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Abstract
Let

(
H, 〈·, ·〉

)
be a complex Hilbert space and A be a positive (semidefinite) bounded

linear operator on H. The semi-inner product induced by A is given by 〈x, y〉A := 〈Ax, y〉,
x, y ∈ H and defines a seminorm ‖ · ‖A on H. This makes H into a semi-Hilbert space.
The A-joint numerical radius of two A-bounded operators T and S is given by

ωA,e(T, S) = sup
‖x‖A=1

√∣∣〈Tx, x〉A

∣∣2 +
∣∣〈Sx, x〉A

∣∣2.

In this paper, we aim to prove several bounds involving ωA,e(T, S). This allows us to
establish some inequalities for the A-numerical radius of A-bounded operators. In partic-
ular, we extend the well-known inequalities due to Kittaneh [Numerical radius inequalities
for Hilbert space operators, Studia Math. 168 (1), 73-80, 2005]. Moreover, several bounds
related to the A-Davis-Wielandt radius of semi-Hilbert space operators are also provided.
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1. Introduction and preliminaries
Let B(H) denote the C∗-algebra of all bounded linear operators acting on a complex

Hilbert space H with an inner product 〈·, ·〉 and the corresponding norm ‖ ·‖. Throughout
this paper, by an operator we mean a bounded linear operator. Let T ∗ denote the adjoint
of an operator T . Further, the range and the kernel of T are denoted by R(T ) and N(T ),
respectively. In addition, the cone of all positive operators on H is given by

B(H)+ := {A ∈ B(H) ; 〈Ax, x〉 ≥ 0, ∀ x ∈ H } .

Any A ∈ B(H)+ induces the following semi-inner product:
〈·, ·〉A : H × H −→ C, (x, y) 7−→ 〈x, y〉A := 〈Ax, y〉.

Observe that the seminorm induced by 〈·, ·〉A is given by ‖x‖A = 〈x, x〉1/2
A , for every x ∈ H.

This makes H into a semi-Hilbert space. It is not difficult to verify that ‖ · ‖A is a norm
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on H if and only if A is injective, and that (H, ‖ · ‖A) is complete if and only if R(A)
is a closed subspace of H. For very recent contributions concerning operators acting on
semi-Hilbert spaces, we refer the reader to [2, 6, 9, 11] and the references therein. From
now on, we suppose that A ∈ B(H) is always a positive (nonzero) operator and we denote
the A-unit sphere of H by SA(0, 1), that is,

SA(0, 1) := {x ∈ H ; ‖x‖A = 1}.

For T ∈ B(H), the A-numerical radius and the A-Crawford number of T are given by

ωA(T ) = sup
{∣∣〈Tx, x〉A

∣∣ ; x ∈ SA(0, 1)
}

and

cA(T ) = inf
{
|〈Tx, x〉A| ; x ∈ SA(0, 1)

}
,

respectively (see [5, 24] and the references therein). It should be emphasized here that it
may happen that ωA(T ) = +∞ for some T ∈ B(H) (see [16]).

Let T ∈ B(H). An operator S ∈ B(H) is called an A-adjoint of T if for every x, y ∈ H,
the identity 〈Tx, y〉A = 〈x, Sy〉A holds (see [3]). So, S is an A-adjoint of T if and only if S
is solution in B(H) of the equation AX = T ∗A. This kind of equations can be studied by
using Douglas theorem [12] which says that the operator equation TX = S has a solution
X ∈ B(H) if and only if R(S) ⊆ R(T ) which in turn equivalent to the existence of a
positive number λ such that ‖S∗x‖ ≤ λ‖T ∗x‖ for all x ∈ H. In addition, in the same
theorem by Douglas [12], it is shown that: if TX = S has solutions, then there exists
only one, denoted by Q, which satisfies R(Q) ⊆ R(T ∗). Such Q is said to be reduced
solution of the equation TX = S. Obviously, the existence of an A-adjoint operator is not
guaranteed. The subspace of all operators admitting A-adjoints is denoted by BA(H). By
Douglas theorem, it holds that

BA(H) = {T ∈ B(H) ; R(T ∗A) ⊂ R(A)} .

Let T ∈ BA(H). The reduced solution of the operator equation AX = T ∗A is denoted
by T ]A . Moreover we have, T ]A = A†T ∗A (see [3]). Here A† denotes the Moore-Penrose
inverse of A (for more details, see [3, 4] and the references therein). From now on, for
simplicity we will write X] instead of X]A for every X ∈ BA(H). Notice that if T ∈
BA(H), then T ] ∈ BA(H), (T ])] = P

R(A)TP
R(A) and ((T ])])] = T . Here P

R(A) denotes
the orthogonal projection onto R(A). Further, if S ∈ BA(H) then TS ∈ BA(H) and
(TS)] = S]T ]. For an account of results concerning T ], we refer the reader to [3, 4].
Again, an application of Douglas theorem gives

BA1/2(H) = {T ∈ B(H) ; ∃ λ > 0 ; ‖Tx‖A ≤ λ‖x‖A, ∀ x ∈ H} .

It T ∈ BA1/2(H), then T is called A-bounded. Notice that BA(H) ⊆ BA1/2(H) (see [15]).
The seminorm of an operator T ∈ BA1/2(H) is given by

‖T‖A := sup
x∈R(A),

x 6=0

‖Tx‖A

‖x‖A
= sup

{
‖Tx‖A ; x ∈ SA(0, 1)

}
< ∞, (1.1)

(see [15] and the references therein). We mention here that ‖ · ‖A and ωA(·) are equivalent
seminorms on BA1/2(H). More precisely, for every T ∈ BA1/2(H), we have

1
2‖T‖A ≤ ωA(T ) ≤ ‖T‖A, (1.2)

(see [5]). Further, it was shown in [5] that

ωA(T n) ≤ ωn
A(T ), (1.3)



24 K. Feki

for every T ∈ BA1/2(H) and all positive integer n. Before we move on, it is crucial to recall
that for every T, S ∈ BA1/2(H) we have

‖TS‖A ≤ ‖T‖A‖S‖A, (1.4)
(see [5]). Recall that an operator T ∈ B(H) is said to be A-selfadjoint if AT is selfadjoint.
Observe that if T is A-selfadjoint, then T ∈ BA(H). It was shown in [15] that for every
A-selfadjoint operator T we have

‖T‖A = ωA(T ). (1.5)
Further, an operator T is called A-positive if AT ≥ 0 and we write T ≥A 0. Obviously, an
A-positive operator is A-selfadjoint since H is a complex Hilbert space. It can be checked
that T ]T ≥A 0 and TT ] ≥A 0. Moreover, for every T ∈ BA(H) we have

‖T ]T‖A = ‖TT ]‖A = ‖T‖2
A = ‖T ]‖2

A, (1.6)

(see [4, Proposition 2.3.]). Now, an operator T ∈ BA(H) is called A-normal if TT ] = T ]T
(see [24]). It is obvious that every selfadjoint operator is normal. However, an A-selfadjoint
operator is not necessarily A-normal (see [15, Example 4]).

Let B(H)d := B(H)×· · ·×B(H). The A-joint numerical radius of a d-tuple of operators
(T1, . . . , Td) ∈ B(H)d was defined in [5] by

ωA,e(T1, . . . , Td) = sup


(

d∑
k=1

|〈Tkx, x〉A|2
) 1

2

; x ∈ SA(0, 1)

 .

Notice that the particular case d = 1 is the A-numerical radius of an operator T which
recently attracted the attention of several mathematicians (see, e.g., [2,7,8,15,16,18–20,23]
and the references therein). Some interesting properties of A-joint numerical radius of A-
bounded operators were given in [5,17]. In particular, it is established that for an operator
tuple (T1, . . . , Td) ∈ BA(H)d we have

1
2
√

d

∥∥∥∥∥
d∑

k=1
T ]

kTk

∥∥∥∥∥
1
2

≤ ωA,e(T1, . . . , Td) ≤
∥∥∥∥∥

d∑
k=1

T ]
kTk

∥∥∥∥∥
1
2

. (1.7)

By using (1.7), the present author proved recently in [16] that for every T ∈ BA(H) we
have

1
16‖T ]T + TT ]‖A ≤ ω2

A (T ) ≤ 1
2‖T ]T + TT ]‖A. (1.8)

Recently, the A-Davis-Wielandt radius of an operator T ∈ B(H) is defined by K. Feki
et al in [21] by

dωA(T ) := sup
{√

|〈Tx, x〉A|2 + ‖Tx‖4
A ; x ∈ SA(0, 1)

}
.

Notice that it was shown in [21], that dωA(T ) may be equal to +∞ for some T ∈ B(H).
However, if T ∈ BA1/2(H), then we have

max
{
ωA(T ), ‖T‖2

A

}
≤ dωA(T ) ≤

√
ωA(T )2 + ‖T‖4

A < ∞.

Clearly, if T ∈ BA(H), then the A-Davis-Wielandt radius can be seen as the A-joint
numerical radius of the operator tuple (T, T ]T ). That is, for T ∈ B(H), it holds

dωA(T ) = ωA,e(T, T ]T ). (1.9)
In this paper we establish several inequalities concerning the A-joint numerical radius
of two semi-Hilbert space operators. In particular, some related results connecting the
A-joint numerical radius and the classical A-numerical radius are also presented. Some
of the obtained results cover and extend the work of Drogomir [13]. Moreover, we prove
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several inequalities involving the A-Davis-Wielandt radius and the A-numerical radii of A-
bounded operators. In particular, we generalize and refine some earlier results established
in [26].

2. Results
In this section, we present our result. In order to establish our first upper bound for

the A-joint numerical radius of two semi-Hilbert space operators we need the following
lemmas.

Lemma 2.1 ([3], Section 2). Let T ∈ B(H) be an A-selfadjoint operator. Then, T = T ]

if and only if T is A-selfadjoint and R(T ) ⊆ R(A).

Lemma 2.2. For every a, b, c ∈ H

|〈a, b〉A|2 + |〈a, c〉A|2 ≤ ‖a‖2
A

√
|〈b, b〉A|2 + 2|〈b, c〉A|2 + |〈c, c〉A|2. (2.1)

Proof. Notice first that, by [14, p. 148], we have

|〈x, y〉|2 + |〈x, z〉|2 ≤ ‖x‖2
(
|〈y, y〉|2 + 2|〈y, z〉|2 + |〈z, z〉|2

) 1
2
, (2.2)

for any x, y, z ∈ H. Now, let a, b, c ∈ H. It follows, from (2.2), that

|〈a, b〉A|2 + |〈a,c〉A|2 = |〈A1/2a, A1/2b〉|2 + |〈A1/2a, A1/2c〉|2

≤ ‖A1/2a‖2
√

|〈A1/2b, A1/2b〉|2 + 2|〈A1/2b, A1/2c〉|2 + |〈A1/2c, A1/2c〉|2.

This proves (2.1) as desired. �

Our first result in this paper reads as follows.

Theorem 2.3. Let T, S ∈ BA(H). Then,

ωA,e(T, S) ≤
√

‖T‖4
A + ‖S‖4

A + 2ω2
A(S]T ) ≤ ‖T‖2

A + ‖S‖2
A .

Proof. Let x ∈ SA(0, 1). By choosing in Lemma 2.2 a = x, b = Tx and c = Sx we see
that(

|〈Tx, x〉A|2 + |〈Sx, x〉A|2
)2

=
(
|〈x, Tx〉A|2 + |〈x, Sx〉A|2

)2

≤ ‖x‖4
A

(
|〈Tx, Tx〉A|2 + 2|〈Tx, Sx〉A|2 + |〈Sx, Sx〉A|2

)
= |〈T ]Tx, x〉A|2 + |〈S]Sx, x〉A|2 + 2|〈S]Tx, x〉A|2

≤ ω2
A,e(T ]T, S]S) + 2ω2

A(S]T )

≤
∥∥∥(T ]T )]T ]T + (S]S)]S]S

∥∥∥
A

+ 2ω2
A(S]T ), (2.3)

where the last inequality follows from the second inequality in (1.7). Now, since T ]T is
A-selfadjoint and satisfies R(T ]T ) ⊆ R(A), then by Lemma 2.1 we have (T ]T )] = T ]T .
Similarly, (S]S)] = S]S. So, by (2.3), we have(

|〈Tx, x〉A|2 + |〈Sx, x〉A|2
)2

≤
∥∥∥(T ]T )2 + (S]S)2

∥∥∥
A

+ 2ω2
A(S]T ).

By taking the supremum over all x ∈ SA(0, 1) in the above inequality we get

ωA,e(T, S) ≤
√

‖(T ]T )2 + (S]S)2‖A + 2ω2
A(S]T ).
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Moreover, by using the triangle inequality together with (1.4) we obtain

ωA,e(T, S) ≤
√

‖T ]T‖2
A + ‖S]S‖2

A + 2ω2
A(S]T )

=
√

‖T‖4
A + ‖S‖4

A + 2ω2
A(S]T ) (by (1.6))

≤
√

‖T‖4
A + ‖S‖4

A + 2‖S]T‖2
A (by (1.2))

≤
√

‖T‖4
A + ‖S‖4

A + 2‖S]‖2
A‖T‖2

A (by (1.4))

=
√(

‖T‖2
A + ‖S‖2

A

)2
= ‖T‖2

A + ‖S‖2
A .

This proves the desired result. �

In what follows, we need the following lemmas.

Lemma 2.4 ([26], Lemma 2.9). For any z1, z2 ∈ C, we have

sup
{∣∣∣αz1 + βz2

∣∣∣2; (α, β) ∈ C2, |α|2 + |β|2 ≤ 1
}

= |z1|2 + |z2|2.

Lemma 2.5. Let T, S ∈ BA(H). Then, for every α, β ∈ C, we have

‖αT + βS‖2
A ≤ (|α|2 + |β|2)‖T ]T + S]S‖A.

Proof. Let x ∈ SA(0, 1). Then, by applying the Cauchy-Schwarz inequality, we see that

‖αTx + βSx‖2
A = ‖αA1/2Tx + βA1/2Sx‖2

≤ (|α|2 + |β|2)(‖A1/2Tx‖2 + ‖A1/2Sx‖2)
= (|α|2 + |β|2)(‖Tx‖2

A + ‖Sx‖2
A)

= (|α|2 + |β|2)
〈
(T ]T + S]S)x, x

〉
A

≤ (|α|2 + |β|2)ωA(T ]T + S]S)
= (|α|2 + |β|2)‖T ]T + S]S‖A,

where the last equality follows from (1.5) since T ]T + S]S ≥A 0. Hence,

‖(αT + βS)x‖2
A ≤ (|α|2 + |β|2)‖T ]T + S]S‖A.

So, by taking the supremum over all x ∈ SA(0, 1) in the above inequality and then using
(1.1) we get the desired result. �

Now, we are in a position to prove the following result.

Theorem 2.6. Let T, S ∈ BA(H). Then,

ωA,e(T, S) ≤
[
ωA

(
(T ]T )2 + (S]S)2

)
+ 2ω2

A

(
S]T

)] 1
4

. (2.4)

Proof. Let x ∈ SA(0, 1). As in the proof of Theorem 2.3, by choosing in Lemma 2.2
a = x, b = Tx and c = Sx, we get(

|〈Tx, x〉A|2 + |〈Sx, x〉A|2
)2

≤ sup
x∈SA(0,1)

(
|〈T ]Tx, x〉A|2 + |〈S]Sx, x〉A|2

)
+ 2ω2

A

(
S]T ).
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Hence, by applying Lemma 2.4 we obtain(
|〈Tx, x〉A|2 + |〈Sx, x〉A|2

)2

≤ sup
x∈SA(0,1)

(
sup

|α|2+|β|2≤1

∣∣∣α〈T ]Tx, x〉A + β〈S]Sx, x〉A

∣∣∣2)+ 2ω2
A

(
S]T )

= sup
x∈SA(0,1)

(
sup

|α|2+|β|2≤1

∣∣∣〈 [αT ]T + βS]S
]

x, x
〉

A

∣∣∣2)+ 2ω2
A

(
S]T )

= sup
|α|2+|β|2≤1

(
sup

x∈SA(0,1)

∣∣∣〈 [αT ]T + βS]S
]

x, x
〉

A

∣∣∣2)+ 2ω2
A

(
S]T

)
.

On the other hand, it can be see that the operator αT ]T + βS]S is an A-selfadjoint
operator and then by (1.5), we have

sup
x∈SA(0,1)

∣∣∣〈 [αT ]T + βS]S
]

x, x
〉

A

∣∣∣ = ‖αT ]T + βS]S‖A.

So, by using Lemma 2.5, we get(
|〈Tx, x〉A|2 + |〈Sx, x〉A|2

)2

≤ sup
|α|2+|β|2≤1

‖αT ]T + βS]S‖2
A + 2ω2

A

(
S]T

)
≤ sup

|α|2+|β|2≤1
(|α|2 + |β|2)

∥∥∥ (T ]T )]T ]T +
[
S]S

]]
S]S

∥∥∥
A

+ 2ω2
A

(
S]T

)
= sup

|α|2+|β|2≤1
(|α|2 + |β|2)

∥∥∥ (T ]T )2 + (S]S)2
∥∥∥

A
+ 2ω2

A

(
S]T

)
=
∥∥∥ (T ]T )2 + (S]S)2

∥∥∥
A

+ 2ω2
A

(
S]T

)
= ωA

[
(T ]T )2 + (S]S)2

]
+ 2ω2

A

(
S]T

)
,

where the last equality follows from (1.5) since (T ]T )2 + (S]S)2 ≥A 0. Thus, we get

|〈Tx, x〉A|2 + |〈Sx, x〉A|2 ≤
√

ωA [(T ]T )2 + (S]S)2] + 2ω2
A

(
S]T

)
,

for all x ∈ SA(0, 1). Finally, by taking the supremum over all x ∈ SA(0, 1) in the above
inequality we get (2.4) as required. �

The following corollary is an immediate consequence of Theorem 2.6 and extends a
result by Zamani et al. (see [26, Theorem 2.11]).

Corollary 2.7. Let T ∈ BA(H). Then,

dωA(T ) ≤
[
ωA

(
(T ]T )2 + (T ]T )4

)
+ 2ω2

A

(
T ]T 2)] 1

4
.

Proof. By Lemma 2.1, we have (T ]T )] = T ]T . So, by replacing S by T ]T in (2.4) and
then using (1.9) we get the required result. �

The following lemma is useful in the sequel.

Lemma 2.8. For any a, b, c ∈ H, we have

|〈a, b〉A|2 + |〈a, c〉A|2 ≤ ‖a‖2
A

(
max{‖b‖2

A, ‖c‖2
A} + |〈b, c〉A|

)
. (2.5)
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Proof. Let a, b, c ∈ H. By applying the Cauchy-Schwarz inequality we see that(
|〈a, b〉A|2 + |〈a, c〉A|2

)2
=
(
〈a, b〉A〈b, a〉A + 〈a, c〉A〈c, a〉A

)2

=
(
〈a, (〈a, b〉Ab + 〈a, c〉Ac)〉A

)2

≤ ‖a‖2
A

∥∥〈a, b〉Ab + 〈a, c〉Ac
∥∥2

A
. (2.6)

On the other hand, if we denote by <z the real part of any complex number z, then one
observes that∥∥〈a, b〉Ab + 〈a, c〉Ac

∥∥2
A

= |〈a, b〉A|2‖b‖2
A + |〈a, c〉A|2‖c‖2

A + 2<
(
〈a, b〉A〈c, a〉A〈b, c〉A

)
≤ |〈a, b〉A|2‖b‖2

A + |〈a, c〉A|2‖c‖2
A + 2|〈a, b〉A| · |〈c, a〉A| · |〈b, c〉A|

≤ |〈a, b〉A|2‖b‖2
A + |〈a, c〉A|2‖c‖2

A +
(
|〈a, b〉A|2 + |〈a, c〉A|2

)
|〈b, c〉A|

≤
(
|〈a, b〉A|2 + |〈a, c〉A|2

) (
max{‖b‖2

A, ‖c‖2
A} + |〈b, c〉A|

)
. (2.7)

By combining (2.6) together (2.7), we get (2.5) as desired. �

Now, we are in a position to prove the following theorem.

Theorem 2.9. Let T, S ∈ BA(H). Then

ωA,e(T, S) ≤
√

2
2

√
‖T ]T + S]S‖A + ‖T ]T − S]S‖A + 2ωA(S]T ) (2.8)

≤
√

‖T‖2
A + ‖S‖2

A + ωA(S]T ).

Proof. Notice first that for any two real numbers t and s we have

max{t, s} = 1
2
(
t + s + |t − s|

)
. (2.9)

Now, let x ∈ SA(0, 1). By letting a = x, b = Tx and c = Sx in Lemma 2.8 we get

|〈Tx, x〉A|2 + |〈Sx, x〉A|2

≤ max
{

‖Tx‖2
A, ‖Sx‖2

A

}
+ |〈Tx, Sx〉A|

= 1
2
(
‖Tx‖2

A + ‖Sx‖2
A +

∣∣∣‖Tx‖2
A − ‖Sx‖2

A

∣∣∣ )+ |〈Tx, Sx〉A| (by (2.9))

= 1
2
(
〈(T ]T + S]S)x, x〉A +

∣∣∣〈(T ]T − S]S)x, x〉A

∣∣∣ )+ ωA(S]T )

≤ 1
2
(
ωA(T ]T + S]S) + ωA(T ]T − S]S)

)
+ ωA(S]T )

= 1
2
(
‖T ]T + S]S‖A + ‖T ]T − S]S‖A

)
+ ωA(S]T ),

where the last inequality follows from (1.5) since the operators T ]T ±S]S are A-selfadjoint.
So, we get

|〈Tx, x〉A|2 + |〈Sx, x〉A|2 ≤ 1
2
(
‖T ]T + S]S‖A + ‖T ]T − S]S‖A + 2ωA(S]T )

)
,

for every x ∈ SA(0, 1). Thus, by taking the supremum over all x ∈ SA(0, 1) in above
inequality, we get the first inequality in Theorem 2.9. Now, the second inequality in
Theorem 2.9 follows immediately by applying the triangle inequality and (1.6). �

We can state the following upper bound for the A-Davis-Wielandt radius which gener-
alizes and improves [26, Theorem 2.14.].
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Corollary 2.10. Let T ∈ BA(H). Then,

dωA(T ) ≤
√

1
2
[
ωA

(
(T ]T )2 + T ]T

)
+ ωA

(
(T ]T )2 − T ]T

)]
+ ωA(T ]T 2).

Proof. Follows immediately by proceeding as in the proof of Corollary 2.7. �

For the sequel, for any arbitrary operator X ∈ BA(H), we write

<A(X) := X + X]

2 and =A(X) := X − X]

2i
.

Furthermore, it is useful to recall the following two lemmas. Notice that the second one
follows by applying Corollary 3 and Proposition 4 in [15].

Lemma 2.11 ([16]). Let T ∈ B(H) be an A-selfadjoint operator. Then, T ] is A-selfadjoint
and

(T ])] = T ].

Lemma 2.12. Let T ∈ B(H) be an A-selfadjoint operator. Then, for any positive integer
n we have

‖T n‖A = ‖T‖n
A.

As an application of Theorem 2.9, we derive the following upper bound of the A-
numerical radius of operators in BA(H).

Corollary 2.13. Let T ∈ BA(H). Then,

ωA(T ) ≤ 1
2

√
‖T ]T + TT ]‖A + ‖T 2 + (T ])2‖A + ωA

(
(T ] + T )(T − T ])

)
. (2.10)

Moreover, the inequality (2.10) is sharp.

Proof. Let T ∈ BA(H). Clearly we have T = <A(T ) + i=A(T ). This implies that
T ] = [<A(T )]] − i[=A(T )]]. Moreover, we see that

ω2
A(T ]) = sup

{
|〈T ]x, x〉A|2 ; x ∈ SA(0, 1)

}
= sup

{
|〈[<A(T )]]x, x〉A|2 + |〈[=A(T )]]x, x〉A|2 ; x ∈ SA(0, 1)

}
= ω2

A,e

(
[<A(T )]], [=A(T )]]

)
. (2.11)

Since ωA(T ) = ωA(T ]), then by using (2.11) and applying (2.8) for T = [<A(T )]] and
S = [=A(T )]], we observe that

ω2
A(T ) = ω2

A,e

(
[<A(T )]], [=A(T )]]

)
≤ ωA

(
([=A(T )]])][<A(T )]]

)
+ 1

2

∥∥∥([<A(T )]])][<A(T )]] + ([=A(T )]])][=A(T )]]
∥∥∥

A

+ 1
2

∥∥∥([<A(T )]])][<A(T )]] − ([=A(T )]])][=A(T )]]
∥∥∥

A
.

Moreover, it is not difficult to see that the operators <A(T ) and =A(T ) are A-selfadjoint.
So, by Lemma 2.11, we have

([<A(T )]])] = [<A(T )]] and ([=A(T )]])] = [=A(T )]].
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So, we infer that

ω2
A(T ) ≤ 1

2
(∥∥∥([<A(T )]])2 + ([=A(T )]])2

∥∥∥
A

+
∥∥∥[<A(T )]])2 − ([=A(T )]])2

∥∥∥
A

)
+ ωA

(
[=A(T )]][<A(T )]]

)
= 1

2
(∥∥∥([<A(T )]])2 + ([=A(T )]])2

∥∥∥
A

+
∥∥∥[<A(T )]])2 − ([=A(T )]])2

∥∥∥
A

)
+ ωA

(
[<A(T )][=A(T )]

)
, (2.12)

where the last equality follows since ωA(X]) = ωA(X) for every X ∈ BA(H). On the other
hand, by making direct calculations, it can be checked that(

[<A(T )]]
)2

−
(
[=A(T )]]

)2
= (T ])2 + [(T ])]]2

2 =
(

T 2 + (T ])2

2

)]

,

and (
[<A(T )]]

)2
+
(
[=A(T )]]

)2
= (T ])]T ] + T ](T ])]

2 =
(

TT ] + T ]T

2

)]

.

Hence, by taking into consideration (2.12) we get

ω2
A(T ) ≤ 1

4
[∥∥∥(T ]T + TT ])]

∥∥∥
A

+
∥∥∥(T 2 + (T ])2)]

∥∥∥
A

+ ωA

(
(T ] + T )(T − T ])

)]
.

This proves (2.10) since ‖X]‖A = ‖X‖A for every X ∈ BA(H). To show the sharpness of
the inequality (2.10) we choose T = S] with S is any A-selfadjoint operator on H. So, by
Lemma 2.11, S] is A-selfadjoint and (S])] = S]. Thus, we deduce that

ωA

( [
(S])] + S]

] [
S] − (S])])

] )
= 0.

Further, by taking into account Lemma 2.11, we get
1
2

√
‖(S])]S] + S](S])]‖A + ‖(S])2 + [(S])]]2‖A = 1

2

√
2‖(S])2‖A + 2 ‖(S])2‖A

=
√

‖(S])2‖A

= ‖S]‖A,

where the last equality follows from Lemma 2.12 since S] is A-selfadjoint. Thus, by taking
into consideration (1.5), we deduce that both sides of (2.10) become ‖S‖A. �

Corollary 2.14. Let T ∈ BA(H). Then,

ωA(T ) ≤ 1
2

√
‖T ]T + TT ]‖A + ‖T ]T − TT ]‖A + 1

2ωA(T 2). (2.13)

Moreover, the inequality (2.13) is sharp.

Proof. By replacing T and S by (T ])] and T ] respectively and using similar techniques
as above we get (2.13). To show the sharpness of the inequality (2.13) we assume that T
is any A-normal operator on H. By [15], we have

ωA(T 2) = ωA(T )2 = ‖T‖2
A. (2.14)

So, it be observed that that both sides of (2.13) become ‖T‖A. �

Another upper bound for ωA,e(T, S) is stated as follows.

Theorem 2.15. Let T, S ∈ BA(H). Then

ωA,e(T, S) ≤
√

max
(
‖T‖2

A, ‖S‖2
A

)
+ ωA(S]T ). (2.15)

Moreover, the inequality (2.15) is sharp.
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Proof. Let x ∈ H be such that ‖x‖A = 1. By letting a = x, b = Tx and c = Sx in
Lemma 2.8 we get

|〈Tx, x〉A|2 + |〈Sx, x〉A|2 ≤ max
(
‖Tx‖2

A, ‖Sx‖2
A

)
+ |〈Tx, Sx〉A|

≤ max
(
‖T‖2

A, ‖S‖2
A

)
+ |〈S]Tx, x〉A|

≤ max
(
‖T‖2

A, ‖S‖2
A

)
+ ωA(S]T ).

Thus, by taking the supremum over all x ∈ SA(0, 1) in above inequality, we get the desired
result. Now, to prove the sharpness of the inequality (2.15) we choose T = S, where T is
an A-selfadjoint operator. Then, by using Lemma 2.11, T ] is A-selfadjoint and (T ])] = T ].
So, we see that

max
(
‖T ]‖2

A, ‖T ]‖2
A

)
+ ωA

(
(T ])]T ]) = ‖T ]‖2

A + ωA

(
(T ])2).

Since T ] is A-selfadjoint, then (T ])2 ≥A 0. So, by (1.5), ωA

(
(T ])2) = ‖(T ])2‖A. This

yields, through Lemma 2.12, that ωA

(
(T ])2) = ‖T ]‖2

A. Thus,

max
(
‖T ]‖2

A, ‖T ]‖2
A

)
+ ωA

(
(T ])]T ]) = 2‖T ]‖2

A.

On the other hand,
ω2

A,e(T ], T ]) = 2ω2
A(T ]) = 2‖T ]‖2

A.

�

Now, we state the following corollary.

Corollary 2.16. Let T ∈ BA(H). Then,

ωA(T ) ≤
√

2
2

√
‖T‖2

A + ωA

(
T 2). (2.16)

The constant
√

2
2 is best possible in the sense that it cannot be replaced by a larger constant.

Proof. Let T ∈ BA(H). By replacing T and S in Theorem 2.15 by T ] and T respectively,
we get

2ω2
A(T ) ≤ ‖T‖2

A + ωA

(
(T ])2)

= ‖T‖2
A + ωA

(
(T 2)])

= ‖T‖2
A + ωA

(
T 2)

This proves the inequality (2.16). Now, suppose that (2.16) holds with some constant
C > 0. So, by choosing T any A-normal operator (with AT 6= 0) and using (2.14), we
easily get

√
2C ≥ 1. This finishes the proof of the corollary. �

Remark 2.17. By using (1.2) together with (1.4), we see that
√

2
2

√
‖T‖2

A + ωA

(
T 2) ≤ ‖T‖A.

So, the inequality (2.16) refines the second inequality in (1.2).

The following corollary is also an immediate consequence of Theorem 2.15 and its proof
is similar to that given in Corollary 2.13 and hence omitted.

Corollary 2.18. Let T ∈ BA(H). Then,

ωA(T ) ≤ 1
2

√
max

{
‖T + T ]‖2

A, ‖T − T ]‖2
A

}
+ ωA

(
(T ] + T )(T − T ])

)
. (2.17)

Moreover, the inequality (2.17) is sharp.
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The following corollary is an immediate consequence of Theorem 2.15 and provides an
upper bound for the A-Davis-Wielandt radius of operators in BA(H). The obtained result
generalizes and improves [26, Theorem 2.13].

Corollary 2.19. Let T ∈ BA(H). Then,

dωA(T ) ≤
√

max{‖T‖2
A, ‖T‖4

A} + ωA(T ]T 2).

The following lemma is useful in proving our two next results.

Lemma 2.20. For every a, b, c ∈ H, we have

|〈a, b〉A|2 + |〈a, c〉A|2 ≤ ‖a‖A max
{

|〈a, b〉A|, |〈a, c〉A|
}√

‖b‖2
A + ‖c‖2

A + 2|〈b, c〉A|.

Proof. Let a, b, c ∈ H. Recall from [14, p. 132] that

|〈x, y〉|2 + |〈x, z〉|2 ≤ ‖x‖ max
{

|〈x, y〉|, |〈x, z〉|
}(

‖y‖2 + ‖z‖2 + 2|〈y, z〉|
) 1

2
,

for every x, y, z ∈ H. So, by choosing x = A1/2a, y = A1/2b and z = A1/2c in the above
inequality we get the desired result. �

Next, we prove another upper bound for the A-joint numerical radius of a pair of
operators.

Theorem 2.21. Let T, S ∈ BA(H). Then

ωA,e(T, S) ≤
√

max
{
ωA(T ), ωA(S)

}√
‖T ]T + S]S‖A + 2ωA(S]T ).

Proof. Let x ∈ SA(0, 1). By choosing in Lemma 2.20 a = x, b = Tx and c = Sx one has

|〈x, Tx〉A|2 + |〈x, Sx〉A|2

≤ ‖x‖A max {|〈x, Tx〉A|, |〈x, Sx〉A|}
√

‖Tx‖2
A + ‖Sx‖2

A + 2|〈Tx, Sx〉A|

≤ max {ωA(T ), ωA(S)}
√〈

(T ]T + S]S) x, x
〉

A
+ 2|〈S]Tx, x〉A|

≤ max {ωA(T ), ωA(S)}
√

ωA(T ]T + S]S) + 2ωA(S]T )

= max {ωA(T ), ωA(S)}
√

‖T ]T + S]S‖A + 2ωA(S]T ),

where the last inequality follows from (1.5) since T ]T + S]S ≥A 0. Thus,

|〈x, Tx〉A|2 + |〈x, Sx〉A|2 ≤ max (ωA(T ), ωA(S)) +
√

‖T ]T + S]S‖A + 2ωA(S]T ),

for all x ∈ SA(0, 1). Therefore, the desired result follows immediately by taking the
supremum over all x ∈ SA(0, 1). �

Corollary 2.22. Let T ∈ BA(H). Then,

ωA(T ) ≤
√

2
2

√
‖T‖A

√
‖T ]T + TT ]‖A + 2ωA(T 2) ≤ ‖T‖A. (2.18)

Proof. By replacing T and S by (T ])] and T ] respectively in Theorem 2.21 and then
using the facts that ωA(X]) = ωA(X) and ‖X]‖A = ‖X‖A for all X ∈ BA(H), we see that

√
2ωA(T ) ≤

√
ωA(T )

√
‖T ]T + TT ]‖A + 2ωA(T 2).
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So, by using the second inequality in (1.2) together with the triangle inequality and (1.3),
we infer that

ωA(T ) ≤
√

2
2

√
‖T‖A

√
‖T ]T‖A + ‖TT ]‖A + 2ω2

A(T )

=
√

2
2

√
‖T‖A

√
2‖T‖2

A + 2ω2
A(T ) (by (1.6))

≤
√

2
2

√
‖T‖A

√
2‖T‖2

A + 2‖T‖2
A,

where the last inequality follows by applying the second inequality in (1.2). This immedi-
ately proves the second inequality in (2.18) as required. �

The following corollary in an immediate consequence of Theorem 2.21 and generalizes
[26, Theorem 2.16].

Corollary 2.23. Let T ∈ BA(H). Then,

dωA(T ) ≤
√

max {ωA(T ), ωA(T ]T )}
√

ωA [(T ]T )2 + T ]T ] + 2ωA(T ]T 2).

By using Lemma 2.20, another upper bound for the A-Davis–Wielandt radius of oper-
ators in BA(H) can be derived as follows.

Theorem 2.24. Let T ∈ BA(H). Then,

dωA(T ) ≤
√

‖T‖A max {ωA(T ), ωA(T ]T )}
√

1 + ‖T‖2
A + 2ωA(T ).

Proof. Let x ∈ SA(0, 1). By choosing in Lemma 2.20 a = Tx, b = x and c = Tx we
observe that

|〈Tx, x〉A|2 + ‖Tx‖4
A = |〈Tx, x〉A|2 + |〈Tx, Tx〉A|2

≤ ‖Tx‖A max{|〈Tx, x〉A|, |〈Tx, Tx〉A|}
√

1 + ‖Tx‖2
A + 2|〈x, Tx〉A|

= ‖Tx‖A max{|〈Tx, x〉A|, |〈T ]Tx, x〉A|}
√

1 + ‖Tx‖2
A + 2|〈x, Tx〉A|

≤ ‖T‖A max{ωA(T ), ωA(T ]T )}
√

1 + ‖T‖2
A + 2ωA(T ).

Thus

|〈Tx, x〉A|2 + ‖Tx‖4
A ≤ ‖T‖A max{ωA(T ), ωA(T ]T )}

√
1 + ‖T‖2 + 2ωA(T ), (2.19)

for all x ∈ SA(0, 1). Hence, by taking the supremum over x ∈ SA(0, 1) in (2.19) we obtain
the required result. �

The next theorem provides an upper and lower bound of the A-joint numerical radius
of two operators in BA(H).

Theorem 2.25. Let T, S ∈ BA(H). Then,
√

2
2 max {ωA(T + S), ωA(T − S)} ≤ ωA,e(T, S) ≤

√
2

2

√
ω2

A(T + S) + ω2
A(T − S).

Moreover, the constant
√

2
2 is sharp in both inequalities.
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Proof. For every x ∈ H, we have

(|〈Tx, x〉A|2 + |〈Sx, x〉A|2)
1
2 ≥

√
2

2 (|〈Tx, x〉A| + |〈Sx, x〉A|)

≥
√

2
2 |〈Tx, x〉A ± 〈Sx, x〉A|

=
√

2
2 |〈(T ± S)x, x〉A| .

Taking supremum over all x ∈ SA(0, 1) yields that

ωA,e(T, S) ≥
√

2
2 ωA(T ± S). (2.20)

This proves the first inequality in Theorem 2.25. On the other hand, for every x ∈ SA(0, 1)
we have

|〈Tx, x〉A ± 〈Sx, x〉A|2 ≤ ω2
A(T ± S). (2.21)

So, an application of the parallelogram identity for complex numbers and (2.21) gives

|〈Tx, x〉A|2 + |〈Sx, x〉A|2 = 1
2
(
|〈Tx, x〉A + 〈Sx, x〉A|2 + |〈Tx, x〉A − 〈Sx, x〉A|2

)
≤ 1

2
(
ω2

A(T + S) + ω2
A(T − S)

)
,

for every x ∈ SA(0, 1). Taking supremum over all x ∈ SA(0, 1) yields that

ω2
A,e(T, S) ≤ 1

2
(
ω2

A(T + S) + ω2
A(T − S)

)
.

This shows the second inequality in Theorem 2.25. For sharpness one can obtain the same
quantity

√
2ωA(T ) on both sides of the inequality by putting T = S. �

The following corollary in an immediate consequence of Theorem 2.25 and (1.5).

Corollary 2.26. Let T, S ∈ BA(H) be two A-selfadjoint operators. Then,
√

2
2 max {‖T + S‖A, ‖T − S‖A} ≤ ωA,e(T, S) ≤

√
2

2

√
‖T + S‖2

A + ‖T − S‖2
A.

Another bounds of ωA,e(T, S) can be stated as follows.

Theorem 2.27. Let T, S ∈ BA(H). Then,
√

2
2

√
ωA(T 2 + S2) ≤ ωA,e(T, S) ≤

√
‖T ]T + S]S‖A. (2.22)

Proof. Notice first that the second inequality in (2.22) follows from (1.7). By using (2.20),
we observe that

2ω2
A,e(T, S) ≥ 1

2
(
ω2

A(T + S) + ω2
A(T − S)

)
≥ 1

2
(
ωA[(T + S)2] + ωA[(T − S)2]

)
(by (1.3))

≥ 1
2
(
ωA[(T + S)2 + (T − S)2]

)
= ωA(T 2 + S2).

This proves the first inequality in (2.22). �

The following corollary is also an immediate consequence of Theorem 2.27 and gener-
alizes the well-known inequalities proved by F. Kittaneh in [22, Theorem 1]. Further, the
obtained inequalities improve the bounds in (1.8)
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Corollary 2.28. Let T ∈ BA(H). Then,

1
2

√
‖T ]T + TT ]‖A ≤ ωA(T ) ≤

√
2

2

√
‖T ]T + TT ]‖A. (2.23)

Proof. By taking into consideration (2.27) and proceeding as in the proof of Corollary
2.13, we get

√
2

2

√
ωA

(
([<A(T )]])2 + ([=A(T )]])2

)
≤ ωA(T ) ≤

√∥∥∥([<A(T )]])2 + ([=A(T )]])2
∥∥∥

A
.

Since
(
[<A(T )]]

)2
+
(
[=A(T )]]

)2
≥A 0, then (1.5) gives

√
2

2

√∥∥∥([<A(T )]])2 + ([=A(T )]])2
∥∥∥

A
≤ ωA(T ) ≤

√∥∥∥([<A(T )]])2 + ([=A(T )]])2
∥∥∥

A
.

This proves the desired inequalities by following the proof of Corollary 2.13. �

Remark 2.29. (1) Notice that the inequalities in (2.23) are already proved by the
second author in [18] and by Altwaijry et al. in [1]. However, the techniques used
here are different from the other proofs.

(2) The inequalities in (2.23) are sharp (see [18]).
(3) The inequalities in (2.23) improve the bounds in (1.2) (see [18]).
(4) A generalization of the inequalities in (2.23) are established in [11].

In the rest of this paper, we prove several inequalities involving the A-Davis-Wielandt
radius and the A-numerical radii of operators in BA(H).

The following lemma is useful in the proof of our next result.

Lemma 2.30. Let S ∈ BA(H). Then, for every a ∈ SA(0, 1) we have

|〈Sa, a〉A|2 ≤ 1
2 |〈S2a, a〉A| + 1

4〈(S]S + SS])a, a〉A.

Proof. Let x, y, z ∈ H with ‖z‖A = 1. We first prove that∣∣〈x, z〉A〈z, y〉A

∣∣ ≤ 1
2
(∣∣〈x, y〉A

∣∣+ ‖x‖A ‖y‖A

)
. (2.24)

Since ‖A1/2z‖ = 1, then by using the well-known Buzano’s inequality ([10]), we see that∣∣〈x, z〉A〈z, y〉A

∣∣ =
∣∣〈A1/2x, A1/2z〉〈A1/2z, A1/2y〉

∣∣
≤ 1

2
(∣∣〈A1/2x, A1/2y〉

∣∣+ ‖A1/2x‖ ‖A1/2y‖
)
.

This proves the desired result.
Now, let a ∈ SA(0, 1). By using the arithmetic-geometric mean inequality and applying

(2.24) for x = Sa, z = a and y = S]a we infer that

|〈Sa, a〉A|2 = |〈Sa, a〉A〈a, S]a〉A|

≤ 1
2
(
|〈Sa, S]a〉A| + ‖Sa‖A ‖S]a‖A

)
≤ 1

2 |〈Sa, S]a〉A| + 1
4
(
‖Sa‖2 + ‖S]a‖2

)
= 1

2 |〈S2a, a〉A| + 1
4〈(S]S + SS])a, a〉A.

Hence, the proof is complete. �

We present now the following result.
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Theorem 2.31. Let T ∈ BA(H). Then, we have

dωA(T ) ≤ 1
2

√
ωA

(
(T ]T + T )2

)
+ ωA

(
(T ]T − T )2

)
+ ωA

(
T ]T + 2(T ]T )2 + TT ]

)
.

Proof. Let x ∈ SA(0, 1). By applying the well-known parallelogram identity for complex
numbers, we see that

|〈Tx, x〉A|2 + ‖Tx‖4
A = 1

2
(∣∣ ‖Tx‖2

A + 〈Tx, x〉A

∣∣2 +
∣∣ ‖Tx‖2

A − 〈Tx, x〉A

∣∣2)
= 1

2
(∣∣〈(T ]T + T )x, x

〉
A

∣∣2 +
∣∣〈(T ]T − T )x, x

〉
A

∣∣2) . (2.25)

On the other hand, by applying Lemma 2.30 we see that∣∣〈(T ]T + T )x, x
〉

A

∣∣2 +
∣∣〈(T ]T − T )x, x

〉
A

∣∣2
≤ 1

2
∣∣〈(T ]T + T )2x, x

〉
A

∣∣+ 1
2
∣∣〈(T ]T − T )2x, x

〉
A

∣∣
+ 1

4
〈 [

(T ]T + T )](T ]T + T ) + (T ]T + T )(T ]T + T )]
]

x, x
〉

A

+ 1
4
〈 [

(T ]T − T )](T ]T − T ) + (T ]T − T )(T ]T − T )]
]

x, x
〉

A
.

By observing that (T ]T )] = T ]T and making short calculations, we infer that∣∣〈(T ]T + T )x, x
〉

A

∣∣2 +
∣∣〈(T ]T − T )x, x

〉
A

∣∣2
≤ 1

2
∣∣〈(T ]T + T )2x, x

〉
A

∣∣+ 1
2
∣∣〈(T ]T − T )2x, x

〉
A

∣∣+ 1
2
〈 [

T ]T + 2(T ]T )2 + TT ]
]

x, x
〉

A

≤ 1
2

[
ωA

((
T ]T + T

)2
)

+ ωA

((
T ]T − T

)2
)

+ ωA

(
T ]T + 2(T ]T )2 + TT ]

)]
.

Hence, by taking into account (2.25) we obtain

|〈Tx, x〉A|2 + ‖Tx‖4
A

≤ 1
4

[
ωA

((
T ]T + T

)2
)

+ ωA

((
T ]T − T

)2
)

+ ωA

(
T ]T + 2(T ]T )2 + TT ]

)]
,

for all x ∈ SA(0, 1). Finally, by taking the supremum over all x ∈ SA(0, 1) in the above
inequality we get the desired result. �

In order to prove our next upper bound for dωA(·), we need the following lemma.

Lemma 2.32. Let T ∈ BA(H). Then, for all x ∈ SA(0, 1) we have

|〈Tx, x〉A|2 ≤
√

〈T ]Tx, x〉A

√
〈TT ]x, x〉A.

Proof. Let x ∈ SA(0, 1). By using the Cauchy-Schwarz inequality we see that

|〈Tx, x〉A|2 = |〈Tx, x〉A| · |〈Tx, x〉A|

= |〈Tx, x〉A| · |〈x, T ]x〉A|

= |〈A1/2Tx, A1/2x〉| · |〈A1/2x, A1/2T ]x〉|

≤ ‖Tx‖A‖T ]x‖A

=
√

〈T ]Tx, x〉A

√
〈TT ]x, x〉A.

Hence, the proof is complete. �

Now, we are in a position to provide the following upper bound for dωA(·).
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Theorem 2.33. Let T ∈ BA(H). Then

dωA(T ) ≤
√

1
2 ωA

(
T ]T + 2(T ]T )2 + TT ]

)
− 1

2 inf
x∈SA(0,1)

(
‖Tx‖A − ‖T ]x‖A

)2
.

Proof. Notice first that (T ]T )] = T ]T . Now, let x ∈ SA(0, 1). By using Lemma 2.32 and
the Cauchy-Schwarz inequality we obtain

|〈Tx, x〉A|2 + ‖Tx‖4
A

= |〈Tx, x〉A|2 + |〈T ]Tx, x〉A|2

≤
√

〈T ]Tx, x〉A

√
〈TT ]x, x〉A +

√
〈(T ]T )](T ]T )x, x〉A

√
〈(T ]T )(T ]T )]x, x〉

=
√

〈T ]Tx, x〉A

√
〈TT ]x, x〉A +

√
〈(T ]T )2x, x〉A

√
〈(T ]T )2x, x〉A

= 1
2

[
〈T ]Tx, x〉A + 〈TT ]x, x〉A −

(√
〈T ]Tx, x〉A −

√
〈TT ]x, x〉A

)2
]

+
〈
(T ]T )2x, x

〉
A

= 1
2
[
〈T ]Tx, x〉A + 〈TT ]x, x〉A + 2

〈
(T ]T )2x, x

〉
A

]
− 1

2

(√
〈T ]Tx, x〉A −

√
〈TT ]x, x〉A

)2

= 1
2
〈[

T ]T + 2(T ]T )2 + TT ]
]

x, x
〉

A
− 1

2
(
‖Tx‖A − ‖T ]x‖A

)2

≤ 1
2ωA

[
T ]T + 2(T ]T )2 + TT ]

]
− 1

2 inf
x∈SA(0,1)

(
‖Tx‖A − ‖T ]x‖A

)2
.

This gives

|〈Tx, x〉A|2 + ‖Tx‖4
A ≤ 1

2ωA

[
T ]T + 2(T ]T )2 + TT ]

]
− 1

2 inf
x∈SA(0,1)

(
‖Tx‖A − ‖T ]x‖A

)2
,

for all x ∈ SA(0, 1) which in turn shows required inequality by taking the supremum over
all x ∈ SA(0, 1). �

The next theorem provides another bound for dωA(·).

Theorem 2.34. Let T ∈ BA(H). Then,

dωA(T ) ≤
√

ω2
A (T ]T − T ) + 2‖T‖2

AωA(T ). (2.26)

Proof. Let x ∈ H be such that ‖x‖A = 1. Then, by making simple calculations and using
the Cauchy-Schwarz inequality, we see that

|〈Tx, x〉A|2 + ‖Tx‖4
A =

∣∣∣〈Tx, Tx〉A − 〈Tx, x〉A

∣∣∣2 + 2<
(
〈Tx, Tx〉A〈Tx, x〉A

)
=
∣∣∣〈 (T ]T − T

)
x, x

〉
A

∣∣∣2 + 2‖Tx‖2
A<〈Tx, x〉A

≤ ω2
A(T ]T − T ) + 2‖T‖2

AωA(T ).

So, we get

|〈Tx, x〉A|2 + ‖Tx‖4
A ≤ ω2

A(T ]T − T ) + 2‖T‖2
AωA(T ), (2.27)

for all x ∈ SA(0, 1). Hence, by taking the supremum over all x ∈ SA(0, 1) in (2.27), we get
(2.26) as required. �

To prove our next result, we need the following lemma which is quoted from the proof
of [25, Theorem 2.13.].
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Lemma 2.35. Let T ∈ BA(H). Then

1
2‖Tx‖A ≤

√
ω2

A(T )
2 + ωA(T )

2

√
ω2

A(T ) − |〈Tx, x〉A|2

for any x ∈ SA(0, 1).

Now, we are ready to prove another upper bound for the A-Davis–Wielandt radius of
operators in BA(H).

Theorem 2.36. Let T ∈ BA(H). Then

dωA(T ) ≤
√

2
2

√
ωA (T 2) + 1

2ωA (T ]T + TT ]) + 8µ,

where
µ = ω2

A(T )
(

2ω2
A(T ) − c2

A(T ) + 2ωA(T )
√

ω2
A(T ) − c2

A(T )
)

.

Proof. Let x ∈ SA(0, 1). It follows, from Lemma 2.30, that

|〈Tx, x〉A|2 ≤ 1
2 |〈T 2x, x〉A| + 1

4〈
(
T ]T + TT ]

)
x, x〉A

≤ 1
2ωA

(
T 2
)

+ 1
4ωA

(
T ]T + TT ]

)
. (2.28)

Moreover, by using Lemma 2.35 one has

‖Tx‖4
A ≤ 16

(
ω2

A(T )
2 + ωA(T )

2

√
ω2

A(T ) − |〈Tx, x〉A|2
)2

≤ 4
(

ω2
A(T ) + ωA(T )

√
ω2

A(T ) − c2
A(T )

)2

≤ 4ω2
A(T )

(
2ω2

A(T ) − c2
A(T ) + 2ωA(T )

√
ω2

A(T ) − c2
A(T )

)
, (2.29)

By combining (2.28) together with (2.29), we infer that

|〈Tx, x〉A|2 + ‖Tx‖4
A ≤ 4ω2

A(T )
(

2ω2
A(T ) − c2

A(T ) + 2ωA(T )
√

ω2
A(T ) − c2

A(T )
)

+ 1
2ωA

(
T 2
)

+ 1
4ωA

(
T ]T + TT ]

)
,

for all x ∈ SA(0, 1). Therefore, we obtain the desired inequality by taking the supremum
in the above inequality over all x ∈ SA(0, 1). �
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