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Abstract 

The algorithm clustering can be defined as the operation of separating the populace or pieces of 

information into various groups. This article aims to construct a performance comparison for 

Partitional Clustering by using random, k-means++ algorithms implemented with Scikit-Learn and 

k-means++, Tunnel k-means algorithms implemented with TensorFlow-GPU by means of their 

execution times. As a final output, a related comparison table will be printed by supplying their 

framework specifications. Since the article does not focus on the context of data, the necessary 

data sets will be produced in a random manner. 

Keywords: clustering, random k-means, k-means++, tunnel k-means, algorithm performance, 

TensorFlow-GPU, Scikit-Learn. 

 

1. Introduction 

To gain insightful comprehension of a subject, a common methodology can be placing 
them in separate pieces of groups to make it simpler to understand. For instance, you 
should see motion pictures by title, while someone else could see them by classification. 
How you choose to bunch them guides you to become familiar with them. 

In Artificial Intelligence field, partitioning the data of interest into a specific number of 
gatherings is called bunching. These information focuses don't have starting names. 
Hence, clustering methodology is the gathering of unlabeled items of information into 
chunks to sort them out in a more significant manner. 

K-means intends to parcel information into k groups such that data of interest in a similar 
group are comparable and data of interest in the various bunches are farther separated. 
The similitude of the two not set in stone by the distance between them. There are 
numerous techniques to gauge the distance. 

K-implies computation is an iterative estimation that endeavors to portion the dataset into 
specific non-covering subgroups where each data point has a spot with only a solitary 
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occasion. It endeavors to make the intra-pack snippets of data as near as possible while 
similarly keeping the gatherings as different as could truly be anticipated. It consigns 
data concentration to a gathering with the ultimate objective that how much the squared 
distance between the information of interest and the bundle's centroid is at the base. 

The partitioning the data items into a specific number of groupings can be referred as 
clustering. The clustering methodology is the gathering of unlabeled items of information 
into chunks to sort them out in a more significant manner. 

This paper is coordinated in the upcoming pattern: Section 2 presents some ideal 
approaches on clustering calculations. Section 3 provides the additional information of 
the datasets and AI models that we explored different avenues regarding. At last, in 
Section 4, we present our experimental discoveries and examine them. 

2. Related Work 

The idea driving the k-means algorithm mainly is to scatter the data into centroids. The 
K-means algorithm [1] is an iterative grouping methodology. In the technique, k items are 
chosen in a contingent way as the underlying grouping community, the distance between 
each item and the underlying group origin is determined, and it is allowed to the closest 
center. Clustering origins and the items appointed to them address a group. For each 
data point allotted, the cluster origin will be recalculated by the current items in the group 
[2]. 

2.1. Hierarchical Clustering 

The hierarchical clustering can be defined as a group investigation that searches for 
generating an order of groups. Primarily, the cluster merges and separations do not 
entirely settle in a covetous way [3]. The consequences of various leveled grouping are 
typically introduced in a dendrogram. The primary trait of this technique is examining and 
gathering the data, at the same time over a diversity of scales. 

Hierarchical clustering contains a group of strategies that looks to assemble a ranking of 
clusters [4]. There exists two wide ways to deal with this methodology: the agglomerative 
hierarchical clustering, as indicated by which every elective begins in its own cluster, and 
sets of groups are shaped as one action up the ordered progression until a last, single 
bunch is in the long run framed; and divisive hierarchical clustering, where each of the 
choices starts in one single bunch, which is additionally divided in a recursive manner 
[5]. 

Divisive Hierarchical Clustering 

The first one, divisive hierarchical clustering, has been referred by [6] which utilizes the 
basic thought of disruptive choices with positive and negative streams in various groups. 
That specific approach can be accepted as an insightful method with regard to this 
stream, yet it is straightforward in its presumptions since it did not depend on any 
advancement work connected to the component. 

Agglomerative Hierarchical Clustering 

The second category, agglomerative hierarchical clustering, represents significant and 
deeply grounded procedure in machine learning field [7]. This methodology is easy to 
implement and can give exceptionally useful depictions and perceptions of the potential 



21                                                                                                                                          P. Ersoy, M. Erşahin and B. Erşahin                              

  Artificial Intelligence Theory and Applications, Vol. 2, No. 2 

information clustering structure. In view of its computational dependability, the AHC 
method has been one of the essential grouping calculations [8]. 

2.2. Partitional Clustering 

The partitional clustering algorithm is the most generally utilized bunching calculation. 
Among different executions of the partitional clustering approach, K-means is one of the 
most famous in actuality in view of its effortlessness and viability [9]. There are three 
wide ways to deal with this methodology as centroid, model-based, graph-theoretic, and 
spectral. 

Centroid Partitional Clustering 

The first category, centroid partitional clustering, contains a classification to depict the 
data dissemination of a cluster group. Thus, the ambiguity during grouping can be kept 
for long as conceivable before the genuine choices are made [10]. 

Model-Based Partitional Clustering 

The model-based clustering method is committed to multivariate partial positioning 
information. This is an expansion of the Insertion Sorting Rank model [11] for positioning 
information, which has the double property to be a significant model through its area and 
scale parameters depiction [12]. 

Graph-Theoretic Partitional Clustering 

The second category, graph-theoretic partial clustering, tackles the multi-view grouping 
issue [13] via coordinating the diagram designs of various perspectives, which can 
completely take advantage of the mathematical property of the essential information 
structure. Accordingly, it is a main point of contention for information investigation to 
accumulate data from numerous perspectives and investigate the chart based models 
[14]. 

Spectral Partitional Clustering 

The third category, spectral partial clustering, is achieved by developing a Laplacian 
chart from relating data of interest with edges between them addressing the likenesses, 
so it can assure the general construction of data [15]. 

2.3. Bayesian Clustering 

In Bayesian model-based clustering, data points which are driven to have similar model-
explicit boundaries are viewed as from a similar group [16]. There are two ways to deal 
with this methodology as decision-based, and non-parametric Bayesian clustering. 

3. Materials and Methods 

In this section, we give the details of the data generated and the method applied in this 
study. 
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3.1. Dataset 

The dataset is composed of randomly generated integers since the effect of the different 
content of the data has not taken into consideration by means of performance of the 
comparison of the algorithms. 

3.2. Data Preprocessing 

In this study, we examined the different types of clustering algorithms from both Scikit-
learn Python package and TensorFlow-GPU based packages that relates to the 
presented algorithms.  

As the data is manually produced, no additional data processing step is applied. The 
created data points are directly used in the clustering algorithms.  

3.3. Experimental Setup 

There exist several approaches while comparing clustering approaches in a dataset. 
Being able to find the correct metrics to compare them in appropriate way is a tough task 
to accomplish. In this paper, as a first step, we generate datasets that includes randomly 
generated integers. 

The CPU can be accepted as the crucial hardware where the majority of the calculations 
actualizes inside. The Graphical Processing Unit (GPU) powered TensorFlow library was 
created to be utilized for huge datasets of mathematical processes. 

Table 1. System Specifications of CPU and GPU-Powered Systems 

System Specs First CPU System Second CPU System GPU System 

Processor Type Intel(R) Core i7  
 

Intel(R) Core i9 

 

Intel(R) Core i9 

Processor GHz 2.60 GHz 3.70 GHz 3.70 GHz 

P-Cores 6 10 10 

L-Cores 12 20 20 

Random Access Memory 64 GB 256 GB  256 GB  

Graphics Processors 
(GPU) 
 

 

  
NVIDIA GeForce® RTX 
2080Ti  

3.4. Model Evaluation Metric 

The execution times of each algorithm were calculated to be able to use it while 
evaluating each algorithm in an additional metric. To achieve this, timers were added at 
the beginning and ending of each algorithm as a starting and ending time values in 
seconds. After the execution of each algorithm, the time between the end time and the 
start time was subtracted to create the duration value in seconds. 
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4. Results and Discussion 

In this section, We trained two clustering algorithms and tested them on three different 
system by using the corresponding clustering functions in Scikit-Learn and TensorFlow 
Python packages. We present system specifications in Table 1, and time metrics for 
each dataset in Table 2, Table 3 and Table 4, respectively. 

4.1. CPU-Based K-Means Clustering  

In the context of our experiments, we chose the following algorithms of centroid 
partitional k-means algorithm on both two CPU-powered system with the Scikit-learn, 
kmeans++ algorithm, and GPU-powered system with tensorflow-gpu package installed 
tunnel kmeans-random algorithm for comparison by their existing clustering 
performances. 

After assigning cluster parameters, random numbers are generated with 5 columns and 
500 K rows in a contingent manner. 

K-Means (random) Clustering with Scikit-Learn 

K-means algorithm of the Python’s machine learning package selects the initially the 
center cluster in an arbitrary fashion. 

Table 2. Experiment Results For K-Means (random) Clustering with Scikit-Learn 

Metrics First CPU System Second CPU System 

Algorithm Run Time 2506.26 seconds 

 
1395.10 seconds 
 

Cluster Depiction 
 

Blue area represents the item sets, 
while Red are can be accepted as 
the groups generated 
 

Blue area represents the item sets, 
while Red are can be accepted as 
the groups generated 
 

 

Figure 1. Experiment results for First CPU-Based K-Means (random) Clustering with 
Scikit-Learn 
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Figure 2. Experiment results for Second CPU-Based K-Means (random) Clustering with 
Scikit-Learn 

Table 3. Experiment Results For kmeans++ Clustering with Scikit-Learn 

Metrics First CPU System Second CPU System 

Algorithm Run Time 2603.75 seconds 
 
1384.73 seconds 
 

Cluster Depiction 
 

Blue area represents the item 
sets, while Red are can be 
accepted as the groups 
generated 
 

Blue area represents the item 
sets, while Red are can be 
accepted as the groups 
generated 
 

 

Figure 3. Experiment results for First CPU-Based K-Means (kmeans++) Clustering with 
Scikit-Learn 
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Figure 4. Experiment results for Second CPU-Based K-Means (kmeans++) Clustering 
with Scikit-Learn 

4.2. GPU-Based K-Means Clustering  

Tensorflow library can be applied for greater amount of numerical calculations.  

K-Means (kmeans++) Clustering 

TensorFlow k-means methodology refracts the unwanted effects of causally derived 
initial origin centroid. To enable this feature, kmeanstf package can be implemented in 
the existing environment. 

Table 4. Experiment Results For kmeans++ Clustering with TensorFlow-GPU 

Metrics First CPU System Second CPU System 

Algorithm Run Time 219.18 seconds 

 
107.38 seconds 
 

Cluster Depiction 
 

Blue area represents the item 
sets, while Red are can be 
accepted as the groups 
generated 
 

Blue area represents the item 
sets, while Red are can be 
accepted as the groups 
generated 
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Figure 5. Experiment results for GPU-Based kmeans++ Clustering with TensorFlow-
GPU 

K-Means (Tunnel-K-means) 

The tunnel k-means method actualizes shifts between clusters to find the most optimum 
centroids for the items in the chunk. 

 

Figure 6. Experiment results for GPU-Based K-Means (Tunnel K-means) Clustering 
with TensorFlow-GPU 

5. Conclusion 

As the brief depiction, matrix table is created by listing each algorithm tested with their 
matching execution times. 

Execution time of an algorithm indicates an insight about its time complexity. The runtime 
of an algorithm might affect computational systems in a negative way. To reduce its 
resource consuming side effects, it is critical to monitor the execution period of each 
algorithm with model performance metrics. 

In parallel with system capabilities, higher CPU-powered system practices the lowest 
algorithm runtime compared to that of lower one. By evaluating this result, we can 
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conclude that higher CPU capability have promising effects on run-time performances of 
clustering algorithms. 

In addition, GPU system contains a higher performance by means of run times. By 
considering this information, GPU boosts execution times more than CPU-based 
systems. 
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