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Abstract 

With the rapid development of technology, cellular networks in wireless networks are insufficient to meet the demands. In order to 

provide a correct and good service to each user, communication systems must change. Although cell-free networks have many 

advantages over cellular networks, since there are too many users and access points (APs) in cell-free networks, AP selection is very 

important. In this thesis, the AP selection model has been studied and compared five different machine learning classification 

methods. The campus of Izmir Katip Celebi University has been chosen as the environment where the study will be carried out, and 

capacity values have been obtained from the users and APs that have been placed on the campus in the simulation environment. 

Numerical calculation results have been obtained from the Wireless Insite (WI) software. The AP selection to be created with the 

capacity values has been supported by artificial intelligence algorithm techniques. With two different data sets have been compared, 

better results have been tried to be obtained with different feature values. As a result of the comparisons made, the best machine 

learning classification technique used has been proposed. 
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Hücresiz ÇGÇÇ Sistemlerinde AP Seçimi için Makine Öğrenimi 

Tabanlı Sınıflandırma Algoritması 
Öz 

Teknolojinin hızlı gelişimi ile kablosuz ağlarda hücresel ağlar talepleri karşılamakta yetersiz kalmaktadır. Her kullanıcıya doğru ve iyi 

hizmet verebilmek için iletişim sistemlerinin değişmesi gerekmektedir. Hücresiz ağların hücresel ağlara göre birçok avantajı olmasına 

rağmen, hücresiz ağlarda çok fazla kullanıcı ve erişim noktası (AP) olduğundan, AP seçimi çok önemlidir. Bu tezde, AP seçim modeli 

incelenmiş ve beş farklı makine öğrenmesi sınıflandırma yöntemi karşılaştırılmıştır. Çalışmanın gerçekleştirileceği ortam olarak İzmir 

Katip Çelebi Üniversitesi kampüsü seçilmiş ve simülasyon ortamında kampüse yerleştirilen kullanıcı ve AP'lerden kapasite değerleri 

elde edilmiştir. Sayısal hesaplama sonuçları Wireless Insite (WI) yazılımından alınmıştır. Kapasite değerleri ile oluşturulacak AP 

seçimi yapay zeka algoritma teknikleri ile desteklenmiştir. İki farklı veri seti karşılaştırılmış, farklı öznitelik değerleri ile daha iyi 

sonuçlar elde edilmeye çalışılmıştır. Yapılan karşılaştırmalar sonucunda kullanılan en iyi makine öğrenmesi sınıflandırma tekniği 

önerilmiştir. 

 

Anahtar Kelimeler: Hücresiz ağ, Çoklu Girişli Çoklu Çıkışlı Sistem, Erişim noktası seçimi, Makine öğrenmesi, Sınıflandırma 

algoritması 
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1. Introduction 

Radio frequencies have been used in wireless 

communication systems to transmit data over the air. Although 

5G is similar to 4G, it uses higher radio frequencies. This 

enables larger volumes of data to be transmitted at a faster rate. 

However, path loss effect has a greater impact on the 

transmission of signals at higher frequencies. Moreover, physical 

influences such as trees and buildings can easily hinder 

transmission. Massive multiple input and multiple output 

(massive MIMO) systems have been widely adressed as a 

solution to the aforementioned issues in recent studies [1,2].  

In conventional cellular networks, a macro base stations 

(BS) serves many users under its coverage area. The farther 

users get from the macro BS, the lower the signal quality has 

been served. However, with the increasing demands for higher 

signal quality, user numbers and users mobility have been 

increasing. Due to the increasing number of user demands, 

conventional cellular networks are insufficient. Cell-free MIMO 

systems have been investigated in order to solve the problems in 

cellular networks. In principle, Cell-Free MIMO systems include 

multiple dispersed, low-cost and low-power multi-antenna APs 

which are connected to a network controller. The number of 

antennas should be greater than the number of customers. On the 

contrary of cellular networks, there are no cell boundaries and 

each user is jointly served by all APs [3,4]. The obtained results 

show that the cell-free networks have many advantages over 

cellular networks at many points [5-7]. The first benefit of the 

Cell-free architecture is that it achieves a higher and more 

uniform signal-to-noise ratio (SNR) within the coverage area 

than conventional cellular networks.  In addition, mobile users 

who are switching between cells are exposed to disconnections 

while trying to establish a new connection with the new base 

station which is called handover. In order to overcome the 

handover issue, the concept of Cell-Free topology can overcome 

the excessive handover issue in small-cell systems  by removing 

the cell boundaries. Another benefit is the ability to manage 

interference across multiple APs versus cellular networks with 

an equally dense AP distribution.  

Scalability requires a system to accommodate growing 

demands gracefully. Scalability is critical motivation for user-

centric, cell-free, spatially-distributed, MIMO networks [8]. 

Although cell-free massive MIMO has showed great promise for 

next generation wireless networks, such as 5G and beyond, 

understanding how to design algorithms for a low-cost and 

scalable system is critical.      

Proper resource allocation improves the performances of 

both the associated system and the network, and also helps in 

avoiding the different kinds of transient bottlenecks involved in 

the network. Therefore, various algorithms have been developed 

for resource allocation in studies carried out so far [9-11]. 

Although algorithms are constantly being developed, they are 

insufficient to meet the demand. For this reason, especially when 

6G is transitioned, resource allocation will now be made by 

using artificial intelligence methods. With the artificial 

intelligence methods that will be developed ,the user will be able 

to communicate with the base stations in the most accurate way.  

In [12], CAPS (Cluster Based AP Selection) a new AP 

selection algorithm for cell-free Massive MIMO that aims to 

reduce computation workload and pilot contamination has been 

presented by introducing a machine learning algorithm for 

clustering, which in this case is the K-means++ clustering 

algorithm. In [13], a Cell-Free MIMO system, a deep learning 

(DL) based power control technique is suggested to overcome 

the max-min user fairness problem. In a cell-free massive 

MIMO uplink configuration, the max-min rate optimization 

issue is posed, where user power allocations are adjusted to 

maximize the minimal user rate. 

In this study, Three-dimensional modeling of Izmir Katip 

Çelebi University (IKCU) has been made in the WI simulation 

program, and AP selection has been recommended in a Cell-Free 

MIMO system at 1.9 GHz. In the proposed AP selection 

scenario, five different supervised machine learning techniques 

have been applied and compared. 

2. Material and Method 

2.1. System Model 

In this section, the Cell-Free MIMO system has been 

created with M APs and K users equipment in TDD (M >>K). 

The scenario parameters have been used in WI have been given 

in Table 1. In Fig.1, the IKCU campus has been drawn in three 

dimensions. APs are evenly distributed over the entire area. Each 

AP has four directional antennas. Each user has two isotropic 

antennas. Users have been placed on a grid, with a distance of 

five meters between them. In order to create the data set, the 

capacity values have been collected by constantly changing the 

positions of the users. 

 

Fig. 1. AP and user equipment distribution in IKCU 
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Table 1. SIMULATION PARAMETERS OF THE SYSTEM 

Parameters Values 

Area 1 𝑘𝑚2 

Carrier Frequency 1.9 GHz 

User Height 1.64 m 

AP Height 15m 

Power density -174 dBm/Hz 

Noise figure 7dB 

Bandwidth 20 MHz 

No. of APs (M)  25 

No. of Users (K) 10 

No. of Antennas (L) 100 

Transmitter input power 23 dBm 

 

The signal at the user is computed as: 

y = Hx + n 

Where x is the Nt × 1 vector containing the AP signal, y is 
the Nr × 1 vector containing user signal, n is a vector of noise, 
and H is the Nt × Nr matrix of complex channel gains. Nr is the 
number of user antennas, and  Nt is the number of AP antennas. 

Gk[m] is the ratio of the power received by user antenna 
element k divided by the power radiated by AP antenna element 
m. θk[m] is the phase in radians of the voltage across a matched 
load at k under the same conditions. Note that Gk[m] and θk[m] 
include all of the propagation paths in a complex multi-path 
environment from AP antenna element m to user antenna 
element k summed coherently. 

The propagation factor, gk[m], is defined as: 

gk[m] = √Gk[m] ei θk[m] 

Closely associated with gk is the channel vector hk, an N-
dimensional complex column vector (Nk × 1) given by hk =  gk

∗  
where * denotes the conjugate transpose.  

Maximal Ratio Combining (MRC) has been used as the 
combining technique. With this technique, the user optimally 
combines the user voltages from all antenna elements using a 
weighting vector that adjusts both the phase and the magnitude 
to maximize the total SNR. 

The optimal weighting vector is linearly proportional to h: 

w = h/norm 

where norm is a normalization factor that scales the weighting 
vector such that the sum of the squares of the magnitudes is 
equal to Nr. 

 Interference power is defined as: 

PI,avg =  ∑
Pt,m

Nt,m

 [ ∑ ∑ [Hm,k,i]
2

Nt−1

i=0

Nr−1

k=0

 ]  / Nr

M−1

Nt,m

 

Noise is defined as: 

PN =  wTwσ2 

Total interference power is defined as: 

PI,total = wTw PI,avg 

 Weighting vector is then applied to the h-vector to compute 
the total received power: 

Pr =  
Pt

Nt

 [ ∑
|hk|2

norm

Nr−1

k=0

]

2

 

The signal-to-interferer-plus-noise ratio (SINR) is the ratio of 
the received power from the transmitter to the sum of power 
from all interference sources and all noise sources. The ratio is 
given by: 

SINR(dB) = 10 log10(PR(i)) − 10 log10(PItotal
)

− 10 log10(PNtotal
) 

where PR is the user power from the AP. PItotal
 is the total 

interference. PNtotal
 is the total noise. 

The channel capacity represents the maximum possible data 
transmission rate for a communication channel and is calculated 
using the Shannon-Hartley theorem: 

Capacity = B log2(1 + SINR)  

where B is the bandwidth of the channel. 

2.2. Dataset Creation 

 When creating a data set, it is necessary to decide which 
outputs will be used as features. First of all, the x and y axis 
values of each user have been taken. Since the height value 
given as the z-axis is considered the same for each user, it has 
not been added to the dataset. The capacity values of each user 
during the communication with the APs have been included as 
25 different features. An feature with the best capacity value has 
been added to monitor which AP the users connect best with.  

 The modulation technique information and the capacitance 
value in the output are not included in the data set. The reason 
for this is to provide the optimum value in the feature values and 
to get more efficient results in machine learning training. After 
determining which feature values are used, it has been 
determined under which conditions the users equipment should 
establish the best connection with which APs in the dataset. By 
comparing the capacity value of the connection have been made 
by the users with each APs value and the best capacity value, 
values between 1-25 have been given to the output column. For 
the user equipment who has the same capacity value with two 
different APs, the choice has been made according to the 
distance difference.  

 The reason why distance is not used as feature values is that 
users who are at a close distance due to buildings and 
environmental effects may have lower capacity values. Since the 
decrease in the capacity value has the opposite effect with 
respect to the distance, it has put the machine learning training in 
a wrong state. Various arrangements have been made in the data 
and cleanings have been made and the AP selection model has 
been used for the training phase. In addition, instead of taking 
the capacity value between users and each AP, only the capacity 
value with the best value has been taken. Whether the reduction 
in the number of features leads to a better result for machine 
learning is indicated by comparison.  

 The correlation matrix has been created with 3 features is 
given in Table 2. Correlation matrix is a table that shows the 
correlation coefficients for various variables. The correlation 
between all potential pairings of values in a table is shown in the 
matrix. When two variables have a positive correlation, their 
values rise or fall together. One of the two variables that are 
negatively associated increases in value while the other decline.  
Negative correlation has been observed between the y-axis and 
the output. It has been observed that the feature correlations in 
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the correlation matrix with 28 features are low. With low 
correlation values, machine learning has been given better 
results. 

Table 2. Simulation parameters of the system 

Model (3 features) X Y 
Capacity 

Best 
OUTPUT 

X 1 0.02 -0.07 0.06 

Y 0.02 1 -0.08 -0.72 

Capacity Best -0.07 -0.08 1 0.27 

OUTPUT 0.06 -0.72 0.27 1 

2.3. AP Selection Model 

 In this section, five different machine learning classification 
techniques have been used. Classification techniques are K-
Nearest Neighbors (K-NN), Support Vector Machine (SVM), 
Linear Discriminant Analysis (LDA), Gaussian Naive Bayes 
(GNB) and Decision Tree (DT). Two different scenarios have 
been created for each classification technique. One of the 
scenarios has been included the capacity values from all APs as a 
feature, and the other hasn’t been included in the feature. The 
paired distribution of APs has been given in Fig. 2.  

 

Fig. 2. Dataset output distribution 

 Considering the K-NN machine learning classification 
technique first, correlation matrix has been taken into account to 
determine the number of neighbors to be used. Since no 
connection could be established with four APs, the number of 
neighbors (n-neighbors) value has been chosen 25. 
standardization technique has been used as feature scaling in all 
models. 25% of the data set has been reserved as test data and 
75% as training data.  

 A kernel is a function used in SVM for helping to solve 
problems. Shortcuts have been provided to avoid complex 
calculations. An infinite number of dimensions have been 
created using kernels. In SVM, Radial Basis Function (RBF) has 
been selected as the kernel. Gini impurity has been used in DT to 
divide the data into several branches. Classification have been 
accomplished using DT. Impurity has been used in DT to choose 
the optimal characteristic at each. Singular Value Decomposition 
(SVD) has been applied as a solver in LDA. SVD does not 
calculate the Covariance matrix, so this solver is recommended 
for data with a large number of features. 

 Considering the accuracy distributions, it has been observed 
that better results have been obtained in terms of estimation, 
although the number of features increases when 28 features have 
been used. The detailed comparison between the models created 
has been given in the numerical analysis section. 

3. Results and Discussion  

TABLE 3. Classification Techniques Models Outputs 

Model (28 features) Precision Recall f1 score Accuracy 

K-NN 0.94 0.94 0.94 0.938 

SVM 0.97 0.96 0.97 0.968 

LDA 0.93 0.91 0.91 0.911 

GNB 0.71 0.66 0.63 0.656 

DT 0.97 0.98 0.98 0.975 

Model (3 features) Precision Recall f1 score Accuracy 

K-NN 0.75 0.70 0.72 0.769 

SVM 0.58 0.58 0.57 0.695 

LDA 0.55 0.49 0.49 0.567 

GNB 0.60 0.59 0.58 0.602 

DT 0.64 0.59 0.60 0.676 

 

The outputs have been used in the comparisons are precision, 
recall, f1 score and accuracy. Precision is an indicator of the 
performance of a machine learning model. The quality of a 
positive prediction has been made by the model. Precision refers 
to the number of true positives divided by the total number of 
positive predictions. Recall is the measure of how accurately the 
model identifies true positives.  The f1 score is the harmonic 
mean of precision and recall. The f1 score is used when both 
precision and recall are equally important. Likewise, accuracy is 
the measure of the rate of predictions that the model makes 
correctly. 

A model has been created for all classification techniques 
and the outputs have been given in Table 3. According to the 
numerical calculation results, when 28 features have been 
selected, SVM and DT methods have been given approximately 
equal and best results. The classification method with the worst 
mean for this study is GNB.  

When 3 features have been selected, K-NN has been given 
the best results. Although 25 features have been removed, a good 
result has been obtained with an accuracy average of 76%. Since 
AP selection must have been made quickly in communication 
systems, a faster system recommendation has been made with 
less features value, although there is a margin of error.  

4. Conclusions and Recommendations 

In this paper, five different machine learning techniques 

have been compared in order to make the best choice between 

user equipment and APs installed on the IKCU campus. While 

making AP selection, classification has been made by creating a 

data set with the location and capacity values of each user. As a 

result of the comparisons, the most efficient machine learning 

technique is the DT classifier method. In addition, other machine 

learning techniques besides GNB have yielded good results. 
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