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Abstract: In this study, we developed a new modification of the well-known 

differential transform method (DTM) that differs from the classical one by the 

algorithm for calculating the coefficients of an approximate solution given as a 

series. The proposed new algorithm we will call α-parameterized DTM (𝛼 −
𝑝 DTM, for short). By using the proposed α − p DTM, we solve the boundary 

value transmission problem for the third-order differential equation. For the same 

problem, an approximate solution is also found using also the classical DTM. The 

solutions obtained were compared graphically. 
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Diferensiyel dönüşüm 

yöntemi, 

Geçiş şartları, 

Sınır-değer preblemleri 

Öz: Bu çalışmada literatürden iyi bilinen diferansiyel dönüşüm yönteminin 

(DDY) yeni bir modifikasyonunu geliştirdik. Seri biçiminde verilmiş yaklaşık 

çözümde serinin katsayılarının hesaplanmasında uyguladığımız algoritma 

geleneksel DDY’den farklıdır. Önerdiğimiz yeni algoritmayı 𝛼 − parametreli 

diferansiyel dönüşüm yöntemi ( α − p DDY ) olarak adlandırıyoruz. 

Geliştirdiğimiz α − p DD  yöntemini uygulayarak 3. mertebeden diferensiyel 

denklem için sınır değer geçiş probleminin yaklaşık çözümleri bulunmuştur. Aynı 

problemin başka bir yaklaşık çözümü, geleneksel DD yöntemi ile de 

bulunmuştur. Bulduğumuz sonuçlar grafiksel olarak karşılaştırılmıştır.  

  

1. Introduction  

 

Boundary value problems (BVPs, for short) for differential equations arise as a model of broad 

class of physical processes across of all areas of natural sciences. Different analytical methods are used 

to find the exact solutions to a particular type of linear differential equation. However, not all differential 

equations can be solved analytically. As a rule, purely analytical methods are not available for finding 

exact solutions to non-classical and singular boundary value problems. Therefore, various approximate 
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and numerical techniques, such as Adomian Decomposition Method (ADM), Finite Difference Method 

(FDM), Differential Transform Method (DTM), Variational Iterative Method (VIM), Homotopy 

Perturbation Method (HPM) etc. are effective tools to investigate and understand the qualitative 

properties of many differential equations with exact unknown solutions.  

Many approximate and numerical methods are also not effective enough in solving various non-

classical and/or singular problems since they may require complex algebraic calculations. However, the 

differential transform technique can provide useful approximate solutions for most regular BVPs and 

some non-classical singular BVPs because it is based on a simple algorithm. This simplest algorithm 

differs from others in that it does not require large computations of high-order derivatives of data 

functions. 

Zhou (1986) first developed the differential transformation method to solve initial value 

problems when modelling electrical circuits. This method allows us to find an approximate, series or 

analytical solution in a closed form of various linear and non-linear differential equations. The 

usefulness is that this method reduces the given differential equation to simple iterative equations that 

are more convenient to study. Inspired by the works of Zhou, interest has increased in the development 

of various modifications and generalizations of DTM for solving a new type of boundary value problems 

that arise in modern problems of physics and other natural sciences (see, for example (Cakir & Arslan, 

2015; Lal & Ahlawat, 2015; Mohamed & Gepreel, 2017; Ghazaryan et al., 2018; Pratiksha, 2019; 

Mukhtarov et al., 2019; Liu et al., 2020; Mukhtarov & Yücel, 2020; Hussein Msmali et al., 2021; 

Mukhtarov et al., 2021; Sowmya & Gireesha, 2022)   and references therein). 

In recent years, the application of DTM and its various modifications to the solutions of 

nonclassical initial and/or boundary value problems of a new type, which arise in solving many specific 

problems of physics and technology, has attracted great interest. Bekiryazici et al. (2020) developed a 

modification of the random DTM and demonstrated its applications to some models. Jena & Chakraverty 

(2018) proposed a new version of DTM to study free vibration of nanobeams. Khudair et al. (2016) 

investigated some second-order random differential equations by DTM. Ünal & Gökdoğan (2017) 

generalized DTM to solve not only classical differential equations but also fractional differential 

equations. Mirzaaghaian & Ganji (2016) examined the applicability of DTM to some physical problems 

such as heat transfer through permeable walls and micropolar fluid flow. Elsaid & Helal (2020) 

developed a new modification of the DTM to calculate partial derivatives of nonlinear functions of two 

variables. They also used a different algoritm that does not require any intermediate calculations, which 

eliminates some of the shortcomings of many previous algorithms (Elsaid & Helal, 2020). Odibat et al. 

(2008) adapted the classical DTM in such a way that it could be applied not only to ordinary and partial 

differential equations but also fractional differential equations. Sepasgozar et al. (2017) applied DTM 

to find approximate solutions of momentum and heat transfer in a porous channel in a non-Newtonian 

fluid flow. Biazar & Eslami (2010), using differential transformation, numerically solved the telegraph 

equation. Karakoç & Bereketoğlu (2019) proposed a different version of DTM for solving delay 

differential equations. Ayaz (2004) defined a three-dimensional differential transformation for solving 

a system of differential equations.  Mukhtarov et al. (2020) suggested a new generalization of DTM to 

investigate some spectral properties of a new type of boundary-value problem. Namely, they solved a 

new type of boundary value problem consisting of 2-interval differential equations and boundary-

transmission conditions by developing a new differential transform (Mukhtarov et al., 2020). Biswas & 

Roy (2018) devoted the intuitionistic (fuzzy) differential transform method to solving Volterra-type 

fuzzy integrodifferential equations. Nazari & Shakmorad (2010) used the fractional DTM to solving 

fractional integro-differential equations under nonlocal BC’s. 

In this study, we proposed a new transform method (called α-parameterized DTM) to solve 

boundary value transmission problems for two-interval differential equations. 

 

2. Material and Methods 

 

2.1. Basic properties of differential transformation method 

 
Let  b = b(x) be any analytic function in some around of the point 𝑥 = 𝑥0. Then this function 

can be expanded in Taylor’s series as  

 



YYU JINAS 28 (2): 412-423 

Yücel and Muhtarov / Parameterized Differential Transform Method and Its Application to Boundary Value Transmission Problems 

414 

 

𝑏(𝑥) = ∑ 𝐵𝑥0
(𝑙)

∞

𝑙=0

(𝑥 − 𝑥0)𝑙 (1) 

 

where 𝐵(𝑙) is Taylor’s coefficient defined by 

 

𝐵𝑥0
(𝑙) =

1

𝑙!
[

𝑑𝑙

𝑑𝑥𝑙
𝑏(𝑥)]

𝑥=𝑥0

,    𝑙 = 0,1,2, … (2) 

 

Definition 1.  The sequence 𝐵𝑥0
(0), 𝐵𝑥0

(1), 𝐵𝑥0
(2), …   is said to be the differential transform of the 

analytic function 𝑏(𝑥), where 𝐵𝑥0
(𝑙),   𝑙 = 0,1,2, … is defined by Equation (2). The differential inverse 

transformation of the sequence (𝐵𝑥0
(𝑙))   is defined by Equation (1). Here 𝑏(𝑥)   is said to be the original 

function and the sequence  (𝐵𝑥0
(𝑙))   is said to be the T-transform of 𝑏(𝑥). 

  Let us denote the T- transform of the original function 𝑏(𝑥)   by  𝑇𝑥0
(𝑏), and the differential 

inverse transform of (𝐵𝑥0
(𝑙))  by 𝑇𝑥0

−1(𝐵𝑥0
(𝑙)).  From the definition of the T- transform it follows easily 

the following properties: 

 
i. 𝑇𝑥0

(𝑎1 + 𝑎2) = 𝑇𝑥0
(𝑎1) + 𝑇𝑥0

(𝑎2) 

ii. 𝑇𝑥0
(γb) = γ𝑇𝑥0

(b)   for any  γ ∈ R 

iii. If  𝑇𝑥0
(b) = (𝐵𝑥0

(l)) ,   then 𝑇𝑥0
(

db

dx
) = ((l + 1)𝐵𝑥0

(l + 1))   and 

 𝑇𝑥0
(

d2b

dx2
) = ((l + 1)(l + 2)𝐵𝑥0

(l + 2))  

iv. If 𝑇𝑥0
(a) = (𝐴𝑥0

(l)) , 𝑇𝑥0
(b) = (𝐵𝑥0

(l))  and 𝑇𝑥0
(ab) = (𝐶𝑥0

(l)) , then  𝐶𝑥0
(l) = (𝐴𝑥0

(l) ∗

𝐵𝑥0
(l)), where 𝐴𝑥0

(𝑙) ∗ 𝐵𝑥0
(𝑙) is denoted the convolution of the sequences 𝐴𝑥0

(𝑙) and 𝐵𝑥0
(𝑙). 

In a real application, the differential inverse transform  𝑇𝑥0
−1(𝐵𝑥0

(𝑙))  is defined by a finite sum  

 

𝑇𝑥0
−1 (𝐵𝑥0

(𝑙)) = ∑ 𝐵𝑥0
(𝑙)(𝑥 − 𝑥0)𝑙

𝑠

𝑙=0

   (3) 

 

for sufficiently large s. 

 

 2.2.  Definition and basic properties of the 𝜶 − parameterized DTM  

 

Let g: [a, b] → R be a real-valued analytic function and α ∈ [0,1] is a real number. 

 

Definition 1. We say the sequence (𝑇𝛼(𝑎, 𝑏))
𝑛

(𝑔)  is the α − parameterized  differential transform of 

the original function g(x) if  

 

(𝑇𝛼(𝑎, 𝑏))
𝑛

(𝑔) ≔ 𝛼(𝑇𝑎(𝑔))
𝑛

+ (1 − 𝛼)(𝑇𝑏(𝑔))
𝑛

, (4) 

 

where  

 

(Ta(g))
n

≔
dng(a)

n!
,       (Tb(g))

n
≔

dng(b)

n!
 . (5) 

 

Definition 2. We say the function g(x) is the α −inverse differential transform if  

 

gα(x) ≔ ∑(𝑇𝛼(𝑎, 𝑏))
𝑛

(𝑔)(x − (αa + (1 − α)b))
n

∞

n=0

 (6) 
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provided that the series is convergent. The α − inverse differential transforms we shall denote by 

(𝑇𝛼
−1(𝑎, 𝑏)𝑛)(𝑔). 

 

Definition 3.  The N-th partial sum of the series defined by Equation (6) is said to be N-th α- 

parametrized approximation of the original function g(x) and is denoted by 𝑔𝛼,𝑁(𝑥), that is  

 

gα,N(x) ≔ ∑(𝑇𝛼(𝑎, 𝑏))
𝑛

(𝑔)(x − (αa + (1 − α)b))
n

.

N

n=0

 (7) 

 

by using Definition 1 we can show that the α- parameterized differential transform has the following 

properties: 

 

1. (Tα(a, b))
n

(cg) = c(Tα(a, b)(g))n 

2. (Tα(a, b))
n

(f ± g) = (Tα(a, b))
n

(f) ± (Tα(a, b))
n

(g) 

3. (Tα(a, b))
n

(
dmg

dxm) =
(n+m)!

n!
(Tα(a, b))

n
(g). 

 

3. Results 

 

3.1. Solution of transmission problems by using modified differential transformation method 

 
Let us consider the 3rd-order differential equation, 

 
𝑑3𝑢

𝑑𝑥3
− 2x

𝑑𝑢

𝑑𝑥
 − 2u = 0,          x ∈ [0,

1

2
) ∪ (

1

2
, 1] (8) 

 

together with the boundary conditions, 

 

𝑢(0) = 1,     𝑢(1) = 1,      
𝑑𝑢(0)

𝑑𝑥
= 1 (9) 

 

and with the additional transmission conditions at the singular point 𝑥 =
1

2
, given by 

 

 𝑢 (
1

2
+ 0) = 𝑢 (

1

2
− 0),       

𝑑𝑢(
1

2
+0)

𝑑𝑥
=

𝑑𝑢(
1

2
−0)

𝑑𝑥
,

𝑑2𝑢(
1

2
+0)

𝑑𝑥2 =
1

2
 
𝑑2𝑢(

1

2
−0)

𝑑𝑥2  . (10) 

 

Denote by 𝑈0
−(𝑘)  and 𝑈1

+(k)  the T-transforms of the function  𝑢(𝑥) at the end-points  𝑥 = 0 and   

𝑥 = 1, respectively. If DTM is applied to the differential equation in the left interval, at the point       

𝑥 =
1

2
,  we  have  

 

(𝑙 + 1)(𝑙 + 2)(𝑙 + 3)𝑈0
−(𝑙 + 3) − 2 ∑ 𝑈0

−(𝑙 − 𝑟 + 1)(𝑙 − 𝑟 + 1)𝛿(𝑟 − 1) −

𝑙

𝑟=0

2𝑈0
−(𝑙) = 0 (11) 

 

where  𝑇−(𝑚) =
1

𝑚!
[

𝑑𝑚

𝑑𝑥𝑚 𝑢(𝑥)]
𝑥=𝑥0

.   The differential inverse transform in the left interval has the 

following form: 

 

𝑢−(𝑥) = ∑ 𝑥𝑘𝑈0
−(𝑘) = 𝑈0

−(0) + 𝑥𝑈0
−(1) + 𝑥2𝑈0

−(2) + ⋯ + 𝑥11𝑈0
−(11).

𝑛

𝑘=0

 (12) 
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The first boundary condition 𝑢(0) = 1,   becomes   𝑈0
−(0) = 1,  and the second condition  

𝑑𝑢(0)

𝑑𝑥
= 1, 

becomes  𝑈0
−(1) = 1.  Let 𝑈0

−(2) = 𝒶. 
Now proceed with the iteration using Equation (11); we can calculate the other terms of the T- transform 

as 

 

𝑈0
−(3) =

1

3
,        𝑈0

−(4) =
1

6
,      𝑈0

−(5) =
𝒶

10
,      𝑈0

−(6) =
1

45
,   𝑈0

−(7) =
1

126
,   

 

𝑈0
−(8) =

𝒶

280
,     𝑈0

−(9) =
1

1620
,   𝑈0

−(10) =
1

5670
,         𝑈0

−(11) =
𝒶

15400
 . 

(13) 

 

If we carry out the iteration up to n = 7, then we have the following approximation of the left solution: 

 

 𝑢−(𝑥) = 1 + 𝑥 + 𝒶𝑥2 +
1

3
𝑥3 +

1

6
𝑥4 + (

𝒶

10
) 𝑥5 +

1

45
𝑥6 +

1

126
𝑥7. (14) 

                               

Secondly, let us get the solution for the problem in the right interval (
1

2
, 1]. If the differential transform 

method is applied to the differential equation, in the around of the point    𝑥0 = 1, we have 

 

(𝑙 + 1)(𝑙 + 2)(𝑙 + 3)𝑈1
+(𝑙 + 3) − 2(𝑙 + 1)𝑈1

+(𝑙 + 1) − 2𝑙𝑈1
+(𝑙) − 2𝑈1

+(𝑙) = 0. (15) 

 

The differential inverse transform in the right interval (
1

2
, 1] has the following form: 

 

𝑢+(𝑥) = 𝑈1
+(0) + (𝑥 − 1)𝑈1

+(1) + (𝑥 − 1)2𝑈1
+(2) + ⋯ + (𝑥 − 1)11𝑈1

+(11) (16) 

 

The third boundary condition 𝑢(1) = 1, becomes 𝑈1
+(0) = 1. Let us 𝑈1

+(1) = 𝒷 and 𝑈1
+(2) = 𝒸. By 

using Equation (15), we find 

 

𝑈1
+(3) =

1

3
(𝒷 + 1),    𝑈1

+(4) =
𝒷

6
+

𝒸

6
,    𝑈1

+(5) =
1

10
(

1

3
(𝒷 + 1) + 𝒸),  

 

𝑈1
+(6) =

1

120
(

4𝒸

3
+ 4𝒷 +

8

3
),    𝑈1

+(7) =
1

21
(

6𝒷 + 8𝒸 + 1

30
),   … 

(17) 

 

Now, applying differential inverse transform for n = 7, we have 

 

𝑢+(𝑥) = 1 + (𝑥 − 1)𝒷 + (𝑥 − 1)2𝒸 + (𝑥 − 1)3
1

3
(𝒷 + 1) + (𝑥 − 1)4(

𝒷

6
+

𝒸

6
)

+ (𝑥 − 1)5
1

10
(
1

3
(𝒷 + 1) + 𝒸) + (𝑥 − 1)6

1

120
(
4𝒸

3
+ 4𝒷 +

8

3
)

+ (𝑥 − 1)7
1

21
(

6𝒷 + 8𝒸 + 1

30
).  

(18) 

 

Substituting Equations (14)-(18) in the transmission conditions 

 

𝑢 (
1

2
+ 0) = 𝑢 (

1

2
− 0),       

𝑑𝑢(
1

2
+ 0)

𝑑𝑥
=

𝑑𝑢(
1

2
− 0)

𝑑𝑥
,

𝑑2𝑢(
1

2
+ 0)

𝑑𝑥2
=

1

2
 
𝑑2𝑢(

1

2
− 0)

𝑑𝑥2
 , (19) 

 

we can find, 𝒶 = −1.49383, 𝒷 = −0.426463, 𝒸 = −0.0391322.   
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Figure 1.  Graph of the classical DTM solution in the [0,
1

2
) ∪ (

1

2
, 1].  

 

3.2. Application of the 𝜶 − 𝒑 𝑫𝑻𝑴 and comparision with the classical DTM 

 
Consider the differential equation  

 
𝑑3𝑢

𝑑𝑥3
− 2x

𝑑𝑢

𝑑𝑥
 − 2u = 0,   𝑥 ∈ [0,

1

2
) ∪ (

1

2
, 1] (20) 

 

subject to the boundary conditions  

 

𝑢(0) = 1,     𝑢(1) = 1,      
𝑑𝑢(0)

𝑑𝑥
= 1      (21) 

 

and additional transmission conditions at the point of interaction 𝑥 =
1

2
, given by 

 

𝑢 (
1

2
+ 0) = 𝑢 (

1

2
− 0),       

𝑑𝑢(
1

2
+ 0)

𝑑𝑥
=

𝑑𝑢(
1

2
− 0)

𝑑𝑥
,      

𝑑2𝑢(
1

2
+ 0)

𝑑𝑥2
=

1

2
 
𝑑2𝑢(

1

2
− 0)

𝑑𝑥2
.  (22) 

 

Taking the α −p DT of the Equation (20) on the interval [0,
1

2
) we obtain  

 

𝑇(𝑢, 𝛼; 𝑚 + 3) =
1

(𝑚 + 1)(𝑚 + 2)(𝑚 + 3)
[2 ∑ 𝑇(𝑢, 𝛼; 𝑚 − 𝑟 + 1)(𝑘 − 𝑟 + 1)𝛿(𝑟 − 1)

𝑚

𝑟=0

+ 2𝑇(𝑢, 𝛼; 𝑚)] 

(23) 

 

where 𝑇(𝑢, 𝛼; 𝑚) is defined by 𝑇(𝑢, 𝛼; 𝑚) ≔ 𝑇𝛼 (0,
1

2
)

𝑚
(𝑢). 

Using the boundary conditions becomes 

 

𝑢𝑙,𝛼,𝑁(0) = ∑ 𝑇(𝑢, 𝛼; 𝑘)(
𝛼 − 1

2
)𝑘

𝑁

𝑘=0

= 1 (24) 

 

𝑢′𝑙,𝛼,𝑁(0) = ∑ 𝑇(𝑢, 𝛼; 𝑘)𝑘(
𝛼 − 1

2
)𝑘−1

𝑁

𝑘=0

= 1. (25) 

 

Denoting 𝑇(𝑢, 𝛼; 0) = 𝒜 , 𝑇(𝑢, 𝛼; 1) = ℬ  and 𝑇(𝑢, 𝛼; 2) = 𝒞  then substituting in the recursive 

Equation (23), we get  
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𝑇(𝑢, 𝛼; 3) =
2 𝒜

3!
 (26) 

 

Now proceeding the iteration using Equation (23) we can calculate the other terms of the 

𝛼 −parametrized sequence 𝑇(𝑢, 𝛼; 𝑛) as  

 

𝑇(𝑢, 𝛼; 4) =
ℬ

3!
, 𝑇(𝑢, 𝛼; 5) =

𝒞

10
, 𝑇(𝑢, 𝛼; 6) =

𝒜

45
,

𝑇(𝑢, 𝛼; 7) =
ℬ

126
, 𝑇(𝑢, 𝛼; 8) =

𝒞

280
, … 

(27) 

 

Hence, the left 𝛼 −parametrized series solution 𝑢𝑙(𝑥, 𝛼) is evaluated up to 𝑁 = 7: 
 

𝑢𝑙(𝑥, 𝛼) = ∑ 𝐷𝑙(𝑢, 𝛼; 𝑘)(𝑥 − (
1 − 𝛼

2
))𝑘

7

𝑘=0

= 𝒜 + (𝑥 − (
1 − 𝛼

2
)) ℬ + (𝑥 − (

1 − 𝛼

2
))

2

𝒞 +
1

3
(𝑥 − (

1 − 𝛼

2
))

3

𝒜

+
1

6
(𝑥 − (

1 − 𝛼

2
))

4

ℬ +
1

10
(𝑥 − (

1 − 𝛼

2
))

5

𝒞 +
1

45
(𝑥 − (

1 − 𝛼

2
))

6

𝒜

+
1

126
(𝑥 − (

1 − 𝛼

2
))

7

ℬ +
1

280
(𝑥 − (

1 − 𝛼

2
))

8

𝒞 +
1

1620
(𝑥 − (

1 − 𝛼

2
))

9

𝒜

+
1

5670
(𝑥 − (

1 − 𝛼

2
))

10

ℬ + ⋯ 

(28) 

 

where 𝑥𝛼 =
1−𝛼

2
 and  𝑇(𝑢, 𝛼; 0) = 𝒜, 𝑇(𝑢, 𝛼; 1) = ℬ  and 𝑇(𝑢, 𝛼; 2) = 𝒞. 

Now we will consider the problem Equations (20)-(22) on the right interval (
1

2
, 1]. Being in a similar 

way we obtain  

 

𝐷𝑟(𝑢, 𝛼; 𝑘 + 3) =
1

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)
[2 ∑ 𝐷𝑟(𝑢, 𝛼; 𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 1)𝛿(𝑟 − 1)

𝑘

𝑟=0

+ 2𝐷𝑟(𝑢, 𝛼; 𝑘)] 

(29) 

 

Denoting 𝐷𝑟(𝑢, 𝛼; 0) = 𝒟 ,  𝐷𝑟(𝑢, 𝛼; 1) = ℰ  and 𝐷𝑟(𝑢, 𝛼; 2) = ℱ  then substituting in the recursive 

Equation (29), we have  

 

𝐷𝑟(𝑢, 𝛼; 3) =
 𝒟

3
 (30) 

 

Now proceeding the iteration using Equation (29) we can calculate the other terms of the 

𝛼 −parameterized sequence 𝐷𝑟(𝑢, 𝛼; 𝑛) as 

 

𝐷𝑟(𝑢, 𝛼; 4) =
ℰ

3!
, 𝐷𝑟(𝑢, 𝛼; 5) =

ℱ

10
,   𝐷𝑟(𝑢, 𝛼; 6) =

𝒟

45
,     𝐷𝑟(𝑢, 𝛼; 7) =

ℰ

126
,

𝐷𝑟(𝑢, 𝛼; 8) =
ℱ

280
,   𝐷𝑟(𝑢, 𝛼; 9) =

𝒟

1620
,       𝐷𝑟(𝑢, 𝛼; 10) =

ℰ

5670
, …  

(31) 

 

Hence the 𝛼 −parametrized series solution 𝑢𝑟(𝑥, 𝛼) is evaluated up to 𝑁 = 7: 
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𝑢𝑟(𝑥, 𝛼) = ∑ 𝐷𝑟(𝑢, 𝛼; 𝑘)

7

𝑘=0

(𝑥 − (1 −
𝛼

2
))

𝑘

= 𝒟 + (𝑥 − (1 −
𝛼

2
)) ℰ + (𝑥 − (1 −

𝛼

2
))

2

ℱ +
1

3
(𝑥 − (1 −

𝛼

2
))

3

𝒟

+
1

3!
(𝑥 − (1 −

𝛼

2
))

4

ℰ +
1

10
(𝑥 − (1 −

𝛼

2
))

5

ℱ +
1

45
(𝑥 − (1 −

𝛼

2
))

6

𝒟

+
1

126
(𝑥 − (1 −

𝛼

2
))

7

ℰ +
1

280
(𝑥 − (1 −

𝛼

2
))

8

ℱ +
1

1620
(𝑥 − (1 −

𝛼

2
))

9

𝒟

+
1

5670
(𝑥 − (1 −

𝛼

2
))

10

ℰ 

(32) 

                                    

where 𝑥𝛼 = (1 −
𝛼

2
) and  𝐷𝑟(𝑦, 𝛼; 0) = 𝒟, 𝐷𝑟(𝑦, 𝛼; 1) = ℰ, 𝐷𝑟(𝑦, 𝛼; 2) = ℱ .  

Using the boundary condition 𝑢(1) = 1 becomes 

 

𝒟 +
𝛼

2
ℰ + (

𝛼

2
)

2

ℱ + (
𝛼

2
)

3 𝒟

3
+ (

𝛼

2
)

4 ℰ

3!
+ (

𝛼

2
)

5 ℱ

10
+ (

𝛼

2
)

6 𝒟

45
+ (

𝛼

2
)

7 ℰ

126
+ (

𝛼

2
)

8 ℱ

280

+ (
𝛼

2
)

9 𝒟

1620
+ (

𝛼

2
)

10 ℰ

5670
= 1. 

(33) 

 

By using the transmission conditions, 

 

𝑢𝑙 (
1

2
) = 𝑢𝑟 (

1

2
) ,

𝑑𝑢𝑙(
1

2
)

𝑑𝑥
=

𝑑𝑢𝑟(
1

2
)

𝑑𝑥
,    

𝑑2𝑢𝑙(
1

2
)

𝑑𝑥2
= 2

𝑑2𝑢𝑟(
1

2
)

𝑑𝑥2
 . (34) 

 

We can obtain the values of the auxiliary parameters 𝒜, ℬ, 𝒞, 𝒟, ℰ 𝑎𝑛𝑑 ℱ. 

 

Figure 2. Comparison of the DTM solution (blue line) and the 𝛼 −parameterized DT solution for          

𝛼 =
999

1000
 (red line) on the left interval [0,

1

2
).  
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Figure 3. Comparison of the DTM solution (blue line) and the 𝛼 −parameterized DT solution for          

𝛼 =
999

1000
 (red line) on the left interval (

1

2
, 1].  

 

3.3. Solution of nonlinear boundary value problem by 𝜶 − 𝒑 𝑫𝑻𝑴 and comparision with the exact 

solution 

 

Let us consider the following illustrative nonlinear boundary value problem, 

 

𝑢′′ + (𝑢′)2 = 0,          x ∈ [0,1] (35) 

 

𝑢(0) = 1,     𝑢(1) = 0.     (36) 

 

By applying the α −p DTM to the nonlinear differential Equation (18) we have 

 

(𝑇𝛼(0,1))𝑚+2(𝑢) =
−1

(𝑚 + 1)(𝑚 + 2)
[∑ 𝛼(𝑟 + 1)(𝑇0 (𝑢))𝑟+1

𝑚

𝑟=0

 (𝑚 − 𝑟 + 1)(𝑇0 (𝑢))𝑚−𝑟+1 

 

+(1 − 𝛼) (𝑟 + 1) (𝑇1 (𝑢))𝑟+1(𝑚 − 𝑟 + 1)(𝑇1 (𝑢))𝑚−𝑟+1] 

(37) 

 

Using the boundary conditions Equation (36) we have (𝑇0(𝑢))0 = 1,    (𝑇1(𝑢))0 = 0  

Denoting (𝑇0(𝑢))1 and (𝑇1(𝑢))1 by A and B respectively and then substituting in the iterative 

Equation (37) we get  

 

(𝑇𝛼(0,1))2 = 𝛼 (
−𝐴2

2
) + (1 − 𝛼) (

−𝐵2

2
) , (𝑇𝛼(0,1))3 = 𝛼 (

𝐴3

3
) + (1 − 𝛼) (

𝐵3

3
),  

 

(𝑇𝛼(0,1))4 = 𝛼 (
−𝐴4

4
) + (1 − 𝛼) (

−𝐵4

4
) , (𝑇𝛼(0,1))5 = 𝛼 (

𝐴5

5
) + (1 − 𝛼) (

𝐵5

5
) , … 

(38) 

 

Proceeding the iteration in the similar way we can compute the other terms of the  α − p DTM solution. 

Then we get the following α − p DTM solution in the form of a series. Hence the 𝛼 −parametrized series 

solution 𝑢(𝑥, 𝛼) is evaluated: 
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𝑢𝛼(𝑥) = ∑(𝑇𝛼(0,1))𝑘(𝑥 − 𝑥𝛼)𝑘

∞

𝑘=0

 

= 𝛼 + (𝛼𝐴 + (1 − 𝛼)𝐵)(𝑥 − (1 − 𝛼))
1

+ [𝛼 (
−𝐴2

2
) + (1 − 𝛼) (

−𝐵2

2
)] (𝑥 − (1 − 𝛼))

2

+ [𝛼 (
𝐴3

3
) + (1 − 𝛼) (

𝐵3

3
)] (𝑥 − (1 − 𝛼))

3
+ ⋯ 

(39) 

 

Substituting N-th partial sum of this series into the boundary conditions Equation (36) we can obtain the 

parameters A and B. It is easy to verify that the exact solution of the nonlinear boundary value problem 

Equations (35), (36) is  

 

𝑢(𝑥) = 1 + ln (1 −
𝑒 − 1

𝑒
𝑥). (40) 

 

In the following figure we have compared the approximate α − p DTM solution  

 

𝑢𝛼,𝑁(𝑥) = ∑(𝑇𝛼(0,1))𝑘(𝑥 − (1 − 𝛼))𝑘

𝑁

𝑘=0

 (41) 

 

with the exact solution defined by Equation (40) for 𝑁 = 20 and 𝛼 =
1

1000
.  

 

  

Figure 4. Comparison of the exact solution (blue line) and the 𝛼 −parameterized DT solution for         

𝛼 =
1

1000
 (red line).  

 

4. Discussion and Conclusion 

 

In this work, we proposed a new generalization of the classical DTM, which we called as 

𝛼 −parameterized DTM (α − p DTM). Then by applying α − p DTM we get an approximate  α −
p DTM solutions of the third order linear boundary value transmission problem and the second order 

non-linear boundary value problem. The results obtained are illustrated graphically in Figures 3 and 

4. Moreover the approximate α − p DTM solution of the nonlinear BVP were compared graphically 

with the exact solution of the same problem. Note that the proposed α − p DTM is reduced to the 

classical DTM for the special cases 𝛼 = 0   and 𝛼 = 1 , so the proposed α − p DTM  is the 

generalization of the classical DTM. 
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