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On the Poisson equation in exterior domains

WERNER VARNHORN*

ABSTRACT. We construct a solution of the Poisson equation in exterior domains Ω ⊂ Rn, n ≥ 2, in homogeneous
Lebesgue spaces L2,q(Ω), ; 1 < q < ∞, with methods of potential theory and integral equations. We investigate the
corresponding null spaces and prove that its dimensions are equal to n + 1 independent of q.

Keywords: Poisson equation, potential theory, homogeneous Lebesgue spaces.

2020 Mathematics Subject Classification: 31B10, 31B30, 35C15, 35J05.

1. INTRODUCTION

Let G ⊂ Rn (n ≥ 2) be an exterior domain with a smooth boundary ∂G of class C2. We
consider Poisson’s equation concerning some scalar function u:

(1.1) −∆u = f in G, u|∂G = Φ.

Here f is given in G and Φ is the boundary value prescribed on ∂G. As usual, ∆ denotes the
Laplacian in Rn.

It is well-known that in unbounded domains the treatment of partial differential equations
causes special difficulties, and that the usual Sobolev spaces Wm,q(G) are not adequate in this
case: Even for the Laplacian in Rn we find [6] that the operator ∆ : Wm,q(Rn) → Wm−2,q(Rn)
is not a Fredholm operator in general, as it is in the case of bounded domains [16]. Thus
in exterior domains, the equations (1.1) have mostly been studied in connection with weight
functions: Either (1.1) has been solved in weighted Sobolev spaces directly [7, 12, 14] or it has
first been multiplied by some weights and then been solved in standard Sobolev spaces [17].

It is the aim of the present note to prove the solvability of (1.1) in homogeneous spaces
L2,q(G) (1 < q < ∞) of the following type [5, 11]: Let Lq(G) be the space of functions defined
almost everywhere in G such that the norm

‖f‖q,G =

(∫
G

|f(x)|q dx
)1/q

is finite. Then L2,q(G) is the space of all functions being locally in Lq(G) and having all
second order distributional derivatives in Lq(G). We show that for f given in Lq(G) and
some boundary value Φ ∈ W 2−1/q,q(∂G) (see the notations below) there exists always a so-
lution u ∈ L2,q(G). Concerning the uniqueness of this solution we prove that the space of all
u ∈ L2,q(G) satisfying (1.1) with f = 0 and Φ = 0 has the dimension n + 1, independent of q.
This result also holds for the case n = 2.
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Throughout this paper G ⊂ Rn (n ≥ 2) is an exterior domain, i.e. a domain whose comple-
ment is compact. Let G denote its closure in Rn and ∂G its boundary, which we assume to be
of class C2 [1, p. 67].

In the following, all function spaces contain real valued functions. Let D ⊂ Rn be any
domain with a compact boundary ∂D of class C2, or let D = Rn. Besides the spaces Lq(D) we
need the well-known function spaces C∞(D), C∞0 (D), and the space C∞0 (D), containing the
restrictions f|D of functions f ∈ C∞0 (Rn).

We call a function u locally in Lq(D) (1 < q < ∞) and write u ∈ Lqloc(D) if u ∈ Lq(D ∩ B)
for every ball B ⊂ Rn. Note that this space does not coincide with the usual space Lqloc(D) in
general (except for D = Rn).

By Wm,q(D) (m = 0, 1, 2;W 0,q(D) = Lq(D)) we mean the usual Sobolev space of functions
u such that Dαu ∈ Lq(D) for all multiindices α = (α1, . . . , αn) ∈ Nn0 = {0, 1, . . . }n with α1 +
· · ·+ αn ≤ m [1]. Here we use

Dαu = Dα1
1 Dα2

2 . . . Dαn
n u, Di = ∂/∂xi (i = 1, . . . , n; x = (x1, . . . , xn) ∈ Rn).

The spaces Wm,q
loc (D) and Wm,q

loc (D) are defined analogously.
We need the fractional order space W 2−1/q,q(∂D), which contains the trace u|∂D of all u ∈

W 2,q
loc (Rn) [1, p. 216]. The norm in W 2−1/q,q(∂D) is denoted by ‖ · ‖2−1/q,q,∂D.
The term ∇u = (Dju)j=1,...,n represents the gradient of u and ∇2u = (DiDju)i,j=1,...,n

means the system of all second order derivatives of u. For these terms we define the semi-
norms

‖∇u‖q,D =

(
n∑
k=1

‖Dku‖qq,D

)1/q

, ‖∇2u‖q,D =

 n∑
j,k=1

‖DjDku‖qq,D

1/q

,

and introduce for m = 1, 2 and 1 < q <∞ the homogeneous spaces

(1.2) Lm,q(D) =
{
u ∈ Lqloc(D) | ‖∇mu‖q,D <∞

}
.

Finally, concerning the norms and seminorms, we sometimes omit the domain of definition
if it is obvious and use ‖ · ‖q or ‖ · ‖2−1/q,q instead of ‖ · ‖q,G or ‖ · ‖2−1/q,q,∂G′ for example.

2. POTENTIAL THEORY

Besides the Poisson equation (1.1) we also consider the special case of Laplace’ equation
with Dirichlet boundary condition

(2.3) −∆u = 0 in G, u|∂G = Φ.

These equations have mostly been studied with methods of potential theory (see for example
[8, 15]). We collect some well-known facts in this section.

Let En (n ≥ 2) in the following denote the fundamental solution of the Laplacian such that
−∆En(x) = δ(x) where δ is Dirac’s distribution in Rn. It is well-known that

(2.4) E2(x) = − ln|x|
ω2

(n = 2), En(x) =
|x|2−n

(n− 2)ωn
(n ≥ 3),

where ωn is the area of the (n− 1)-dimensional unit sphere in Rn (n ≥ 2).

Proposition 2.1. Let G ⊂ Rn (n ≥ 2) be an exterior domain with boundary ∂G of class C2, and let
Φ ∈W 2−1/q,q(∂G) be given (1 < q <∞). Then there exists a unique function u ∈ L2,q(G) satisfying
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(2.3) in G, if we require the following decay conditions as |x| → ∞:

u(x)− a ln|x| = 0(1) (n = 2), u(x) = 0(|x|2−n) (n ≥ 3),(2.5)

∇mu(x) = O(|x|2−n−m) (n ≥ 2; m = 1, 2).

Here a ∈ R is a fixed prescribed constant.

Proof. To prove uniqueness let u = u1 − u2 be the difference of two solutions u1 and u2 with
the required decay properties above. Define the bounded domain Gr = G ∩ Br(0) where
Br(0) ⊂ Rn denotes an open ball with center at zero and radius r such that ∂G ⊂ Br(0). From
the local regularity theory we find Dju ∈ L2

loc(G) (j = 1, . . . , n). Thus in Gr we may apply
Greens first identity, obtaining

(2.6)
∫
Gr

|∇u|2 dx =

∫
∂Br

(∂Nu)udo,

because the boundary integral over ∂G vanishes. Here N denotes the outward (with respect to
Gr) unit normal vector on the boundary ∂Br = ∂Br(0) and ∂Nu is the normal derivative of u.
Now do to the decay properties of u, the right hand side in (2.6) tends to zero as r → ∞. This
is obvious if n ≥ 3. For n = 2, using the expansion theorem for harmonic functions at infinity
[15, p. 523], we find u(x) = 0(1) and ∇u(x) = 0(|x|−2) as |x| → ∞, which implies the assertion
above, too. It follows ∇u = o in G, hence u = 0 in G because u vanishes on the boundary ∂G.
This proves the uniqueness.

To show the existence of a solution with the required properties we use the boundary inte-
gral equations method: Let us define the simple layer potential

(EnΘ)(x) =

∫
∂G

En(x− y)Θ(y) doy, (x /∈ ∂G),

the double layer potential

(DnΘ)(x) = −
∫
∂G

∂N(y)En(x− y)Θ(y) doy (x /∈ ∂G),

and the normal derivative of the simple layer potential

(HnΘ)(x) = −
∫
∂G

∂N(x)En(x− y)Θ(y) doy (x /∈ ∂G).

Here and in the following, N = N(z) is the outward (with respect to the bounded domain
Gb = Rn/G) unit normal vector in z ∈ ∂G, and Θ ∈ W 2−1/q,q(∂G) is the unknown source
density. Then we have the continuity relation

(2.7) (EnΘ)e = (EnΘ)i = EnΘ on ∂G

and the jump relations

DnΘ− (DnΘ)e = (DnΘ)i −DnΘ = 1/2Θ on ∂G,(2.8)

HnΘ− (HnΘ)e = (HnΘ)i −HnΘ = −1/2Θ on ∂G.(2.9)

The index e stands for the limit from outside, and the index i for the limit from inside. Now
let us first assume n ≥ 3. Following [3, 10] (here for the case of Helmholtz’ equation), for the
solution of (2.3) we choose in G the ansatz

u = DnΘ− αEn(Θ) (0 < α ∈ R).

Then by means of (2.7), (2.8) we obtain the second kind Fredholm boundary integral equation

(2.10) Φ = −1/2Θ +DnΘ− αEnΘ on ∂G
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for the unknown source density Θ ∈ W 2−1/q,q(∂G). To see that (2.10) is uniquely solvable for
all boundary values Φ ∈ W 2−1/q,q(∂G), let 0 6= Ψ be a solution of the homogeneous adjoint
integral equation

(2.11) 0 = −1/2Ψ +HnΨ− αEnΨ on ∂G.

By (2.7) and (2.9), this implies α(EnΨ)i = (HnΨ)i = −(∂NE
nΨ)i, and Green’s first identity

yields
∫
Gb
|∇(EnΨ)|2 dx =

∫
∂G

(EnΨ)i(∂NE
nΨ)i do = −α

∫
∂G
|EnΨ|2 do, hence EnΨ = 0 in

Gb. This implies (EnΨ)e = 0 using (2.7), and the uniqueness statement above yields EnΨ = 0
in G, too. Thus EnΨ = 0 in the whole Rn, and we obtain Ψ = 0 by (2.9), as asserted. This
proves the existence in the case n ≥ 3.

Now let n = 2. As in [9] (for the case of Stokes’ equations) we use in G the ansatz

u = −aω2E
21 +D2Θ− αE2Θ∗ − βbΘ (0 < α ∈ R, 0 6= β ∈ R).

Here a ∈ R is the prescribed constant from (2.5), E21 is the simple layer potential with constant
density Ψ = 1,

bΘ =

∫
∂G

Θ(y) doy

is some constant, and the source density Θ∗ is defined by

(2.12) Θ∗(x) = Θ(x)− bΘ/(meas(∂G)),

which implies bΘ∗ =
∫
∂G

Ψ∗(y) doy = 0. Note that the decay properties (2.5) are fulfilled in this
case. Here again, (2.7) and (2.8) lead to the second kind Fredholm boundary integral equation

(2.13) Φ + aω2E
21 = −1/2Θ +D2Θ− αE2Θ∗ − βbΘ on ∂G.

To see that (2.13) has a unique solution Θ ∈ W 2−1/q,q(∂G) for all boundary values Φ ∈
W 2−1/q,q(∂G) and all a ∈ R, let 0 6= Ψ solve the homogeneous adjoint integral equation

0 = −1/2Ψ +H2Ψ− αE2Ψ∗ − βbΨ on ∂G.

Because for any constant c ∈ R we have −1/2c + D2c = 0 [15, p. 511] and E2c∗ = 0 (see (2.12)
for the definition of c∗), we find

0 = 〈c,−1/2Ψ +H2Ψ− αE2Ψ∗ − βbΨ〉 = −β〈c, bΨ〉,

where here 〈ψ,ϕ〉 =
∫
∂G

ψ(y)ϕ(y) do denotes the corresponding duality. It follows bΨ = 0 and
Ψ∗ = Ψ, hence Ψ is a solution of

0 = −1/2Ψ +H2Ψ− αE2Ψ on ∂G,

too. Now the same arguments as for (2.11) in the case n ≥ 3 yield the assertion and the propo-
sition is proved. �

3. THE POISSON EQUATION

The first theorem ensures the solvability of Poisson’s equation (1.1) in the space L2,q(G),
defined by (1.2).

Theorem 3.1. Let G ⊂ Rn (n ≥ 2) be an exterior domain with boundary ∂G of class C2, and let
1 < q < ∞. Then for every f ∈ Lq(G) and Φ ∈ W 2−1/q,q(∂G) there exists some u ∈ L2,q(G)
satisfying the Poisson equation (1.1) in G.
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Proof. Setting f = 0 in Rn/G we obtain some function f̃ ∈ Lq(Rn) with f̃|G = f in G. Let
f̃i ∈ C∞0 (Rn) denote a sequence such that f̃i → f̃ in Lq(Rn) as i →∞. Consider now for fixed
i the equation −∆ũi = f̃i in Rn. We can solve it by convolution with En (see (2.4)), obtaining
x ∈ Rn the representation

ũi(x) = (En ∗ f̃i)(x) =

∫
Rn

En(x− y)f̃i(y) dy.

Moreover, by the theorem of Calderon-Zygmund [4], for the second order derivatives we ob-
tain the estimate ‖∇2ũi‖q ≤ c‖f̃i‖q with some constant c independent of i ∈ N, which implies
‖∇2(ũi − ũk)‖q → 0 as i, k →∞.

Next consider a sequence of open balls (Bj)j with Bj ⊂ Bj+1

⋃∞
j=1Bj = Rn. Let us define

the space

(3.14) P = {P : x→ P (x) = a+ b · x | b, x ∈ Rn, a ∈ R}

of linear functions P : Rn → R. Then by the generalized Poincaré inequality (compare [11, p.
22] or [13, p. 112]) we obtain for every v ∈ L2,q(Rn) the estimate

(3.15) ‖v‖Lq(Bj)/P := inf
P∈P
‖v + P‖Lq(Bj) ≤ cj‖∇2v‖Lq(Bj)n2

with some constants cj > 0. Because ũi ∈ L2,q(Rn) we conclude that (ũi)i is a Cauchy sequence
with respect to the norm ‖ · ‖Lq(B1)/P on the left hand side of (3.15) for fixed j = 1. This implies
the existence of linear functions Pi ∈ P such that (ũi + Pi)i is a Cauchy sequence in Lq(B1).
Repeating this argument now for j = 2, there exist linear functionsQi ∈ P such that ũi+Qi is a
Cauchy sequence in Lq(B2), hence in Lq(B1), because B1 ⊂ B2. Thus the difference (Pi −Qi)i
is a Cauchy sequence in Lq(B1), and using the representation

Pi(x) = αi +Bi · x, Qi(x) = γi + δi · x,

we obtain that (αi − γi)i and (βi − δi)i are Cauchy sequences in R and in Rn, respectively.
From this we find that (Pi − Qi)i is a Cauchy sequence in Lq(B2), and thus also (ũi + Pi)i =
(ũi +Qi)i + (Pi−Qi)i. Repeating this procedure it follows that (ũi +Pi)i is a Cauchy sequence
in Lq(Bj) for all j = 1, 2, . . . . Thus we can find some ũ ∈ L2,q(Rn) such that (ũi + Pi) → ũ in
Lqloc(R

n) and ‖∇2(ũ − ũi)‖q,Rn → 0 as i → ∞. Moreover, ũ satisfies −∆ũ = f̃ in Rn and the
estimate ‖∇2ũ‖q ≤ c‖f̃‖q . Since ũ ∈ W 2,q

loc (Rn) we conclude from the usual trace theorem [1,
p. 217] that ũ|∂G ∈ W 2−1/q,q(∂G). Following Proposition 2.1 there is a function w ∈ L2,q(G)
satisfying the equations

−∆w = 0 in G, w|∂G = ũ|∂G − Φ,

where Φ ∈W 2−1/q,q(∂G) is the prescribed boundary value. Now setting u = ũ|G−w we obtain
the desired solution and the theorem is proved. �

Because functions u ∈ L2,q(G) have no suitable decay properties at infinity, in general we
cannot expect uniqueness for the solution of (1.1) constructed in Theorem 3.1. Thus we consider
in G the homogeneous equations and defined the nullspace of (1.1) by

(3.16) Nq(G) = {u ∈ L2,q(G) | −∆u = 0 in G, u|∂G = 0}.

Theorem 3.2. Let G ⊂ Rn (n ≥ 2) be an exterior domain with boundary ∂G of class C2, and let 1 <
q < ∞. Then for the dimension dimNq(G) of the nullspace defined in (3.16) we have dimNq(G) =
n+ 1 independent of q.
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Proof. Consider the space P of linear functions defined in (3.14). Because for every P ∈ P we
have P (x) = a+ b · x with some a ∈ R and some vector b ∈ Rn we find dimP = n+ 1. Let uP

denote the uniquely determined solution of the equation

−∆u = 0, u|∂G = −P|∂G

with P ∈ P, according to Lemma 2.1. Here in the case n = 2 we require

(3.17) u(x)− a ln|x| = 0(1) as |x| → ∞,

where the constant a is choosen from P (x) = a+ b · x. Setting

Mq(G) = {uP + P|G | P ∈ P}

we obtain Mq(G) ⊂ Nq(G), obviously. Furthermore, we have dimMq(G) = dimP = n + 1,
which can be shown as follows: Let p(x) = a + b · x and let uP + P|G = 0 in G. Then from
the decay properties of uP and ∇uP established in Lemma 2.1 we find a = 0 and b = 0, hence
P = 0. Here in the case n = 2 we obtain a = 0 due to the special choice of the number a in
(3.17). Together with the uniqueness statement in Lemma 2.1 this means that, if B is a basis of
P, then

Bq(G) = {uP + P|G | P ∈ B}

is a basis of Mq(G). Thus it remains to show

(3.18) Nq(G) ⊂Mq(G).

To do so, let us first determine the null space

Nq(Rn) = {u | u ∈ L2,q(Rn) with −∆u = 0 in Rn}.

From ∆u = 0, hence ∆∇2u = 0 with D2
jku ∈ Lq(Rn) (j, k = 1, . . . , n) we obtain ∇2u = 0 in Rn,

which implies u = P for some P ∈ P. Thus we have shown that

(3.19) Nq(Rn) = P.

Now let u ∈ Nq(G). We extend u on the whole space obtaining a function ũ ∈ L2,q(Rn) with
ũ|G = u [1, p. 83]. Moreover, this function satisfies on Rn the identity −∆ũ = f̃ ∈ Lq(Rn),
where the function f̃ has a compact support in the bounded domain Rn \ G. Consider the
equations

(3.20) −∆w = f̃ in Rn.

Again, it can be solved by convolution with the fundamental solution En of the Laplacian: We
obtain w = En ∗ f̃ in Rn and the Calderon-Zygmund theorem implies D2

jkw ∈ Lr(Rn) for all
1 < r ≤ q (j, k = 1, . . . , n). Here we used f̃ ∈ Lr(Rn)n for all 1 < r ≤ q due to its compact
support. Now using a well-known estimate of Hardy-Littlewood-Sobolev-type [2, p. 242] we
find w ∈ Ls(Rn) for some s ≥ q, hence w ∈ Lsloc(Rn) ⊂ Lqloc(R

n). Thus we have constructed
some solution w of (3.20) such that w ∈ L2,q(Rn). Setting W = ũ − w we obtain W ∈ Nq(Rn),
and (3.19) leads to ũ = w + P for some P ∈ P. Because ũ|∂G = 0 and since ũ|G = u we find
u ∈Mq(G), which proves (3.18) and thus the theorem. �
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