

*Corresponding author, e-mail: emre@ceng.metu.edu.tr DOI: 10.29109/gujsc.1141648

GU J Sci, Part C, 10(3): 650-665 (2022)

Gazi University

Journal of Science
PART C: DESIGN AND TECHNOLOGY

http://dergipark.gov.tr/gujsc

Improved Knowledge Distillation with Dynamic Network Pruning

Eren ŞENER1 Emre AKBAŞ1,*

1Middle East Technical University, Faculty of Engineering, Department of Computer Engineering, 06800, Çankaya/ANKARA

Article Info

Research article

Received: 06.07.2022

Revision: 20.08.2022
Accepted: 31.08.2022

 Abstract

Deploying convolutional neural networks to mobile or embedded devices is often prohibited by

limited memory and computational resources. This is particularly problematic for the most

successful networks, which tend to be very large and require long inference times. Many

alternative approaches have been developed for compressing neural networks based on pruning,

regularization, quantization or distillation. In this paper, we propose the “Knowledge Distillation

with Dynamic Pruning” (KDDP), which trains a dynamically pruned compact student network

under the guidance of a large teacher network. In KDDP, we train the student network with

supervision from the teacher network, while applying L1 regularization on the neuron activations

in a fully-connected layer. Subsequently, we prune inactive neurons. Our method automatically

determines the final size of the student model. We evaluate the compression rate and accuracy of

the resulting networks on an image classification dataset, and compare them to results obtained

by Knowledge Distillation (KD). Compared to KD, our method produces better accuracy and

more compact models.

Keywords

Knowledge Distillation

Neural Network
Compression

Image Classification

Deep Neural Networks

1. INTRODUCTION

Deep neural networks have enabled many applications in a diverse set of domains including vision,

language, medicine and robotics. However, these models require large amounts of processing power and

memory, which severely limits their deployability in limited-resource computers. New possibilities would

emerge if such models can be deployed in embedded platforms, mobile and edge devices. Therefore,

research on “neural network compression”, that is reducing the processing and memory requirements of

neural networks, is important.

Early work on neural network compression aimed to make a large network smaller by removing redundant

structures. These can be weights, neurons, blocks, etc. LeCun et al. proposed one of the pioneering network

compression methods, the Optimal Brain Damage method [1], which was followed by many magnitude-

based network pruning methods [2, 3]. These approaches work by removing weights that are close to zero.

To prune more structures and make the models smaller, regularization can be used to enforce sparsity. Han

et al. proposed one of the first regularization-based model compression methods. Following this work, some

other methods [5-7] that use regularization on different structures were also proposed. For convolutional

networks, researchers have designed novel convolutional filters to save parameters which decrease

redundancy [8-10]. Research on low-rank factorization methods [11-13] tries to find informative

parameters by using matrix or tensor decomposition. Another major body of work [14-16] reduces the

number of bits that represent each weight.

A prominent approach to network compression is the “knowledge distillation” (KD) method [17], where a

large, cumbersome model called the teacher guides the training of a much smaller model called the student

(Figure 1). The student network is trained with two losses: (i) the usual cross-entropy loss coming from the

training set, (ii) the “softened” class probabilities output by the teacher, computed via a hyper-parameter

http://dergipark.gov.tr/gujsc
https://orcid.org/0000-0002-0612-6451
https://orcid.org/0000-0002-3760-6722

Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 651

called temperature. The aim of “softened” probabilities is to increase the information about the target class

by introducing uncertainty into the probability distribution. Softened probabilities contain similarity

information on different classes, which is absent in the one-hot labels coming from the training set.

Figure 1. Illustration of the standard Knowledge Distillation method [17]. In KD, student model is trained

with a linear combination of two losses. One loss comes from the one-hot (or hard) labels and the other

from the “softened” labels. The architecture of the student model in KD is pre-determined and does not

change during or after training. However, in our method, we prune fully-connected layers in the student

network based on neuron activations to get a more compact model whose size is determined dynamically

and automatically.

KD based methods [18, 19] yield good performance on computer vision tasks and have had a significant

impact on model compression. However, a major disadvantage of KD is that the user has to specify the

student newtork architecture and this architecture do not change during or after training. While KD can

succesfully distil the knowledge of the teacher into the student, we do not know whether the student model

is unnecessarily large or smaller than it should be. In this paper, we address this disadvantage by

dynamically pruning the student network based on neuron activations, to obtain a more compact student

model. For pruning, we target the largest fully-connected layer of the student model, which typically contain

the largest percentage of neurons in the student model. Specifically, during the KD training, we apply L1

regularization on the activations of the neurons in a selected fully-connected layer of the student model to

impose sparsity. Then, we calculate the average activation over training examples, of each neuron in this

layer. We prune those neurons having an average activation below a certain threshold by directly removing

them from the network. To the best of our knowledge, our compression technique is the first method that

combines KD and L1 regularization in this way. We name our method as Knowledge Distillation with

Dynamic Pruning, or KDDP for short. Since our method can only prune fully-connected layers, its typical

targets are Multilayer Perceptrons (MLP) or CNNs with large fully-connected (fc) layers.

We extensively analyze and compare standard training from scratch, knowledge distillation and our

proposed method, KDDP, on the CIFAR10 dataset [20]. Experiments show that our method performs better

than the baselines (standard training and KD), while also sigfinicantly compressing the student model.

Furthermore, we find that setting hyper-parameters is crucial for KD based methods. Temperature, T,

652 Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022)

distillation weight, α, and L1 regularization penalty should be tuned to find a good balance between the

model size and the classification performance. In summary, when the hyper-parameters are chosen

carefully, our method works well.

Our contributions in this paper can be summarized as follows.

• We propose a new dynamic compression method based on KD. It dynamically prunes inactive

neurons in selected fully-connected layers from the student network. Unlike KD, our method does

not require the final size of the compressed model as input; it is determined dynamically.

• We experimentally analyze our method and compare against standard training from scractch and

KD. We make extensive experiments on our hyper-parameters to find meaningful relations with

the accuracy of the compressed model.

• We test our method on the CIFAR10 dataset. We get better accuracies than both standard training

and KD methods with much fewer parameters.

In the rest of the paper, we first summarize the neural network model compression literature in Section 2.

We describe our proposed method and its implementation details in Section 3. Then, we analyze the

effectiveness of our approach with experiments performed on the CIFAR10 dataset in Section 4, and finally

conclude in Section 5.

2. BACKGROUND AND RELATED WORK

Here we review the literature on model compression in deep neural networks in two main categories: (i)

parameter pruning and sharing, (ii) knowledge distillation. We give more detailed information about the

parameter pruning and sharing due to its direct relation to our method.

2.1. Parameter Pruning And Sharing

Parameter pruning attracted many researchers since the early development of neural networks due to its

effectiveness on reducing model complexity and over-fitting. It is also shown that pruning redundant

parameters from the network improves generalization, which is an important side-effect.

Early works to prune parameters are Optimal Brain Damage [1] (OBD) and Optimal Brain Surgeon [2]. In

their work, the authors remove redundant paramaters after sorting them by their saliencies. Saliency is

measured based on the Hessian of the objective function. Recently, Srinivas and Babu also showed how

similar neurons, which have similar weight sets, are redundant [3]. Since Hessian computation is heavy,

they propose a more systematic way than OBD and data-free method to remove them.

Most of the follow-up works use sparsity constraints (L0, L1-norm, etc.) in the optimization problems to

obtain redundancy. Researchers use these constraints on different elements (e.g. weights, blocks, etc.). Han

et al. are one of the first to propose a regularization-based method on model compression [4]. They apply

L2 regularization during the training phase in order to have near zero-valued parameters. Then they prune

all lowweight connections from the network. The deep compression method [15] uses the same procedure

as [4] for removing redundant connections. The authors also add quantization and Huffman coding on top

of the pruned network to have a more compact one.

Recently, redundancy in convolutional networks also has been explored. Lebedev and Lempitsky [21] apply

the idea of Optimal Brain Damage [1] to convolutional filters. They remove entries of L2,1-norm

regularization applied convolution filters, which are below a threshold, in a group-wise fashion. Similarly,

work by Zhou et al. [5] enforce low-rank constraints on tensors and L2,1-norm regularization on the

objective function during the training stage to achieve compact CNNs with reduced neurons. Another study

which uses L2,1-norm is Wen et al.’s work [6]. They apply regularization to big baseline models to learn

more compact CNNs. With their structured sparsity method, they regularize filters, channels, filter shapes

and layer depth of CNNs. Huang and Wang [22] improve the method of Wen et al. [6] and propose a more

general end-to-end method for network pruning. Their method contains a factor to scale the output of a

Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 653

specific neurons, groups or blocks. They apply L1-norm sparsity regularization to the scaling factors.

Structures having scaling factors below a threshold are removed from the network while training. Unlike

the previous works, Ullrich et al. [23] base their regularization on the soft weight-sharing method [24].

They compress weights of the pre-trained model into clusters by fitting mixtures of Gaussian models. After

retraining the model with new weights concentrated on the cluster means, they obtain a layer-wise-pruned

compact network.

There are also methods which focus on sparsity in batch-normalization (BN) layers. Liu et al. [7] add a

scaling factor after BN layers. L1 regularization is applied on these scaling factors during training for the

purpose of identifying redundant filters. Then, they prune channels with near-zero scaling factors. Another

recent study [25] uses the method proposed by Beck and Teboulle [26] to enforce sparsity on the γ-

parameter in BN operator. During training, this method makes some γ values zero and helps these channels

to block sample-wise (for each sample in the training set) information flow. After the training is completed,

they remove these constant-valued channels from the original network. The study MorphNet [27] uses a

combination of three ideas above: first, an L1-norm-based regularization of the neurons, second, the idea

of multipliers of Howard et al. [28] for reducing the floating point operations and model size, and third, the

paradigm introduced by Han et al. [4] for retraining of the pruned network.

There has also been some research for measuring the redundancy in the networks. Guo et al. present a

feedback mechanism named splicing which re-establishes mistakenly removed parameters after the pruning

operation [29]. With this work, they show that measuring the redundancy of the parameters is an extremely

difficult task. Researchers use different techniques for measuring redundancy. In [30], L1-norm of kernels

are calculated. After sorting kernels by their L1norm values, small valued kernels and corresponding feature

maps were pruned. ThiNet does filter-level pruning based on filter statistics computed from the following

layer, not the current layer [31]. In spite of their success, the compression rate of the filters had to be

predefined, which is another difficult problem for pruning methods. Moreover, He et al. exploit feature

maps for redundancy [32]. The authors select the most representative channels of the feature maps and

prune the redundant ones. After pruning, in order not to damage accuracy, they reconstruct the outputs with

the remaining channels using linear least squares.

Recently, several methods proposed to measure the importance of structures. Yu et al. propose that layer-

by-layer network pruning leads to significant reconstruction error propagation [33]. They introduce a global

neuron importance measuring algorithm which uses information at the Final Response Layer (FRL, the

second-to-last layer before classification). The algorithm obtains the importance of all neurons in the

network with a single backward pass after a feature ranking operation on the FRL. Subsequently, the

trimming of the whole network is performed considering the pruning ratio per layer as a pre-defined hyper-

parameter. Prakash et al. propose a novel inter-filter orthogonality metric for ranking filter importance and

a new training strategy [34]. Their method consists of temporarily dropping (some) of the least important

convolutional filters (ranked by their metric), and reintroducing dropped filters with new weights. They

repeat this process cyclically. With this strategy, they improve generalization and reduced overlap of

learned features. Unlike the traditional deterministic methods, Wang et al. approach pruning weights of

convolutional layers in a probabilistic manner [35]. They specify a pruning probability for each weight

group. At each iteration, these probabilities are updated with the L1 norm as an importance criterion of each

weight group. The pruning is guided by sampling from the pruning probabilities. He et al. use a novel

pruning method instead of norm-based pruning approaches [36]. They calculate the geometric median

Fletcher et al. of the filters within the same layer, and prune the filter(s) near to the geometric median [37].

In addition to above works, Dong et al. [38] improve the idea in previous works [1, 2]. Their pruning method

is based on second order derivatives of a layer-wise error function.

There are also some recent and novel compression techniques used for pruning. In SplitNet [39], the goal

is to find a tree-structured network that contains a set or a hierarchy of subnetworks, where the leaf-level

subnetworks are associated with a specific group of classes. Since each group uses a subset of features that

are completely disjoint from the ones used by other groups, the splitting algorithm prunes out inter-group

654 Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022)

connections while optimizing the cross entropy loss and the group regularization. At the end, the weight

matrix can be explicitly split into block diagonal matrices to reduce the number of parameters. Similarly,

Yang et al. approach the network compression from energy consumption of the network [40]. They sort

layers by their energy consumption, and pruned weights, which have small magnitudes, of the layers that

consume the most energy first. Similar to the idea of “network slimming” [7], Zhao et al. modify the BN

layer and add a new parameter called channel saliency to the BN layer [41]. They try to find approximate

gamma distributions over these channel saliency parameters. They then remove redundant channels with

mean and variance of their gamma distributions less than predefined thresholds.

2.2. Knowledge Distillation

Knowledge Distillation is a simple way to have compact deep learning models. In this method, a large (i.e.

cumbersome) network or an ensemble model is trained, first. This model is called the “teacher”, which

typically produces accurate predictions. Then, a smaller network, called the “student”, is trained using the

guidance coming from the teacher model. This guidance is obtained using “temperature softmax” applied

on the logits of the teacher. The goal is to provide a better training for the student model than using only

the labels from the dataset. Trained in this way, the final student network was shown to produce comparable

results to the teacher’s [18].

Similar ideas to knowledge distillation has been explored before. Bucilua et al. approach the idea of

knowledge transfer from a different point of view [42]. Instead of training a neural network on an original

small set, they use an ensemble of base-level classifiers to label a large unlabeled dataset and then train the

network on this much larger dataset. Ba and Caruana propose using L2 loss on the logits to mimic the

teacher network [43].

FitNets [18] use knowledge distillation to yield deep and thin student networks that perform on par with or

better than the teacher. They achieve this by training some student layers using the teacher’s supervision

for better initialization. Luo et al. show that using L2 loss to match the features of top hidden layers from

both teacher and student is effective [19]. Yim et al. distill knowledge from the teacher by generating a

matrix from feature maps at each layer [44]. Then, they transfer the knowledge from teacher to student,

which has the same depth as the teacher, by applying L2 loss to these matrices.

2.3. Other Approaches

There are also other approaches to neural network compression and pruning that are orthogonal to our

method. These include low-rank factorization methods, quantization and binarization methods and methods

that aim to obtain compact convolutional filters.

2.4. Summary

Given the context of existing work, although L1 regularization to enforce sparsity is commonly used for the

purposes of pruning/compression, it has not been applied in the context of KD to obtain a student model

whose size is determined dynamically and automatically.

3. METHOD

Before we present our method in detail, we first describe the knowledge distillation (KD) method [17] for

completeness. In KD, there are two models: teacher and student. Given a supervised dataset, the teacher

model is trained first. Then, the student model is trained using a linear combination of two losses: (i) the

regular crossentropy loss coming from the supervised dataset, and (ii) “softened” cross-entropy loss coming

from the teacher’s prediction. To better explain these two losses, let us consider an example input image x

with its ground-truth label y, which is a one-hot vector. A neural network outputs a raw score, or logit, zi

for quantifying the degree that the input x belongs to class i. These logits are normalized using the “softmax”

function so that the resulting vector can be considered as a probability distribution:

Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 655

𝑞𝑖 =
exp(𝑧𝑖/𝑇)

∑ exp(𝑧𝑐/𝑇)
𝐶
𝑐=1

 (1)

where C is the number of classes and T is called the “temperature” parameter, which by default equals to

1. Then, cross-entropy between q = [q1,q2,...,qC] and y is computed as

CE(𝐲, 𝐪) = ∑𝑦𝑐log⁡(𝑞𝑐)

𝐶

𝑐=1

. (2)

When T > 1, we call the loss as “softened” cross-entropy, as it softens the effect of the exponential function

in softmax as T gets larger.

Let qtch,T denote the softmax output of the teacher model with temperature T. Similarly, let qstd,T be the

student’s softmax output with temperature T. First, the teacher model is trained to minimize the regular

cross-entropy loss:

𝐿tch = ∑ CE(𝐲, 𝐪tch,1)

(𝐱,𝐲)

. (3)

And, the knowledge-distillation loss, by which the student model is trained, can be written as

𝐿std = ∑(1 − α)CE(𝐲, 𝐪std,1) + 𝛼CE(𝐪tch,T, 𝐪std,T)

(𝐱,𝐲)

. (4)

The first term is the regular cross-entropy loss with one-hot ground-truth labels. The second term is the

cross-entropy between temperature-softmax outputs. It is this second term, which brings in new information

about class similarities predicted by the teacher. α is an hyperparameter to adjust the contribution of the

two terms. Figure 1 illustrates the KD method.

In KD, both the teacher and the student model architectures are determined before training and are fixed

during and after training. So, essentially, one hast to decide on the size of the student beforehand and KD

attempts to distill the knowledge of the teacher into this student. However, there is no way of knowing the

optimal size for the student architecture beforehand. Our method addresses this problem by dynamically

pruning (removing) neurons from the student. By doing so, our method both finds an optimal size for the

student model and slightly improves the final accuracy of the student model. In the following we describe

our method.

3.1. Knowledge Distillation With Dynamic Pruning (KDDP)

As done in standard KD, we first train the teacher model, or it is provided as an already trained model.

Then, we add L1 regularization to the largest fullyconnected layer of the student — let us call this layer

fc1. The rationale behind this choice is that this layer typically contains a large percentage (up to 83% in

our experiments) of all parameters in the model (Table 1). Next, we train the student using the KD loss

defined in Equation (4). After the student is trained, we run it on the training set to calculate the average

activation (i.e. output) of each neuron at fc1. If the activation of a neuron is below 10−6, we prune (i.e. kill

or remove) that neuron and delete the corresponding weight set in its next layer. After testing all neurons

at fc1, we re-train the pruned student network using Equation (4), this time without any L1 regularization

on fc1.

3.2. Teacher And Student Models

As the teacher, we use a ResNet model [45]. ResNet and its variants proved their success on many computer

vision tasks. Specifically, our teacher model is a ResNet-56 which achieves 6.97% error rate on CIFAR10

and has 850K learnable parameters. Details of ResNet-56 can be found in the original ResNet paper [45].

656 Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022)

Table 1. Student networks differ only in the number of neurons in the fc1 layer. Percentages in

parenthesis indicate the ratio of the parameters in fc1 to the total number of parameters.

Model # of neurons in fc1 # of parameters at fc1 total # of parameters

SN50 50 29k (34%) 85k

SN100 100 58k (50%) 114k

SN500 500 289k (83%) 349k

We choose our student network to have a very simple architecture in order to efficiently analyze the

performance of our method. Our student network architecture starts with an input layer for 32×32×3 sized

images. It is followed by a convolutional layer with a kernel size of 7×7 with a stride of 1, with 64

convolution filters. This result in an output of size 16 × 16 × 64. The convolutional layer is followed by a

Batch Normalization (BN) layer and a ReLU non-linear activation function. We later use a max-pooling

layer which has a window size of 3×3 with stride 2 that produces an output of size 7×7×64. This layer

followed by an identity-block of the ResNet architecture [45]. ResNet’s identity block is composed of 3

convolutional layers, each followed by a BN and a ReLU layer. The first and third convolutional layers

have a kernel size of 1×1, and the middle layer has a kernel size of 3 × 3. The stride of all convolutions of

the identity blocks is 1 and the number of filters used in each layer is 64. Before the ReLU layer of the last

convolutional layer inside the residual block, there is a skip connection that allows the flow of information

from the initial layers to the last layers by adding the input of the identity block and the output of the ReLU

layer. The identity-block is followed by an average pooling layer which outputs a 3×3×64-dimensional

tensor. This layer is followed by a fully-connected layer, fc1, and a ReLU layer. Finally, the ReLU layer is

followed by another fully connected layer, fc2, as a bridge to a softmax layer at the end.

In our experiments, we create three different variant of this student model. The only difference between

these student models are the neuron counts in the first fully-connected layer, fc1. We use 50, 100 and 500

neurons for this layer to explore the effect of the increasing number of neurons. We set the number of

neurons in the second fully-connected layer, fc2, to the number of classes in the classification task at hand.

The total number of parameters and percentage of parameters in fc1 for these networks are presented in

Table 1. Figure 2 illustrates the architecture of our student network.

3.3. Baseline Methods

We compare our method with the following models.

Vanilla SN: We train the student network from scratch without any teacher guidance or regularization

penalty. We use this model to find out the baseline performance of our student networks.

Vanilla-KD SN: We train the student network with standard Knowledge Distillation [17] at different

temperature values (T) but without regularization penalty.

3.4. Implementation Details

Teacher Network (TN): We train a ResNet-56 model from scratch. The learning rate is 10−4 , the mini-

batch size is 64, and the optimization algorithm is Adam [46].

Student Networks (SN): We use the same hyper-parameters while training all student models. All models

are trained from scratch. Weights and biases are initialized with Xavier’s initialization [47]. Network

architectures are implemented using the Keras framework [48]. Adam [46] is used for training. The learning

rate is set to 10−4, and the mini-batch size is 64. An L1 regularization penalty is applied on fc1 during the

training of the KDDP student networks. The training is stopped early if there is no improvement in the

accuracy on the validation set for 50 epochs.

Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 657

Figure 2. Student Network overview. The network takes an image and outputs a class label. It is

composed of an input layer followed by a convolutional layer, max pooling, an identity-block of

ResNet(He et al., 2016), average pooling, two fully connected layers, and a softmax layer. ResNet’s

identity block is highlighted with the yellow rectangle. This layer is composed of three convolutional

layers and a skip connection which adds the input of the identity block and the output of the last

convolutional layer in the identity block.

4. EXPERIMENTS

In this section, we describe the experimental evaluation and validation of our method. We evaluate it by

comparing against the two baselines and then, provide extensive experiments on hyper-parameters in

Section 4.3.

Figure 3. Example images from the CIFAR10 dataset.

4.1. Dataset

We use the CIFAR10 dataset [20] in our experiments. It contains 60000 32x32 color images in 10 classes,

with 6000 images per class. Example images can be seen in Figure 3). There are 50000 training images and

10000 test images. We randomly sample (using stratified sampling, i.e., by preserving class

frequencies)10000 images from the training set to form a validation set. We report our results after

observing no improvements on the validation set for 50 epochs during training. As data augmentation, we

only use horizontal flip. We use this setup in all experiments.

4.2. Analysis of the Proposed Method

We present our main results in Table 2, where we compare the performances and parameter counts of the

teacher model, vanilla SN model, vanilla KD SN model and our KDDP model.

658 Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022)

Table 2. Main results on the CIFAR10 test set.

Model Acc. # Params.

Teacher 0.8808 1,673,738

Vanilla SN50 0.8048 85,104

Vanilla KD SN50 0.8141 85,104

KDDP SN50 (final |fc1|=45) 0.8193 82,169

Vanilla KD SN45 0.8145 82,169

Vanilla SN100 0.8075 114,454

Vanilla KD SN100 0.8197 114,454

KDDP SN100 (|fc1|=83) 0.8219 104,475

Vanilla KD SN83 0.8146 104,475

Vanilla SN500 0.8128 349,254

Vanilla KD SN500 0.8264 349,254

KDDP SN500 (|fc1|=264) 0.8281 210,722

Vanilla KD SN264 0.8267 210,722

We use the same teacher logits in for all experiments (i.e. z in Eq. (1)). We train our teacher once. We use

the same initial weights for all student network trainings with hyper-parameters: L1 = 1e−4 and α = 0.5.

We also train Vanilla SNs and Vanilla-KD SNs for each model to explore the capacity of these networks

and compare with our model.

The teacher network has 1.7M parameters and yields an accuracy of 88.08% on the test set. This score is

lower than other ResNet results on the same set, e.g. Cai et al. achieve 97.92% [49]. This is because we

hold out 10K examples from the training set as validation data to have a solid early stopping criterion. Also,

we only use horizontal-flip augmentation.

The “Vanilla SN” (student network), which is the SN trained from scratch without any teacher guidance or

regularization, has three versions. These versions differ only in the number of neurons in the fc1 fully

connected layer. For 50, 100 and 500 neurons, Vanilla SN achieves 80.48%, 80.75%, 81.28% test set

accuracy, respectively. Increasing the number of neurons in fc1 has a positive effect on model performance.

However, this causes an increase in the number of parameters, as well. When the student model is trained

using standard knowledge distillation method, we obtain the “Vanilla KD SN” models. Compared to the

Vanilla SNs, they achieve around 1% better accuracy for all models.

Our method, KDDP, achieves 81.93%, 82.19%, 82.81% accuracies on the test set for student networks

SN50, SN100, SN500, respectively. We observe that our method works better than both Vanilla SN and

Vanilla KD SN, and improves the accuracies around 0.5% for SN50, SN100, SN500 with 3%, 9%, 40%

fewer parameters than their original networks. It dynamically removes 10%, 17%, 48% of the parameters

at fc1.

We conduct further experiments to compare our method against KD to provide fair comparisons based on

the total number of neurons in the network. We record the number of final neurons in KDDP and we train

smaller Vanilla KD SNs that have the same neuron counts at fc1 with the final KDDP SNs. We denote

these models with “Vanilla KD SNn” where n is equal to 45, 83 or 264. We use the same softmax

temperature for both bases. We observe that with the same fc1 size, KDDP outperforms Vanilla KD.

From these results, we conclude that our dynamic pruning method both improves accuracy and reduces

computational cost of inference. In the following, we analyze the sensitivity of our method to its hyper-

parameters, and also conduct statistical significance analysis.

4.3. Hyper-parameter Analysis

4.3.1. L1 Regularization Penalty Analysis

Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 659

We use L1 regularization on the activations of fc1 layer neurons to increase sparsity. L1 regularization

penalizes the absolute value of the activations of the neurons. We present results for different L1 penalties

in Table 3. We set α to 0.5 in these experiments.

We observe that larger values of L1 penalty result in fewer active neurons at the fc1 layer and therefore

decreases the performance of the models. For example, when L1 is 1e−3 and T = 32 at KDDP SN100

experiment, the model gets stuck at some local minima and cannot even reach the vanilla model’s

performance. However, when there are fewer parameters it helps the model to get acceptable performances.

For example, for hyperparameters L = 1e−3, T = 2, our KDDP SN50 model achieves better performance than

the other SN50 models. We also observe that using smaller values for L1, e.g. L1 = 1e−5, does not work for

our pruning method in all student models. Therefore, L1 penalty should be tuned to strike a good balance

between the model size and the classification performance. In our experiments, we set the L1 regularization

to 1e−4.

Table 3. Effect of L1 regularization penalty. Results for models SN50, SN100, SN500. Hyper-parameter α =

0.5.
 𝐿1 = 1𝑒−3 𝐿1 = 1𝑒−4 𝐿1 = 1𝑒−5

 T Acc. fc1 size Acc. fc1 size Acc. fc1 size

5
0

 n
eu

ro
n

s

2 0.8198 15 0.8193 45 0.8162 49

4 0.8054 10 0.8123 40 0.8146 48

8 0.7638 7 0.7891 41 0.7968 47

12 0.7707 7 0.7913 38 0.7918 47

16 0.7761 8 0.7902 33 0.7948 46

20 0.7802 8 0.8011 37 0.7961 47

32 0.7607 5 0.8010 37 0.8049 48

64 0.7776 7 0.8078 37 0.8034 44

100 0.7871 6 0.8088 32 0.8038 49

200 0.7966 7 0.8053 41 0.8077 47

1000 0.7877 8 0.8065 35 0.8078 46

5000 0.7616 5 0.8032 40 0.8069 43

1
0

0
 n

eu
ro

n
s

2 0.8132 18 0.8219 83 0.8219 97

4 0.7913 9 0.8156 79 0.8192 93

8 0.7655 7 0.8037 61 0.8099 92

12 0.7931 10 0.7952 59 0.7941 92

16 0.7970 76 0.7922 59 0.7931 92

20 0.7802 7 0.7978 59 0.7935 89

32 0.6900 3 0.8085 61 0.8001 93

64 0.7779 6 0.8095 59 0.8012 91

100 0.7594 4 0.8077 54 0.8121 91

200 0.7800 6 0.8003 54 0.8055 90

1000 0.7609 4 0.8171 53 0.8058 95

5000 0.8063 89 0.8087 54 0.8010 88

5
0

0
 n

eu
ro

n
s

2 0.8211 103 0.8281 264 0.8185 467

4 0.8213 330 0.8186 156 0.8196 453

8 0.8175 400 0.8106 113 0.8101 441

12 0.8017 140 0.8079 118 0.8110 432

16 0.8010 235 0.7952 109 0.8089 429

20 0.7991 151 0.8003 91 0.8075 425

32 0.8047 98 0.8147 111 0.8063 425

64 0.8050 17 0.8121 109 0.8025 417

100 0.8040 90 0.8114 101 0.8030 431

200 0.8062 185 0.8146 112 0.8076 423

1000 0.8059 15 0.8140 116 0.8040 425

5000 0.8123 17 0.8093 105 0.8070 423

4.3.2. 𝜶⁡ Analysis

α in Eq. (4) sets the contribution of the two objective functions (i.e. the weight of distillation). In other

words, using bigger α values means giving more importance to soft targets in the objective function. We

660 Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022)

present results for different α values in Table 4. We can see that too small and large α values don’t lead to

good performances. α also should be tuned carefully to have a good balance between the model size and

classification performance. In our experiments, we observe that setting α to 0.5 gives the best results.

4.3.3. T Analysis

Setting the vaue of T, which “softens” the softmax output, is not a trivial task. To find its optimal value, we

did a grid search over the temperatures values of [2, 4, 8, 12, 16, 20, 32, 64, 100, 200, 1000, 5000]. If we

keep increasing T, at some point, logits will be saturated and no information will flow from the teacher to

the student network. We present our results in Table 4. We can see that when we train the network with

100 neurons solely with the loss coming from the soft targets (the second term in Eq. (4)) with a temperature

of 5000, we get an accuracy of 10%, which is equal to the random guess for CIFAR10. For all models, we

observe that the accuracy fluctuates depending on T. Therefore, we conclude that the temperature parameter

should also be tuned carefully.

Table 4. Distillation loss weight (α in Eq. (4)) and temperature analysis. Results for models

SN50,SN100,SN500. Hyperparameters: L1 = 1e−4 .
 𝛼 = 0.2 𝛼 = 0.5 𝛼 = 0.8 𝛼 = 1

 T Acc fc1 size Acc fc1 size Acc fc1 size Acc fc1 size

5
0

 n
eu

ro
n

s

2 0.8046 48 0.8193 45 0.8093 49 0.7955 45

4 0.8003 44 0.8123 40 0.8147 39 0.8034 32

8 0.7987 42 0.7891 41 0.8031 26 0.7967 8

12 0.7945 43 0.7913 38 0.7843 28 0.5061 25

16 0.8093 43 0.7902 33 0.7726 23 0.5844 46

20 0.8081 45 0.8011 37 0.7761 25 0.5882 45

32 0.8058 39 0.8010 37 0.7872 23 0.5101 42

64 0.8060 42 0.8078 37 0.7961 25 0.5850 42

100 0.8021 44 0.8088 32 0.8069 24 0.5835 42

200 0.8057 42 0.8053 41 0.8018 22 0.5526 39

1000 0.8072 44 0.8065 35 0.8088 26 0.6277 40

5000 0.8106 42 0.8032 40 0.8040 26 0.1000 12

1
0

0
 n

eu
ro

n
s

2 0.8077 76 0.8219 83 0.8239 87 0.8078 66

4 0.8082 75 0.8156 79 0.8177 69 0.8108 49

8 0.8042 66 0.8037 61 0.8041 33 0.7948 8

12 0.8041 75 0.7952 59 0.7880 30 0.6685 88

16 0.8005 69 0.7922 59 0.7733 26 0.5931 63

20 0.8010 79 0.7978 59 0.7689 31 0.5886 40

32 0.8075 69 0.8085 61 0.7889 25 0.5764 49

64 0.8065 79 0.8095 59 0.7962 33 0.5835 51

100 0.7963 72 0.8077 54 0.7985 33 0.5890 85

200 0.8047 67 0.8003 54 0.8037 29 0.5748 85

1000 0.8039 71 0.8171 53 0.8000 34 0.5864 86

5000 0.8096 75 0.8087 54 0.8073 31 0.1000 14

5
0

0
 n

eu
ro

n
s

2 0.8170 247 0.8281 264 0.8255 262 0.8158 212

4 0.8138 205 0.8186 156 0.8215 126 0.8157 57

8 0.8100 204 0.8106 113 0.8133 44 0.6642 407

12 0.8065 177 0.8079 118 0.7863 28 0.5768 256

16 0.8092 181 0.7952 109 0.7872 27 0.5890 319

20 0.8070 187 0.8003 91 0.7734 24 0.5843 397

32 0.8112 184 0.8147 111 0.7925 29 0.6397 123

64 0.8087 178 0.8121 109 0.8017 28 0.6458 394

100 0.8072 183 0.8114 101 0.8068 27 0.7257 389

200 0.8110 189 0.8146 112 0.8085 36 0.6410 135

1000 0.8069 189 0.8140 116 0.8070 36 0.6374 395

5000 0.8116 176 0.8093 105 0.8039 33 0.1001 120

4.4. Statistica Analysis of the Results

We use Welch’s T-test to measure the significance of our method’s results. We train Vanilla SN, Vanilla

KD and KDDP models with 100 fc1 neurons, starting with different initial weights for 11 times. We set our

Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 661

hyper-parameters as L1 = 1e−4, α = 0.5. We present these results in Table 5.

KDDP & Vanilla Analysis: We start with assuming a null hypothesis that the mean of the results of the

KDDP is equal to the mean of the results of the Vanilla network. Then, we calculate the T-score of these

sets (classification results) using Eq. 5. We get a T-score of 9.91. For two-tailed hypothesis and 10 degrees

of freedom, this T-score corresponds to p < .00001., which indicates statistical significant. Therefore, it is

safe to reject the null hypothesis that there is no difference between the means of results.

KDDP & Vanilla-KD Analysis: We follow the same computations for comparing our KDDP with the

Vanilla-KD. We get a T-score of 2.9730, which corresponds to p = .013974 for two-tailed hypothesis with

10 degrees of freedom. Since p <.05, it is again safe to reject the null hypothesis. We conclude that our

KDDP model’s performance has intrinsic differences from Vanilla SN and Vanilla KD results, and they

are strong and are not by chance.

Table 5. Results of 11 different trainings for Vanilla SN, Vanilla KD and KDDP models with 100 neurons

in fc1. Hyper-parameters for KDDP are L1 = 1e−4, α = 0.5. Although the difference in mean accuracies

are small, they are statistically significant.

Run # Vanilla Acc. Vanilla-KD

Acc.

KDDP Acc.

0 0.8075 0.8197 0.8219

1 0.8041 0.8156 0.8226

2 0.8089 0.8182 0.8234

3 0.7975 0.8125 0.8166

4 0.8051 0.8172 0.8183

5 0.8101 0.8167 0.8175

6 0.7998 0.8210 0.8221

7 0.8080 0.8193 0.8212

8 0.8033 0.8163 0.8210

9 0.8098 0.8139 0.8152

10 0.7980 0.8169 0.8233

Mean 0.8047 0.8170 0.8203

Var 1.9522e−5 5.6783e−6 7.5033e−6

KDDP & Vanilla T-score: 9.9177

KDDP & Vanilla-KD T-Score: 2.9730

5. CONCLUSION

In this paper, we propose a new method based on Knowledge Distillation (KD) [17]. We use L1

regularization on the activities of the neurons in a fully-connected layer and remove the inactive neurons.

There is no need to provide the final size of the student model as input; our method determines it

automatically. Our method performs better than the standard KD method with much fewer parameters.

In our extensive experiments, we show that KD based methods including ours are highly hyperparameters

dependent. Temperature, T, and distillation weight, α selection determine the performance of the trained

model. We observe that the accuracy varies significantly between low and high values for different T values.

Moreover, α constrains us to decide to what extent we should rely on the teacher network’s logits. However,

when the hyper-parameters are chosen carefully, our method works well. It performs better than the

baselines.

662 Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022)

In conclusion, our method can be used when there is a need for a much smaller network that performs

comparably. Moreover, considering the benefits such as comparable accuracy with fewer parameters, one

should expect that the hyper-parameter selection is vital for the performance.

Although we did not explore the use of our method for convolutional layers, we expect that similar gains

(higher accuracy with fewer parameters) would be obtained. We leave this as future work.

REFERENCES

[1] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel, “Optimal brain damage.,” in

Advances in Neural Processing Systems (NIPS Conference), vol. 2, pp. 598–605, 1989.

[2] B. Hassibi and D. Stork, “Second order derivatives for network pruning: Optimal brain surgeon,” in

Advances in Neural Information Processing Systems 5 (NIPS Conference), pp. 164–171, 1992.

[3] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural networks,” in Proceedings of

the British Machine Vision Conference 2015, BMVC 2015, Swansea, UK, September 7-10, 2015, pp.

31.1–31.12, 2015

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural

network,” in Advances in Neural Information Processing Systems (NIPS Conference), pp. 1135–1143,

2015.

[5] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact cnns,” in European Conference

on Computer Vision (ECCV), pp. 662–677, Springer, 2016.

[6] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural networks,”

in Advances in Neural Information Processing Systems (NIPS Conference), pp. 2074–2082, 2016.

[7] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional networks

through network slimming,” in Proceedings of the IEEE International Conference on Computer Vision

(ICCV), pp. 2736–2744, 2017.

[8] J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural networks for feedforward

acceleration,” in 3rd International Conference on Learning Representations, ICLR, San Diego, CA,

USA, May 7-9, 2015, Workshop Track Proceedings, 2015.

[9] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer, “Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and <1mb model size,” CoRR, vol. abs/1602.07360,

2016.

[10] T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu, “Compressing convolutional neural networks

via factorized convolutional filters,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3977–3986, 2019.

[11] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear structure within

convolutional networks for efficient evaluation,” in Advances in Neural Information Processing

Systems 27 (NIPS Conference), December 8-13, Montreal, Quebec, Canada, pp. 1269–1277, 2014.

[12] H. Kim, M. U. K. Khan, and C.-M. Kyung, “Efficient neural network compression,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12569–12577, 2019.

[13] B. Minnehan and A. Savakis, “Cascaded projection: End-to-end network compression and

acceleration,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 10715–10724, 2019.

Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 663

[14] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep neural networks with

binary weights during propagations,” in Advances in Neural Information Processing Systems 28 (NIPS

Conference), Montreal, Quebec, Canada, pp. 3123–3131, 2015.

[15] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural network with

pruning, trained quantization and huffman coding,” in 4th International Conference on Learning

Representations, ICLR, 2016.

[16] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks,”

in Advances in Neural Information Processing Systems (NIPS Conference), pp. 4107–4115, 2016.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” in Deep

Learning Workshop, Advances in Neural Information Processing Systems (NIPS Conference), 2014.

[18] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: Hints for thin

deep nets,” in 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

[19] P. Luo, Z. Zhu, Z. Liu, X. Wang, and X. Tang, “Face model compression by distilling knowledge

from neurons,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[20] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” Technical

Report, 2009.

[21] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain damage,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2554–2564, 2016.

[22] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep neural networks,” in

Proceedings of the European Conference on Computer Vision (ECCV), pp. 304–320, 2018.

[23] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural network compression,” in

5th International Conference on Learning Representations, ICLR, Toulon, France, April 24-26, 2017,

Conference Track Proceedings, 2017.

[24] S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft weight-sharing,” Neural

Computation, vol. 4, no. 4, pp. 473–493, 1992.

[25] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-less-informative assumption in

channel pruning of convolution layers,” in 6th International Conference on Learning Representations,

ICLR, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[26] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse

problems,” SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.

[27] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi, “Morphnet: Fast &

simple resource-constrained structure learning of deep networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1586–1595, 2018.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H.

Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv

preprint arXiv:1704.04861, 2017.

[29] Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,” in Advances in Neural

Information Processing Systems 29: Annual Conference on Neural Information Processing Systems,

Barcelona, Spain, pp. 1379–1387, 2016.

664 Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022)

[30] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient convnets,”

in 5th International Conference on Learning Representations, ICLR, Toulon, France, April 24-26, 2017,

Conference Track Proceedings, 2017.

[31] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep neural network

compression,” in Proceedings of the IEEE international conference on computer vision, pp. 5058–

5066, 2017.

[32] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural networks,” in

Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397, 2017.

[33] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin, and L. S. Davis,

“Nisp: Pruning networks using neuron importance score propagation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 9194–9203, 2018.

[34] A. Prakash, J. Storer, D. Florencio, and C. Zhang, “Repr: Improved training of convolutional

filters,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.

10666– 10675, 2019.

[35] H. Wang, Q. Zhang, Y. Wang, and H. Hu, “Structured probabilistic pruning for convolutional

neural network acceleration,” in British Machine Vision Conference 2018, BMVC, Northumbria

University, Newcastle, UK, September 3-6, 2018, p. 149, 2018.

[36] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric median for deep

convolutional neural networks acceleration,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 4340–4349, 2019.

[37] P. T. Fletcher, S. Venkatasubramanian, and S. Joshi, “Robust statistics on riemannian manifolds

via the geometric median,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition,

pp. 1–8, IEEE, 2008.

[38] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks via layer-wise optimal

brain surgeon,” in Advances in Neural Information Processing Systems, pp. 4857–4867, 2017.

[39] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “Splitnet: Learning to semantically split deep networks

for parameter reduction and model parallelization,” in Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pp. 1866–1874, JMLR. org, 2017.

[40] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional neural networks

using energy-aware pruning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 5687–5695, 2017.

[41] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational convolutional neural

network pruning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2780–2789, 2019.

[42] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 535–541,

ACM, 2006.

[43] J. Ba and R. Caruana, “Do deep nets really need to be deep?,” in Advances in neural information

processing systems, pp. 2654–2662, 2014.

[44] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation: Fast optimization, network

minimization and transfer learning,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 4133–4141, 2017.

Eren ŞENER, Emre AKBAŞ / GU J Sci, Part C, 10(3):650-665 (2022) 665

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in European

Conference on Computer Vision (ECCV), pp. 630–645, Springer, 2016.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the thirteenth international conference on artificial intelligence and

statistics, pp. 249–256, 2010.

[48] F. Chollet et al., “Keras.” https://keras.io, 2015.

[49] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on target task and

hardware,” in 7th International Conference on Learning Representations, ICLR, New Orleans, LA,

USA, May 6-9, 2019, 2019.

