (θ)
C22 Clayton (θ1) Clayton (θ2)
C23 Clayton (θ1) Frank (θ2)
C24 Clayton (θ1) Gumbel (θ2)
C25 Clayton (θ1) Joe (θ2)
C33 Gumbel (θ1) Gumbel (θ2)
C34 Gumbel (θ1) Frank (θ2)
C35 Gumbel (θ1) Joe (θ2)
C44 Frank (θ1) Frank (θ2)
C45 Frank (θ1) Joe (θ2)
C55 Joe (θ1) Joe (θ2)

For the construction of asymmetric families in Table 1, the widely known Archimedean
one-parameter copula families (2-5) can be defined as follows:

(1) Independent: C (u, v) = uv,

(2) Clayton: C (u, v) =
(
u−θ + v−θ − 1

)− 1
θ , θ ∈ (0, ∞),

(3) Gumbel: C (u, v) = exp{−
[
(−log(u))θ + (−log(v))θ

] 1
θ }, θ ∈ [1, ∞),

(4) Frank: C (u, v) = −1
θ log

{
1 + (e−θu−1)(e−θv−1)

(e−θ−1)

}
, θ ∈ R{0},

(5) Joe: C (u, v) = 1 −
[
(1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ

] 1
θ , θ ∈ [1, ∞),

whereas the independent family shows no dependence pattern among the variables so that
the parameter is directly equal to zero [30]. Here, Clayton, Gumbel, Frank, and Joe are
well-known families having different dependence structures. For example, Frank copula is
preferable to examine the symmetric dependence structures. On the other hand, Clayton
and Gumbel are useful to identify the tail dependencies at lower and upper quantiles,
respectively. Even if the formulation is a bit different, Joe family behaves similarly to
Gumbel with the same dependence parameter space.

2.3. The measurement of directional dependence
Suitable dependence modeling of the bivariate dataset is a vogue but not a trivial study.

Besides, real datasets such as currency or stock data may not always be symmetrical. For
this reason, asymmetric copula models are more useful than symmetrical copula models in
such financial applications. In addition, the examination of directional dependence among
the considered variables can explain the variability of one variable with respect to another.
For this purpose, directional copula models created with asymmetric copulas are used in
different research fields such as economics [29], finance [18,37,41], medicine [23], reliability
and life models [42].
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The existing asymmetry, in the non-linear type copula functions, allows us to describe
the direction of dependence [39]. More clearly, in terms of the copula regression functions,
when the dependency between the (U, V ) variable pair is not symmetric, the forms of
the regression functions for U and V will not be the same. Therefore, the direction of
dependence from U to V or V to U will be different for asymmetric structures. For
that purpose, we recalled the general measures for the directional dependence in joint
behaviour proposed by [39], in which two types of definitions are discussed. While one
of them is affected by the marginal behaviour of the variables, the other one is affected
by their joint behaviour in terms of their copula. In practice, whenever the marginal
distributions are not known, normalized ranks of observed data are used as a starting
point for the directional dependence analysis. For the interested reader, the detailed
properties and examples of directional dependence measures can be obtained from [39]
and [40]. In addition, Jung et al. [18] and Kim and Kim [23] summarized some features
related to directional dependence. Recently, there is another theoretical study about the
directional dependency, which is renamed as copula correlation ratio, over the generalized
FGM copula family [36].

The copula approach to directional dependence eliminates the influence of marginals.
If it is desired to create a directional dependence model in the case of joint behaviour, it
is recommended to use the asymmetric copula model. In [0,1], U and V marginals are the
same for the uniformly distributed, transformed (U, V ) = (FX (X) , FY (Y )) pair, whereas
in copula regression functions, from a given value of U (U = u) to the V direction and
from a given value of V (V = v) to the U direction, there could be a difference as stated
by [39, 40]. That is, while the marginals of the variables are the same, the results in the
joint behaviour may be different.

In this setting, the directional dependence within the joint behaviour can be examined
with copula regression functions. For this purpose, as it was mentioned before it would
be more appropriate to choose asymmetric copula as the candidate copula for directional
dependence models by [18, 23, 39, 40]. In order to calculate the directional dependence
coefficients, firstly, for a uniform marginal (U, V ) random vector defined on [0,1], with a
copula function C, conditional distributions are defined as follows:

The conditional distribution function for V given U = u is denoted by Cu (v):

Cu (v) ≡ P (V ≤ v|U = u) = ∂C (u, v, ∅)
∂u

and the conditional distribution function for U given V = v is denoted by Cv (u):

Cv (u) ≡ P (U ≤ u|V = v) = ∂C (u, v, ∅)
∂v

,

where ∅ = (θ1, θ2, α, β) is the unknown parameter set at the beginning.
Definitions of the copula regression functions (in the directions of U to V (U → V )

and V to U (V → U) ) and the coefficients of directional dependence according to these
conditional distributions are given below. The copula regression functions for U → V and
V → U are defined as

rV |U (u) = E [V |U = u] = 1 −
∫ 1

0
Cu (v) dv,

rU |V (v) = E [U |V = v] = 1 −
∫ 1

0
Cv(u)du.

Thereafter, the coefficients of directional dependence in joint behavior can be calculated
by plug-in the above quantities:

ρ
(2)
U→V =

V ar(rV |U (U))
V ar(V )

= 12E

[(
rV |U (u)

)2
]

− 3,
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ρ
(2)
V →U =

V ar(rU |V (V ))
V ar(U)

= 12E
[
(rU |V (v))2

]
− 3,

from U → V and V → U , respectively. Here, ρ
(2)
U→V can be interpreted as the proportion

of total variation of V that can be explained by the copula regression of V on U. In
the opposite direction, ρ

(2)
V →U explains the proportion of total variation of U that can be

explained by the copula regression of U on V.
Above mentioned measurements, which we defined as directional dependence measures,

were equivalently called copula correlation ratios. Although there is a closed form solution
for the FGM family, directional dependency measurements cannot be obtained theoreti-
cally [36]. The reason for this is related to the non-existent closed form representations
on conditional distribution functions for parametric copulas. For this reason, the for-
mulas given below can be used to provide close estimates of the directional dependence
coefficients in various cases.

ρ̃
(2)
U→V = 12

S

S∑
s=1

(
r̃V |U (us)

)2
− 3,

ρ̃
(2)
V →U = 12

S

S∑
s=1

(
r̃U |V (vs)

)2
− 3,

where, the vector (us, vs) is pseudo observations transformed from data to U (0, 1); S is the
size of pseudo observations; r̃V |U (u) = 1− 1

S

∑S
s=1 Cu(vs) and r̃U |V (v) = 1− 1

S

∑S
s=1 Cv(us)

are approximately calculated copula regression functions over the pseudo observations,
(us, vs) ∈ (0, 1)2.

2.4. Parameter estimation
In this section, the parameter estimation methods are mentioned simply for the asym-

metric copulas presented in Table 1. For the asymmetric Khoudraji copula family, the
maximum likelihood (ML) method, the inference functions for margins (IFM) method,
and the maximum pseudo-likelihood (MPL) method are commonly used parameter esti-
mation methods in the literature [10]. While ML and IFM are affected by the choice of
the marginal distributions, Kim et al. [24] has shown that MPL is not affected by the
marginals. Besides, Kim and Kim [23] used the MPL method in their study for the infer-
ence of directional dependence in joint behaviour based on asymmetric copula regression.
For these reasons, to obtain the parameter estimations, the MPL method is preferred
having the detailed steps presented below.

Here, Ri and Si are the ranks of observations xi and yi, ϕ = (θ1, θ2, α, β) is the pa-
rameter vector where θ1, θ2 are the dependence parameters of each copula family with
α, β are the shape parameters. Corresponding to the pseudo observations, c(u, v, ϕ) is a
copula density given by c(u, v, ϕ) =∂2C(u,v,ϕ)

∂u∂v . Within this setting, the following steps are
followed to obtain the directional dependence measures.
Step 1. Obtaining pseudo observations ui and vi: ui = Ri

n+1 and vi = Si
n+1 , {(ui, vi),

where i = 1, . . . , n} ∈ (0, 1)2.
Step 2. Replacing pseudo observations in the pseudo-maximum likelihood function, which
is written as follows:

ℓ (ϕ) = log
n∏

i=1
c(ui, vi, ϕ) =

n∑
i=1

logc(ui, vi, ϕ).

Step 3. Estimating the set of parameters by Nelder Mead optimization technique to
derive:

(θ̂1, θ̂2, α̂, β̂).
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Step 4.Use the estimated parameters for the calculation of directional dependence mea-
sures ρ̃

(2)
U→V and ρ̃

(2)
V →U .

The primary goal is to derive the estimates for ρ̃
(2)
U→V and ρ̃

(2)
V →U eventually. To ac-

complish this goal, the approximate formulas given in Section 2.3 are considered for the
directional dependence measures.

2.5. Model selection
In this subsection, we are interested in determining the best fitting asymmetric copula

model among different candidate models for the given dataset. For this purpose, we adopt
the criteria mentioned in [23] according to the directional dependence measures. According
to these criteria, firstly the copula models with the largest/smallest pair of ρ

(2)
U→V and

ρ
(2)
V →U directional dependence measures are selected, and then the goodness of fit (GOF)

test is performed to see the compatibility of these selected copulas with the data. The
reason for that is about deciding the best copula regression function, which best explains
the change in u with v. Secondly, since there may be more than one copula matching the
data, the GOF test criterion is applied for the overall decision in the empirical findings.

There are various GOF methods available in the literature based on empirical copula. In
this study, Cramer-von Mises statistics (Sn) are used, described in [9,13,23] given below:

Sn =
n∑

i=1

{
Cn (ui, vi) − Cϕn

(
ui, vi; ϕ̂

)}2
,

where ui = Ri
n+1 and vi = Si

n+1 are the normalized ranks, Cn (u, v) is the empirical copula
and ϕ̂ is the MPL for ϕ.

After selecting the appropriate copula model for the data, the graph r̃U |V (w) vs r̃V |U (w)
with a 45◦ reference line called the CR graph to empirically detect the directional depen-
dence in the joint behavior of the data, is drawn (see [23] for more details related to CR
plots). Any departure from the reference line in the CR plot is a sign of directional de-
pendence. More deviation along the reference line is an indicator of higher asymmetric
behavior. Additionally, by checking whether the curve is located above or below the line
v = u, one may suspect the form of directional dependence in the data. For this purpose,
the mentioned CR plots are presented for each application in the upcoming section.

2.6. Time series model
For the application part, one dataset is already modeled whereas the second one needs

to undertake a univariate time series analysis. For this purpose, similar to the applied
method in the first one, the core ingredient is the standardized residuals. In order to model
the financial time series, one should start with modeling the original series to extract the
standardized residuals, the input for copula analysis.

To model both the trend and non-constant volatility inherent in financial time series
data we opt to use an ARMA-GARCH model. The return series is described as an Auto
Regressive Moving Average model, ARMA(p, q), as follows:

rt = c +
p∑

i=1
αirt−1 +

q∑
j=1

βjεt−j + εt, (2.2)

where, rt denotes the return at time t, εt is a white noise series, c is the model constant,
αi ̸= 0 and βj are coefficients within AR(p) and MA(q) components

As a generalized version of autoregressive conditional heteroscedasticity, GARCH model
is useful for modeling volatility. Generally, GARCH(m, n) model can defined as

εt = σtzt, (2.3)
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σ2
t = w +

m∑
i=1

aiε
2
t−i +

n∑
j=1

bjσ2
t−j , (2.4)

where zt ∼ D(0, 1) are iid, w is a constant, ai ≥ 0, bj ≥ 0, and
∑

ai +
∑

bj ≤ 0 are
GARCH parameters.

In the mentioned formula above, zt can be taken as any distribution to correctly reflect
the features of the data. In order to model any univariate financial time series under this
setting, ARMA(p, q)-GARCH(m, n) model with suitable distributions should be tested.
By using the guidance of the literature and the built in functions in “rugarch” package,
skewed student’s-t distribution is determined as the base distribution for zt. Additionally,
various combinations of lags (p = 0, 1; q = 0, 1; m = n = 1) over different variance models
(“sGARCH”, “fGARCH”, “eGARCH”, and “iGARCH”) are compared for each financial
series in the second application. The reason for that is about the possibilities of different
model selections rather than just filtering with ARMA(1, 1)-GARCH(1, 1).

3. Numerical findings
In this section, firstly, a small simulation study was examined for the symmetric and

asymmetric copula models in subsection 3.1. Thereafter, asymmetric dependencies are
analyzed for two real stock market datasets in 3.2 and 3.3 below. The first application
is about the SP500-DAX and NIKKEI-FTSE pairs in the world indices dataset available
in the CDVine R package [5]. The second dataset consists of the SP500-NIKKEI pair,
which belongs to the beginning months of Covid-19 period (https://tr.investing.com/
indices/world-indices).

Firstly, based on various combinations of and as initial values, the model fit summary
is examined to get estimates having the highest log-likelihood to discuss the sensitivity
over the initials. Instead of starting with a fixed value, equally spaced distinct values of α
and β on the interval [0.1, 0.9] satisfying that α ̸= β, α ̸= 1

2 and β ̸= 1
2 are examined and

totally 36 different model fits are tested. Besides, the parameter estimation part is jointly
modeled on the pseudo-loglikelihood function. As an initial parameter of archimedean
copulas, the estimated parameters of symmetric copula fits are considered in the joint
maximization process. For the GOF test, as it was previously suggested, the multiplier
method is preferred for the cost of computational time. The joint numerical maximization
was executed with the help of “copula” R package [16]. Then, directional dependence
modeling was performed to show the existence of asymmetric patterns and to complete
the model choice. In addition, log-likelihood (LL) and Cramer-von Mises (Sn) statistics
values are calculated as supplementary tools for model selection. Finally, using the CR-
plots and GOF test results, the most suitable asymmetric copula model for each pair is
determined.

3.1. Khoudraji’s copula
To illustrate the structural differences over symmetric and asymmetric copulas, a small

simulation study with certain dependence parameters was discussed. For the models C12,
C13, and C14, as special cases including independence copula, the parameter estimation
results are given in Table 2. Here, the built functions in copula package in the R software
program were used for this computation [16]. Table 2, simply illustrates the parameter
estimations with standard errors in the parenthesis for the generated dataset correspond-
ing to Kendall’s τ = 0.8 value. For each asymmetric model (C12, C13, C14), the relevant
dependence parameter (matching with the τ = 0.8) and the pre-defined shape parameters
are summarized under the Model title of Table 2. In this setting, the initials for the depen-
dence parameter are selected around the true value and the maximum pseudo-loglikelihood

https://tr.investing.com/indices/world-indices
https://tr.investing.com/indices/world-indices
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estimator approach is considered. The performance of the dependence parameter estima-
tion is plausible enough with less accuracy for the C14 model (θ̂ = 23.7251 whereas the
true parameter θ = 18.19 with the largest attained standard errors). On the other hand,
the estimated shape parameters (α̂, β̂) are really close to the true observations with small
standard errors.

Table 2. Parameter estimations with (standard errors) for the simulated dataset
(N=1000, τ = 0.8).

Model θ̂ α̂ β̂

C12 (θ = 8, α = 0.3, β = 0.7) 7.5895 0.2973 0.7383
(1.845) (0.029) (0.064)

C13 (θ = 5, α = 0.3, β = 0.7) 4.1947 0.3085 0.6589
(0.492) (0.029) (0.045)

C14 (θ = 18.19, α = 0.3, β = 0.7) 23.7251 0.2848 0.6598
(4.040) (0.023) (0.045)

Besides, the dependence pattern exhibits different structures for the considered asym-
metric models compared to the symmetric ones. The difference between symmetric and
asymmetric models can be seen more clearly when one looks at the contour lines of both
symmetric and asymmetric copulas in Figure 1. Here, the dependence patterns are chang-
ing when the asymmetric copula is constructed on the same values with defined shape
parameters. Such graphical tools can be useful for identifying the possible asymmetric
pattern preserved by the dataset. To illustrate, for the selected value, different tail depen-
dencies can be seen for Clayton and Gumbel families via dense contour lines at a specific
corner (left panel of Figure 1), whereas C12 and C13 models reveal more counter lines
over the region (right panel of Figure 1). Overall, the asymmetric behaviour of the gener-
ated models is easy to guess by looking at the skewed contours for the models mentioned
above. Certainly, suitable statistical tests are more reliable for model selection. With this
motivation, Sn values are considered in the upcoming applications with the log-likelihood
(LL) values for the given model. As such, the above findings in Table 2 are important to
highlight the considered parameter estimation tool before going further on the directional
dependence measures. For the application part, all of the mentioned asymmetric models
presented in Table 1 are considered for two different stock data.

3.2. Dataset 1
In this first application, the available dataset in “CDVine” package is preferred as a

motivating example (dataset 1 [5]). Generally, this dataset was used before in different
finance applications related to copulas. It contains the transformed standardized residuals
of daily log returns of major world stock indices in 2009 and 2010 (396 observations on
6 variables). The considered indices are the leading stock exchanges of the six largest
economies in the world, the USA (S&P 500), Japanese (Nikkei 225), Chinese (SSE Com-
posite Index), German (DAX), French (CAC 40) and British (FTSE 100) Index. Each
time series was filtered already by ARMA(1,1)-GARCH(1,1) model with Student t inno-
vations. As a starting point, Kendall’s correlation coefficient and the exchangeability test
results are presented in Table 3.

In Table 3, one can see the degree of the association among the stock indices in terms of
Kendall’s (upper diagonal) and the corresponding p-values of the pairwise ex-changeability
test (lower diagonal). Firstly, the dependence among the stock market in USA and the
other stocks in Europe reveals a larger correlation. This finding is similar among the
stock indices in the European market, for instance, the largest value belongs to the pair
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of (DAX, CAC40). In terms of the symmetric or asymmetric pattern of the dataset, only
the pairs (SP500, DAX) and (NIKKEI225, FTSE100) fail for the ex-changeability of the
variables, ie. asymmetric copula modeling seems more suitable for them (p values < 0.05
means the symmetric behavior fails at the %95 significance level). For that reason, since
the main aim of the study is fitting suitable asymmetric copula models, the (SP500, DAX)
and (NIKKEI225, FTSE100) pairs are considered for exploring the large (τ = 0.50) and
small (τ = 0.16) correlation cases, respectively.

Figure 1. The contour lines for the symmetric (left) and asymmetric (right)
copula models (τ = 0.8 and N = 1000).

Table 3. Kendall’s correlation coefficients (above the diagonal) and symmetric -
asymmetric test results (p-value) (below the diagonal).

SP 500 NIKKEI225 SSEC DAX CAC 40 FTSE 100
SP 500 0.10 0.10 0.50 0.50 0.49
NIKKEI225 (0.911) 0.20 0.16 0.18 0.16
SSEC (0.110) (0.157) 0.12 0.14 0.15
DAX (0.025*) (0.138) (0.873) 0.82 0.73
CAC 40 (0.071) (0.470) (0.617) (0.161) 0.77
FTSE 100 (0.088) (0.020*) (0.282) (0.371) (0.762)
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In Table 4, the parameters of main symmetric families are derived in terms of, Cramer-
von Mises (Sn) with the faster multiplier approach for bootstrapping. Since the inversion of
Kendall’s τ is obliged to apply to the Clayton family for NIKKEI-FTSE pair data, the log-
likelihood part is not presented for this case. Generally, all the p-values are smaller than the
threshold value 0.05 so none of the symmetric copula models is suitable for the considered
stock pairs. The motivation behind the use of symmetric modeling is to describe the initial
parameters for the asymmetric model. Since the considered non-gradient optimization
method is quite sensitive to the initial values, this strategy is preferred, rather than starting
with arbitrary initials. The more extensive search on the impact of initial values is useful
but out of the scope of this study.

Table 4. The parameter estimation summary of symmetric copula families for
SP500-DAX and NIKKEI-FTSE pairs (Sn: Cramer-von Mises statistics, LL: Log-
Likelihood).

SP500-DAX
Copula Parameter LL Sn p-value

Clayton 1.690 141.4 0.14279 0.0004995
Gumbel 1.984 140.2 0.07477 0.0004995
Frank 5.828 127.7 0.11090 0.0004995
Joe 2.224 106.7 0.24028 0.0004995

NIKKEI-FTSE
Copula Parameter LL Sn p-value

Clayton 0.385 - 0.03664 0.03147
Gumbel 1.192 15.5 0.04030 0.03147
Frank 1.490 11.6 0.03392 0.03846
Joe 1.234 11.9 0.07091 0.00550

By starting with the initial parameters coming from Table 4, different asymmetric
copula models are applied to the residuals of the SP500-DAX stock data pair. In terms
of different shape parameter initiations, the models attaining the highest log-likelihood
values are presented in Table 5. Meanwhile, the shape parameters of the models C12,
C13, and C35 reveal a certain doubt about being as a plausible model since they satisfy
α = β = 1 values for C12 and C13, while β ≈ 0 for the model C35. In terms of LL values,
C23 might be the best model and this result is supported by the lowest Sn value. On the
other hand, the main focus of the next step is the calculation of directional dependence
and CR-plotting to identify the best one empirically. In that respect, 11 models from
Table 5 are used for this comparison with the help of directional dependence measures
and CR plots.

Similar modeling steps are followed for the second pair, for the NIKKEI-FTSE. In this
case, since the optimization results in a non-finite value for the Clayton family, the only
difference is required to use the inversion of Kendall’s tau method for that copula. Overall,
in Table 6, the parameter estimations and Sn values are presented for each of them. Most
of the time, p-values of GOF test results support that the considered asymmetric model
is useful except for C15, C33, C34, C35, C45, and C55. To make a fair comparison in
terms of directional dependence, totally 11 models are compared except the models C12,
C13, and C35 since they have shape parameters close to the boundary of (0,1). For that
reason, the directional dependence part is evaluated for the models C14, C22, C23, C24,
C25, C33, C34, C44, C45, and C55.

To evaluate the performance of the models by combining the directional dependence
information, one needs to look at the behaviour of both ρ

(2)
U→V and ρ

(2)
V →U and CR-plot
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Table 5. The parameter estimation for the asymmetric model results for SP500-
DAX.

Model θ̂1 θ̂2 α̂ β̂ LL Sn

C12 - 1.6902 1.0000 1.0000 141.3749 -
C13 - 1.9841 1.0000 1.0000 140.1647 -
C14 - 8.1191 0.9616 0.7779 131.9890 0.08943
C15 - 2.5057 0.8872 0.8881 107.4801 0.22296
C22 2.4574 9.2989 0.4247 0.2769 144.8191 0.10249
C23 2.6956 2.5780 0.4206 0.4125 156.3414 0.06315
C24 2.3623 16.9603 0.4770 0.3352 149.4486 0.09113
C25 2.2912 3.0166 0.2725 0.2770 153.4168 0.07822
C33 1.9628 9.5763 0.0743 0.0371 141.2727 0.07294
C34 1.9934 12.3144 0.4824 0.3376 150.0544 0.07021
C35 1.9503 4.9779 0.1319 0.0694 141.1104 -
C44 11.5443 7.5450 0.3235 0.5632 143.6709 0.09340
C45 9.7947 2.3434 0.2457 0.4985 143.9252 0.08163
C55 2.6091 2.4000 0.3575 0.6630 121.5911 0.13225

Table 6. The parameter estimation for the asymmetric model results for
NIKKEI-FTSE.

Model θ̂1 θ̂2 α̂ β̂ LL Sn

C12 - 2.6816 0.2899 1.0000 16.1767 -
C13 - 1.2583 0.6537 1.0000 15.7781 -
C14 - 8.1498 0.2433 0.7767 15.6513 0.02588
C15 - 1.6016 0.3722 0.5616 12.8794 0.05498
C22 0.3989 37.3298 0.0925 0.3858 20.1520 0.02206
C23 0.3794 1.6705 0.1828 0.3754 18.9704 0.02470
C24 0.4351 37.0056 0.0986 0.3834 23.8956 0.02476
C25 0.3724 1.8399 0.1616 0.3068 18.7919 0.02516
C33 1.6386 1.3133 0.4555 0.9781 16.3314 0.03664
C34 1.2624 2.0349 0.4590 0.2346 16.7950 0.03272
C35 1.3066 1.7090 0.5285 0.0201 16.2840 0.03681
C44 19.8932 1.1389 0.8639 0.4586 16.6855 0.02591
C45 9.0550 1.1706 0.8207 0.3562 17.3002 0.02928
C55 1.1295 2.2342 0.1291 0.2924 13.7030 0.04841

together [23]. Whenever ρ
(2)
U→V and ρ

(2)
V →U are large or small together, then the directional

dependence exists empirically. Besides, the departure from the 45◦ reference line for the
CR plot of r̃V |U (w) and r̃U |V (w) supports this finding visually. For that reason, when we
compare the departure for the models C15 and C44 having smaller and larger values of
ρ

(2)
U→V and ρ

(2)
V →U given in Table 7. The most plausible model can be identified as C44,

which can be visualized in Figure 2. Based on the selected model, (SP500, DAX) stock
pair is directionally dependent and the total variability of SP500, explained by DAX is
62.56 %, while the variability of DAX is explained by SP500 is 48.07 %. Other CR-plots
for the (SP500, DAX) are presented in Appendix part (Figure A1).

For the stock pair (NIKKEI, FTSE), there are two more likely candidates in the pre-
sented results in Table 8, which are C22 and C45. To identify the empirical directional
dependence, the departure from the 45◦ reference line of r̃V |U (w) and r̃U |V (w) is presented
in Figure 3 for C22 and C45. Additionally, LL and Sn values are useful to distinguish
the best model when the departure for the models C22 and C45 are high and similar in
Figures 3, compared to the other models given in Appendix A (Figure A2). Based on the
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overall selection, the C22 model is more plausible with smaller Sn and higher LL values.
The calculated directional dependence measures can be interpreted as follows: (NIKKEI,
FTSE) stock represents a significant directional dependence and the total variability of
NIKKEI, explained by FTSE is 5.84 %, while the variability of FTSE is explained by
NIKKEI is 15.68 %. Compared to the first pair, the explained variability of the stock pair
(NIKKEI, FTSE) is very small. This result matches with the smaller Kendall τ value,
presented in Table 3 before.

Table 7. Directional dependence measures for SP500-DAX.

Model ρC ρ2
C τC ρ

(2)
u→v ρ

(2)
v→u

C14 0.5458 0.2979 0.1819 0.4169 0.5557
C15 0.4362 0.1902 0.1454 0.2998 0.4326
C22 0.5347 0.2859 0.1782 0.4442 0.5788
C23 0.5672 0.3217 0.1891 0.4570 0.5846
C24 0.5560 0.3091 0.1853 0.4500 0.5982
C25 0.5549 0.3079 0.1850 0.4544 0.5766
C33 0.5596 0.3132 0.1865 0.4098 0.5531
C34 0.5949 0.3539 0.1983 0.4636 0.6021
C44 0.5956 0.3547 0.1985 0.4807 0.6256
C45 0.5905 0.3487 0.1968 0.4642 0.5986
C55 0.5109 0.2611 0.1703 0.3643 0.5036

(a) (b)

Figure 2. The CR plots of the models (a) C15 and (b) C44 for SP500-DAX.

3.3. Dataset 2
The second dataset used in this study is the stock market index traded on the inter-

national stock exchange, taken from the website https://tr.investing.com/indices/
world-indices between January 1, 2019 - April 24, 2020. The stock indexes BIST100
from Turkey, SSC from China, Dow30 and the SP500 from America, DAX from Ger-
many, NIKKEI from Japan, FTSE − MIB from Italy were taken, presented in Figure
4. All of the index values exhibit a similar decline pattern during the first months of the
pandemic crisis. This is an indication for observing less asymmetric behavior since they
are affected by the global health crisis similarly. However, when we look at the pair of
stocks, there could be some hidden asymmetry. In this study, daily log returns of stock
market index data are calculated to analyze whether directional dependence exists with
asymmetric copula models. Here, the log-return formula defined as ri,t = log( xi,t

xi,(t−1)
) is

used before time series modeling [33].

https://tr.investing.com/indices/world-indices
https://tr.investing.com/indices/world-indices
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Table 8. Directional dependence measures for NIKKEI-FTSE.

Model ρC ρ2
C τC ρ

(2)
u→v ρ

(2)
v→u

C14 0.1734 0.0301 0.0578 0.1407 0.0558
C15 0.1262 0.0159 0.0421 0.1216 0.0382
C22 0.2000 0.0400 0.0667 0.1568 0.0584
C23 0.2022 0.0409 0.0674 0.1510 0.0563
C24 0.2182 0.0476 0.0727 0.1567 0.0351
C25 0.1995 0.0398 0.0665 0.1498 0.0561
C33 0.1874 0.0351 0.0625 0.1308 0.0520
C34 0.1992 0.0397 0.0664 0.1455 0.0538
C44 0.1988 0.0395 0.0663 0.1527 0.0621
C45 0.1990 0.0396 0.0663 0.1384 0.0632
C55 0.1427 0.0204 0.0476 0.1219 0.0438

(a) (b)

Figure 3. The CR plots of the models (a) C22 and (b) C45 for NIKKEI-FTSE

Descriptive statistics regarding the stock market data of the countries are summarized in
Table 9. The average and variance values of the return data obtained after transformation
are significantly close to each other. On the other hand, the skewness coefficients take
negative values for all data, except for NIKKEI. This indicates that these data are skewed
left, while the NIKKEI is skewed right. Kurtosis values vary for each but take large
numerical values. Since the kurtosis value gives information about the sharpness of the
distribution, it indicates heavier tails than a normal distribution. Such insights from Table
9 clearly shows that copulas will be useful for dependence modeling. For the time series
modeling, a rich set of ARMA-GARCH models are implemented for filtering the residuals.
By referring to the previous studies, the classical ARMA-GARCH setting with different
lags and innovations is investigated. In many of the studies, the classical ARMA(1,1)-
GARCH(1,1) with student-t innovations are considered for financial time series, similar
to the first scenario. However, since the structure might be varying for different stocks,
the best candidate among the alternatives is determined for the filtering. In that respect,
previously mentioned models are compared with the help of “rugarch” R package to model
the features of the financial dataset [14].

Additionally, Kendall’s τ correlation coefficients and asymmetric test results are given
for each stock exchange pair in Table 10. Accordingly, the country pair with the highest
dependency coefficient is DAX (Germany) - FTSE − MIB (Italy) (a high relationship
between DOW30 − SP500 is an expected result). The country pairs SP500 (Amer-
ica) - DAX (Germany), DOW30 (America) - DAX (Germany), SP500 (America) -
FTSEMIB (Italy), and DOW30 (America) - FTSE − MIB (Italy) follow respectively.



Analysis of asymmetric financial data with directional dependence measures 1111

(a) (b)

(c) (d)

(e) (f)

Figure 4. Original stock returns for each country (a) Turkey, (b) China, (c) USA,
(d) Germany, (e) Italy and (f) Japan between January 1, 2019 - April 24, 2020.

As for the asymmetry test, there is an asymmetric structure between SP500 (America) -
NIKKEI (Japan) at a 0.05 significance level, while the dependency between other stock
returns does not violate the ex-changeability. For that reason, the rest of the calculations
are made for the stock pair (SP500, NIKKEI) for the selected time period.
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Table 9. Descriptive statistics and selected time series models.

BIST100 SSCE DOW30 SP500 DAX NIKKEI FTSE-MIB
Min -0.0841 -0.0804 -0.1384 -0.1276 -0.1305 -0.0627 -0.1854
Max 0.0581 0.0545 0.1076 0.0897 0.1041 0.0773 0.0855
Mean 0.0003 0.0004 0.0001 0.0004 -0.0001 -0.0001 -0.0003
Median 0.0003 0.0000 0.0006 0.0008 0.00107 0.0000 0.0009
Variance 0.0002 0.0002 0.0004 0.0003 0.0003 0.0002 0.0003
Skewness -0.9970 -1.0134 -0.9918 -0.9914 -1.5614 0.2267 -3.8272
Kurtosis 5.4159 7.6759 16.5705 15.0267 20.2778 7.6691 38.1005
Time Series ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(0,0) ARMA(1,1) ARMA(0,0) ARMA(0,0)
Model eGARCH(1,1) iGARCH(1,1) eGARCH(1,1) fGARCH(1,1) eGARCH(1,1) eGARCH(1,1) eGARCH(1,1)

Table 10. Kendall’s correlation coefficients (above the diagonal) and symmetric
- asymmetric test results (p-value) (below the diagonal)
*Asymmetric pair at %95 significance level where p-value <0.05).

BIST100 SSCE DOW30 SP500 DAX NIKKEI FTSE-MIB
BIST100 0.12 0.19 0.17 0.22 0.11 0.20
SSCE (0.459) 0.14 0.15 0.21 0.31 0.19
DOW30 (0.358) (0.122) 0.82 0.46 0.15 0.44
SP500 (0.891) (0.184) (0.319) 0.47 0.15 0.45
DAX (0.933) (0.972) (0.989) (0.711) 0.15 0.62
NIKKEI (0.830) (0.540) (0.058) (0.046*) (0.601) 0.13
FTSE-MIB (0.362) (0.795) (0.868) (0.405) (0.999) (0.336)

The steps of the directional dependence modeling are very similar to the first application.
Parameter estimates, log-likelihood (LL) and Sn values for the symmetric and asymmetric
models are presented in Table 11 and Table 12, respectively. In Table 11, Clayton copula
can show a significant result but not so much powerful for the considered pair (p-value
= 0.05544 is a bit higher than the 0.05 level). For the asymmetric models, the models
C24, C33, and C35 have certain drawbacks so that they are eliminated for the rest (Table
12). The reason for this elimination is about again touching to the parameter boundaries.
For example, model C33 has the dependence parameter θ̂1 = 1 so that it results in not a
constructed asymmetric model since the Gumbel copula exhibits an independence case for
that value. For this reason, similar to the first application, totally 11 different asymmetric
models are compared in terms of the directional dependence measures and CR plots.

Table 11. The parameter estimation summary of symmetric copula families for
SP500-NIKKEI pair (Sn: Cramer-von Mises statistics, LL: Log-Likelihood).

SP500-NIKKEI
Copula Parameter LL Sn p-value

Clayton 0.423 16.24 0.050995 0.05544
Gumbel 1.209 15.34 0.049529 0.03047
Frank 1.476 8.80 0.053948 0.006494
Joe 1.251 11.95 0.062598 0.01748

In Table 13, the calculated ρ
(2)
U→V and ρ

(2)
V →U measures are presented for the numerical

comparison of the candidate models. Clearly, the two candidates are C15 and C23 in
terms of the directional dependence values. Additionally, the behavior of both rv|u(w)
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and ru|v(w) together is investigated within CR-plots, given below in Figure 5 for the best
two candidates. In this case, model C15 seems more plausible rather than model C23,
supported by the significant Sn values given in Table 12. Based on the final decision, one
can interpret that (SP500, NIKKEI) stock pair is directionally dependent and the total
variability of SP500 explained by NIKKEI is 5.32 %, while the variability of NIKKEI
is explained by SP500 is 4.80 %. Certainly, the explained variability for that pair is not
large as the previously discussed examples. The remaining CR plots of the other models
are presented at the Appendix part (Figure A3).

Table 12. The parameter estimation and asymmetric model results for SP500-
NIKKEI.

Model θ̂1 θ̂2 α̂ β̂ LL Sn

C12 - 8.1958 0.3676 0.4678 18.6568 0.059716
C13 - 2.4663 0.3101 0.4860 21.2168 0.04293
C14 - 16.0120 0.3225 0.4361 18.3707 0.051249
C15 - 3.1647 0.2622 0.3835 19.1931 0.039166
C22 0.3166 62.2241 0.1668 0.2049 23.2016 0.04673
C23 0.3073 3.2646 0.2032 0.2769 25.0772 0.051691
C24 0.7152 2.0216 0.2702 0.0000 17.3204 -
C25 0.3213 3.6948 0.1778 0.2335 24.3159 0.048257
C33 1.0000 2.4667 0.3099 0.4856 21.2168 0.042938
C34 2.5297 0.2060 0.7034 0.5391 21.2799 0.045677
C35 2.4744 1.0001 0.6902 0.5132 21.2159 -
C44 -0.2310 15.2740 0.3364 0.4565 18.4425 0.047677
C45 0.4448 3.2342 0.2393 0.3457 19.5848 0.042827
C55 1.0190 3.2532 0.2496 0.3628 19.2197 0.039976

Table 13. Directional dependence measures for SP500-NIKKEI.

Model ρC ρ2
C τC ρ

(2)
u→v ρ

(2)
v→u

C12 0.2853 0.0814 0.0951 0.0821 0.0808
C13 0.2608 0.0680 0.0869 0.0674 0.0745
C14 0.2707 0.0733 0.0902 0.0730 0.0738
C15 0.2200 0.0484 0.0733 0.0480 0.0532
C22 0.2945 0.0867 0.0982 0.0949 0.0918
C23 0.3031 0.0919 0.1010 0.0980 0.0951
C25 0.2943 0.0866 0.0981 0.0933 0.0909
C34 0.2705 0.0732 0.0902 0.0725 0.0782
C44 0.2603 0.0678 0.0868 0.0673 0.0691
C45 0.2527 0.0638 0.0842 0.0631 0.0662
C55 0.2244 0.0503 0.0748 0.0496 0.0550

According to the above two-step model selection, different asymmetric models are se-
lected for different stock pairs. In dataset 1, C44 and C45 models are the significant ones
for the stock pairs (SP500, DAX) and (NIKKEI, FTSE), respectively. Similarly, in
dataset 2, C15 asymmetric copula is selected for the pair (SP500, NIKKEI). The mag-
nitude of the established directional dependence measures is reasonable for the existing
market all over the world. To illustrate, SP500 has more impact on the NIKKEI in dataset
2, including the spreading months of the pandemic. In that respect, since the whole fi-
nancial system is affected at the same time, the directional dependence measure is not so
large. On the other hand, the stock pair (SP500, DAX) for the first data application has
larger directional dependence measures comparable to all scenarios.
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(a) (b)

Figure 5. The CR-plots of the models (a) C15 and (b) C23 for SP500-NIKKEI.

4. Conclusion
This study investigates the possible directional dependence measure based on an asym-

metric copula setting and demonstrates the application of this procedure for two stock
datasets. The first dataset was taken from the CDVine R package while the second up-to-
date data is retrieved taken from the world stock market between 01.01.2019-24.04.2020
including early Covid-19 impacts. In terms of the exchangeability test, the identified asym-
metric pairs are SP500-DAX and NIKKEI-FTSE in dataset 1, whereas SP500-NIKKEI
is in dataset 2. In this study, asymmetric copula modeling and the directional depen-
dence procedure were applied together to select the best asymmetric copula model that
explains the nature of the datasets. Here, for all considered stock pairs, the symmetric
copulas do not exhibit a significant result, while different asymmetric copula models re-
veal potential benefits for dependence modeling. Among the considered models, some of
the recently proposed models seem to be more successful rather than the classical sym-
metric and previously studied asymmetric copulas. In that respect, the key findings of
the study highlight the importance of ex-changeability and the directional dependence
measures interpretation.

For the model selection, the pseudo-likelihood estimation method with the joint maxi-
mization over the set of parameters is used with the help of the copula package. For the
considered asymmetric models, LL values and Cramer-von Mises (Sn) test statistics were
used to compare the models at the first step. Thereafter, the best candidates are discussed
according to the empirical directional dependence measures to choose the most powerful
one. In this second step, the proposed CR-plots are presented for the top ranked two
models having the largest or smallest ρ

(2)
u→v and ρ

(2)
v→u values together. Especially, such

differences on the directional dependence coefficients (ρ(2)
u→v and ρ

(2)
v→u) might indicate an

important occurred event such as a financial crisis within the periods under consideration.
Besides, the results of the directional dependence coefficients can help investors in making
decisions for their portfolio or risk management in the market. In addition, the key out-
comes of the study will contribute to the development of more planned financial strategies
before or after any vital change in the market. Last but not least, such directions for the
dependence pattern might be useful for understanding other economic activities between
countries.

Even if both numerical and graphical diagnostics are used in this study, the main limita-
tion of the work is that the confidence intervals for the considered parameter estimations
are not presented. In the next step, the recent findings will be elaborated further on
the help of such statistical tools for the model selection process. Besides, it is planning
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to develop other types of bivariate asymmetric copulas to enlarge the considered pool of
models, discussed before in the literature. Furthermore, the proposed approaches can be
incorporated for vine copulas to derive more powerful dependence modeling tools including
both symmetric and asymmetric patterns. For future studies, directional dependence mea-
sures over different time periods can be compared using the change point analysis. Above
mentioned research problems are on the list of authors to add further contributions.
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Appendix
Dataset1

(a) C14 (b) C22 (c) C23

(d) C24 (e) C25 (f) C33

(g) C34 (h) C45 (i) C55

Figure A1. The CR plots of the models for SP500-DAX.
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(a) C14 (b) C15 (c) C23

(d) C24 (e) C25 (f) C33

(g) C34 (h) C44 (i) C55

Figure A2. The CR plots of the models for NIKKEI-FTSE.
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Dataset2

(a) C12 (b) C13 (c) C14

(d) C22 (e) C25 (f) C34

(g) C44 (h) C45 (i) C55

Figure A3. The CR plots of the models for SP500-NIKKEI.


