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ABSTRACT. Let R be a prime ring, Q, its right Martindale quotient ring, L
a non-central Lie ideal of R, n > 1 a fixed integer, F' and G two generalized
skew derivations of R with the same associated automorphism, p € R a fixed
element. If p(F(:c)F(y) — G’(y)w)n = 0, for any z,y € L, then there exist
a,c € Qy such that F(z) = az and G(z) = cz, for any z € R, with pa = pc = 0,

unless when R satisfies the standard polynomial identity sa(z1,...,z4).
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1. Introduction

This work is devoted to consider some related problems concerning annihilators
of power values of some appropriate identities involving additive maps in prime
rings. Throughout this paper R always denotes a prime ring, Z(R) the center of
R, @, the right Martindale quotient ring of R and C' = Z(Q,), the center of @,
(C is usually called the extended centroid of R). We introduce on R an additive

mapping d which satisfies the following rule:
d(zy) = d(z)y + a(x)d(y)

for all z,y € R. The map d is said to be a skew derivation of R and « is called
the associated automorphism of d. Consequently, let us also define the concept of

a generalized skew derivation F of R, that is an additive mapping F' such that
F(ry) = F(z)y + o(z)d(y)

for all z,y € R, where d is a skew derivation of R and « is the associated au-
tomorphism of d. The map d is called an associated skew derivation of F. The
automorphism « is called the associated automorphism of F.

Nilpotent values of skew derivations and generalized skew derivations of prime

rings were recently studied by several authors.
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In [2], J.-C. Chang shows that if F' is a generalized skew derivation of R, L is
a non-commutative Lie ideal of R and n > 1 a fixed integer such that F(x)" = 0,
for all x € L, then F(z) = 0, for all z € R. Later, in [20], a generalization of the
previous cited result involving an annihilator condition is given. More precisely,
the main result in [20] proves that if F' is a generalized skew derivation of R, L
is a non-commutative Lie ideal of R, n > 1 a fixed integer and a € R is a fixed
element such that aF'(x)" =0, for all z € L, then aF(z) =0, for all z € R, unless
R satisfies the standard identity sy4.

This last result has recently been further improved as follows: let 0 # p be an
element of R, F' and G generalized skew derivations with the same associated skew
derivation d of a prime ring R, L a non-commutative Lie ideal of R, I1,...,lg,n

nonnegative integers with l; # 0 and n > 0. If
p<F(u)l1G(u)lQF(u)ISG(u)l4 e G(u)l"> =0 Yuel,

then d = 0 and there exist a,c € Q, such that F(z) = ax and G(z) = cz, for
any « € R. Moreover either pa = 0 or ¢ = 0, unless R satisfies s4 (see [14, Main
Theorem)).

Further nil-power conditions have been investigated in another recent paper (see
[19]) and the following result was proved: If R is a prime ring, F is a generalized
skew derivation of R, L is a non-central Lie ideal of R and n > 1 is a fixed integer
such that (F(z)F(y) —yz)™ = 0, for any z,y € L, then char(R) = 2 and R C
M5 (C), the 2 x 2 matrix ring over C.

Following this line of investigation, the aim of this paper is to generalize the
result in [19] to the case when two different generalized skew derivations act on
the non-central Lie ideal L, also introducing an annihilating condition. To be more

precise, we will prove the following;:

Theorem 1.1. Let R be a prime ring, Q. its right Martindale quotient ring, L a
non-central Lie ideal of R, n > 1 a fized integer, F' and G two generalized skew
derivations of R with the same associated automorphism, p € R a fixed element.
If p(F(z)F(y) — G(y)x)” =0, for any =,y € L, then there exist a,c € Q, such
that F(z) = ax and G(x) = cx, for any x € R, with pa = pc = 0, unless when R

satisfies the standard polynomial identity s4(x1,...,z4).

Let us recall some well known results and notations which will be useful in the
sequel.
We will denote by SDer(Q,) the set of all skew-derivations of @, and by S Djys

the C-subspace of SDer(Q),) consisting of all inner skew-derivations of Q,..
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Two different skew derivations d and ¢ are said to be C'—linearly dependent
modulo SDiy, if there exist A\, u € C, a € Q, and « € Aut(Q) such that A\d(z) +
puo(z) = ax — a(x)a for all x € R.

If d and § are C'—linearly independent skew derivations modulo S Djy¢, associated
with the same automorphism «, such that ®(z;,d(x;),d(x)) is a skew-differential
identity on R, then ®(xz;,y;, zx) is a generalized polynomial identity of R, where
xi,Yj, 21, are distinct indeterminates (it follows from main results in [4,5,6]).

It is known that, if I is a two-sided ideal I of R, then I, R, and @, satisfy the same
generalized polynomial identities with coefficients in @, (see [3]). Furthermore, I,
R, and @, satisfy the same generalized polynomial identities with automorphisms
(see [5, Theorem 1]).

2. The result for inner generalized derivations

We start by proving the main theorem in case both F' and G are generalized
inner derivations of R and [R,R] C L. In this sense we assume that there are
a,b,c,q € Q, such that F(z) = ax + xb and G(x) = cx + xq, for any x € R. Hence,

by our assumption, R satisfies the generalized polynomial identity

‘1’(901,90272/17?}2) =

e
p{<a[wm1 T fer, 2alb) (alyn vl + [y vel®) — (clun, va) + [, vala) o, 3?2]} |

For brevity we denote X = [z1, 23], Y = [y1, y2] and

U(X,Y) =

" (2)
p{(aX + Xb)(aY 4+ Yb) — (Y + Yq)X} ,

Lemma 2.1. Assumep # 0. Either U(X,Y) is a non-trivial generalized polynomial
identity for R or b,q € C with p(a +b) = p(c+ q) = 0.

Proof. Assume that ¥(X,Y) is a trivial generalized polynomial identity for R.
Let T = Q, *¢ C{X} be the free product over C' of the C-algebra @, and the
free C-algebra C{X}, with X the set consisting of non-commuting indeterminates

T1,T2,Y1,Y2-
Now consider the generalized polynomial U(X,Y) € Q, x¢c C{X}.
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By our hypothesis,

U(X,Y) = p{(aX + Xb)(aY + YD) — (Y + Yq)X}n

n—1
p{(aX—i—Xb)(aY—i—Yb) - (cY—i—Yq)X} . 3)
~{(aX + Xb)aY — (¢Y +Yq) X + (aX + Xb)Yb}
= 0eT.
Suppose firstly b ¢ C, that is {b,1} is linearly C-independent. Therefore, since
U(X,Y)=0€eT,
n—1
p{(aX—i—Xb)(aY—i—Yb)—(cY-i—Yq)X} (aX 4+ Xb)Yb=0€eT
implying
n—1
p{(aX+Xb)(aY+Yb)—(cY—i—Yq)X} (aX+Xb)=0eT
that is
n—1
p{(aX+Xb)(aY+Yb)(cY+Yq)X} - Xb=0€eT.
Thus
n—1
p{(aXJrXb)(aYJrYb)(cYJqu)X} =0eT.

Continuing this process, we get
p{(aX + Xb)(aY + YD) — (¢Y + Yq)X} =0eT

which means that

p(aX + Xb)Yb=0€T.

Hence the contradiction pXb = 0 follows. Thus {b, 1} is linearly C-dependent, that
isbeC.
Analogously, by (3) and ¢’ = a + b, it follows that

n—1
p{a/Xa’Y —(eY + Yq)X} (d'Xad )Y -

n—1
p{a’Xa’Y — (Y + Yq)X} (Y +Yg)X=0€eT

that is, both

n—1
p{a’Xa’Y — (Y + Yq)X} (dXd)Y=0€eT
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and
n—1
p{a'Xa’Y — (Y + Yq)X} (Y +Yq)X =0€eT. (4)
In particular, (4) implies
n—1
p{a'Xa’Y—(cY—&—Yq)X} (Y +Yq)=0€T.
Hence, if we suppose ¢ ¢ C, it follows that
n—1
p{a’Xa’Y—(cY-i—Yq)X} Yq=0eT
which implies
n—1
p{a'Xa’Y— (cY+Yq)X} =0eT.
As above, continuing this process we get
p{a’Xa'Y — (Y + Yq)X} =0eT

and arrive at the contradiction pY ¢ = 0.

Therefore ¢ € C and, for ¢/ = ¢+ ¢, we write relation (3) as follows
n—1
p{a/Xa'Yc'YX} : {a'Xa’Yc’YX} =0eT. (5)

It is easy to see that if either pa’ = 0 or pc’ = 0 then both pa’ and pc’ must be zero.
Then we finally assume pa’ # 0 and pc’ # 0. In case there exists 0 # A € C such
that pc’ = Apa’ # 0, then (5) implies

n—1
{a’Xa’Y — c’YX} =0eT (6)

which is a contradiction, since a’ # 0 and ¢’ # 0.

Hence {pc’,pa’} is linearly independent and by (5) we get
n—1
pa'Xa'Y~{a’Xa'Yc’YX} =0eT.
Once again relation (6) holds and we are done. O

Lemma 2.2. Assume that R is a primitive ring, which is isomorphic to a dense
ring of linear transformations on some wvector space V over a division ring D,
dimpV > 2, f € End(V) and a € R. If av =0, for any v € V such that {v, f(v)}
is linearly D-independent, then a = 0, unless dimpV = 2 and char(R) = 2.
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Proof. We fix a vector v € V such that {v, f(v)} is linearly D-independent, then
av = 0. Let w € V be such that {w, v} is linearly D-dependent. Then both aw =0
and w € Span{v, f(v)} follow trivially.

Let now w € V such that {w,v} is linearly D-independent and aw # 0. By the
hypothesis it follows that {w, f(w)} is linearly D-dependent, as are {w+wv, f(w+v)}
and {w — v, f(w — v)}. Therefore there exist Ay, Adytv, Aw—v € D such that

) = WAy, flw+0) = @+ 0 Ases F(0—0) = (0= 0) Ao
In other words we have
WAy + f(V) = WAptv + VA1 (7)

and
WAy — [(V) = WAy—y — VAy—yp. (8)

Assume dimpV > 3. It is easy to see that w € Span{v, f(v)}, otherwise (7) forces
a contradiction. Therefore, for any choice of w € V', we have w € Span{v, f(v)},
that is V' = Span{v, f(v)}, a contradiction.

In order to complete the proof, we then consider the case dimpV = 2 and assume
char(R) # 2, if not we are finished.

By comparing (7) with (8) we get both

U)(Z)\w — Aw+v — )\w7v> + U()\wfv — )\w+’u) =0 (9)

and

27(1) = (s — ) - 0(hargo + M), (10)
By (9) and since {w, v} is D-independent and char(R) # 2, we have Ay, = Ao =
Aw—v. Thus by (10) it follows 2f(v) = 2vA,,. Since {f(v),v} is D-independent,
the conclusion A\, = Ay = 0 follows, that is f(w) = 0 and f(w + v) = 0, which
implies the contradiction f(v) = 0. Thus, if dimpV = 2 and char(R) # 2, it
follows that aw = 0, for any choice of w € V, that is aV = (0). Therefore a = 0
follows. O

Proposition 2.3. If R satisfies (1) then b,q € C and p(a +b) = p(c+q) = 0,

unless when char(R) = 2 and R satisfies sy.

Proof. We of course suppose p # 0. In light of Lemma 2.1, we may assume that
the generalized polynomial W(x1, za,y1,y2) is a non-trivial generalized polynomial
identity for R. By [3] it follows that ¥(z1, 22) is a non-trivial generalized polynomial
identity for @,. In view of [13, Theorem 2.5 and Theorem 3.5], we know that both
Qrand Q, Q. C are centrally closed, where C is the algebraic closure of C. We may
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replace @, by itself or Q. ®C€ according as C is finite or infinite. Therefore we
may assume that @), is centrally closed over C' which is either finite or algebraically
closed. By Martindale’s theorem [18], @, is a primitive ring having a non-zero
socle H, with C as the associated division ring. In light of Jacobson’s theorem [16,
page 75], Q, is isomorphic to a dense ring of linear transformations on some vector
space V over C. Since R is not commutative, we have dimcV > 2. Moreover, if
dimcV = 2 we would assume char(R) # 2, if not we are done.

We divide the proof in several steps.
Step 1. be C:

Suppose b ¢ C and let v € V be such that {v,bv} is linearly C-independent. Since
dimcV > 2 and by the density of @, there exist r1, 79, 1, 82 € @, such that

rv=0 row=v rbv)=—v rybv)=0
siw=0 spw=v s(bv)=—v sy(bv)=0.

By (1) we get

0=

p{(a[rl,rg] + [r1, 72]b) (als1, 2] + [s1, 52]b) — (c[s1, 53] + [s1, s2]q)[r1, rg]}nv = pu.

Hence we have proved that pv = 0 for any vector v € V such that {v, bv} is linearly
independent. By Lemma 2.2, p = 0 follows. This contradiction says that b must be

a central element of @, and (1) reduces to

p{a'[ﬂfla@]a'[w,yﬂ — (cly1,y2] + [y1,y2]q)[$1,xz]} (11)

where @’ = a + b.
Step 2. ¢ C:

Assume now ¢ ¢ C and let v € V' be such that {v,quv} is linearly C-independent.

As above, there are 1,72, 51, 82 € @, such that

riv=0 rov=quv 7r1(qU) =0

s;v =0 sw=v si1(qu) =v sa2(qu) =0.

By (11) we get

0= p{a’[rl, rola’(s1, s3] — (c[s1, s2] + [s1, Sg]q)[Tl,Tz]}nv = pv.
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Thus pv = 0 for any vector v € V such that {v,qv} is linearly independent. As
above the contradiction p = 0 follows.
Therefore both b € C' and ¢ € C, that is @), satisfies

p{alonaald ] - s sellon o] (12)
where @’ =a+band ¢ =c+q.

Step 3. Either pa’ =0 or o’ € C:

If a’ ¢ C then there is v € V such that {v,a’v} is linearly C-independent. By the
density of @,., there are 1,732, 51, s2 € @, such that

ri(a’v) =0 re(dv)=v rv=vw

s;7o=0 syw=0v s1(av)=—-v s3(a’v)=0.
By (12) it follows
0= p{a'[rl, rola’[s1, s2] — ' [s1, 52][7“177“2]} a'v =pa'v.
Thus pa’v = 0 for any vector v € V such that {v,a’v} is linearly independent,
implying pa’ = 0.
Step 4. Let dimcV > 3, then either pc’ =0 or ¢ € C:

If ¢ ¢ C then there is v € V such that {v, v} is linearly C-independent. Moreover,
since dimcV > 3, there exists w € V such that {v, ¢'v, w} is linearly C-independent.

Again by the density of @, there are r1, 72, 51, 82 € @, such that
ri(cv) =0 ra(cv)=v rv=v
s510=0 syv=w s;w=v s1(v)=0 s2(cv)="cv.
Relation (12) implies
n
0= p{a’[rl, rola’[s1, s2] — ' [s1, 52][7“1,1“2]} dv=(-1)"pcv.

Hence, pcd'v = 0 for any vector v € V such that {v,cv} is linearly independent,
that is pc’ = 0.

Step 5. Let dim¢V > 3. If pa’ = 0, then pd’ = 0:
If ¢ ¢ C the conclusion follows from Step 4. Moreover, if ' € C then p = 0, which

is not possible. Hence we assume ¢’ € C and o’ ¢ C. Therefore @Q, satisfies

pcyn, el [zl,u]{a'[zl,u]a’[yl,yz] - [zl,u]} W)
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Since o’ ¢ C, there is v € V such that {v,a’v} is linearly C-independent. More-
over, since dimcV > 3, there exists w € V such that {v,a’v,w} is linearly C-

independent. By the density of @, there are r1, 73, 51, 59 € Q,- such that
riv=0 rw=adv ri(adv)=adv
siw=0 sw=v s(av)=0 sy(a'v)=w s1w=n0.
Relation (13) implies
n—1
0 = pc[s1, s2][r1, rg]{a’[rl, rola’[s1, s2] — [s1, 82][r1, rg]} v=(=c)"pv.

Hence (—c’)"pv = 0 for any vector v € V such that {v,a’v} is linearly independent,

that is p¢’ = 0 (we remark that, since we assume p # 0, this implies ¢/ = 0).
Step 6. Let dimcV > 3. If pd =0, then pa’ = 0:
The proof of this step is quite similar to the previous one and we omit it for brevity.
Step 7. If dimcV > 3, then both pa’ = 0 and pc’ = 0:
In light of the previous argument, to complete the proof of this step we may assume
both a’ € C and ¢’ € C. In this case @, satisfies

p{alz[xlaxQ][ylayﬂ —[y1,92] [1”1,952}} . (14)

Let {v, w} be a set of linearly independent vectors of V and 71, ro, s1, 82,77, 74, 81, 85 €
Q. such that

riv=0 rmv=v s51v=0 sov=w spw=w Tw=v row=2~0
and
/ / /
siv=0 shv=v rv=0 rhv=w riw=w siw=v shw=

Thus (14) implies both

n
p{a’2 [11,72][s1, 82] — [s1, s2][r1, 7“2}} v=(—1)"pa*"v

and .
p{a@[rwansa, ] - dlsh, sgnra,ru} v = e,

As above we may conclude that pa’ = 0 and pc’ = 0, as required.

Finally, in all that follows we assume dimcV = 2, that is Q, = My(C), with
char(C) # 2. Firstly we notice that (12) reduces to

p{a'lor aalaln, el = ¢l o:]} (15)
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We resume our proof starting from the Step 3, so we know that either pa’ = 0 or
a €C.
Step 8. If Q, = M>(C) and pa’ = 0 then pd’ = 0:

Under this assumption @), satisfies

o s, v, xz]{a’[xh w2l Ty, o] — ¢y, vallen, x21}. (16)

Of course we may assume that o’ is not a scalar matrix, if not p = 0 follows.

We firstly suppose C' is an infinite field. By [9, Lemma 1] there exists an C-
automorphism ¢ of M3(C) such that ¢(a’) has all non-zero entries. Clearly ¢(a’),
©(c') and p(p) must satisfy the condition (16) that is

w(pc’)[yl,yznxl,xz]{so<a'>[x1,x21so<a’>[yhyz] - @(Cl)[yhyz][xl,xz]} an

is an identity for M5(C). Let e;; denote the matrix unit with 1 in (¢, j)-entry
and zero elsewhere. Thus, for [z1,22] = e12 and [y1,y2] = e21 in (17), and right

multiplying by e;; we get

@(pc)ezap(a)erap(a’)ez = 0.

Since p(a’) has all non-zero entries, it follows that both (1, 2)-entry and (2, 2)-entry
of the matrix ¢(pc’) must be zero. Similarly, for [z1, 23] = €21 and [y1,y2] = €12 in
(17), and right multiplying by ess we have that both (2,1)-entry and (1,1)-entry
of the matrix ¢(pc’) must be zero. Therefore p(pc’) = 0, that is pc’ = 0.

Now let K be an infinite field which is an extension of the field C' and let Q, =
M5 (K) = Q, ®c K. Consider the generalized polynomial

P(z1, 72,23, 24) = pc’ w3, 24] [:c1,:c2]{a’[:c1,x2]a’[x3,:ad — x3, 24] [xl,rcz]}

which is a generalized polynomial identity for @),.. Moreover it is multi-homogeneous
of multi-degree (2,2,2,2) in the indeterminates x1, z2, xs3, T4.
Hence the complete linearization of P(x1,x9,23,24) is a multilinear generalized

polynomial ©(z1,...,24,21,...,24) in 8 indeterminates, moreover
4
@(xla sy Ly By e ey 24) =2 P("El,x27$37$4).

Clearly the multilinear polynomial ©(x1, ..., x4, 21, ..., 24) I8 a generalized polyno-
mial identity for @, and @, too. Since char(C) # 2 we obtain P(ry,rs,73,74) = 0,

for all rq,...,74 € Q,, and the conclusion pc’ = 0 follows from the above argument.

Step 9. If Q, = M5(C) and o’ € C then ¢’ =0 and pc’ = 0:
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In this final case @), satisfies

2
P{alz[ﬂclaxz][%,yﬂ —[y1,92] [551,%2}} . (18)

For [x1,x2] = e12 and [y1,¥y2] = eo1 in (18), and right multiplying by e;; we get
a'*pey; = 0, implying that both (2,1)-entry and (1,1)-entry of the matrix a’*p
must be zero. Once again, for [z1,z2] = e and [y1,y2] = e12 in (18), and right
multiplying by ess we have a’*pess = 0, that is both (2,2)-entry and (1, 2)-entry
of the matrix a’*p must be zero. Therefore a’p = 0, that is a’ = 0. Hence (18)

reduces to
2
p{C'[yl,yszl,xz]} : (19)

Notice that, if ¢/ € C it follows that ¢>p[xy, x2]* is an identity for @,.. In this case
it is well known that ¢’?p = 0, that is ¢ = 0. On the other hand, if we assume that
¢ ¢ C, there is v € V such that {v, v} is linearly C-independent. By the density

of Q,., there are ry,72, 51, S92 € Q- such that
ri(cv) =0 ry(cv)=v rv=v
siw=0 sw=cv s(v)=v.
Thus, relation (19) implies
2
0= p{c’[sl, 52][7“1,72]} v =pcv.

as above, this last relation implies p¢’ = 0, as required. O

3. The case of inner generalized skew derivations
In this section we consider the case when the maps have the following forms:
F(z) = ax + a(z)b, G(z) = cx + a(z)u

for all € R, for suitable fixed elements p,a,b,c,u € Q, and a € Aut(Q),). More-

over we suppose that @, satisfies

p{ (alor 2] + alfor,z2)0) (al vl + a(ln. )0 "

- ((0[3117 ya] + a([y1, y2))w)[z1, x2}> }n

In light of Proposition 2.3 we may always assume « # Ig, the identity map on R.
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Lemma 3.1. Assume that R is isomorphic to a dense ring of linear transforma-
tions on some vector space V over a division ring D, containing non-zero linear
transformations of finite rank. If R satisfies (20) then there exist a’,c’ € Q, such
that F(x) = d'z and G(z) = 'z, for any x € R, with pa’ = pc’ = 0, unless when
dimpV < 2.

Proof. We suppose dimpV > 3.
Since R is a primitive ring with non-zero socle, by [16, p. 79], there exists a semi-
linear automorphism 7' € End(V) such that a(z) = T2T~? for all x € R.

Hence, R satisfies
P{ <fl[$1, wa] + Tlxy, $2}T1b) <a[y1, ya] + Ty, yz}le)
n (21)
= ((Closel + Tl sl ), |
Assume there exists v € V such that {v, T~bv} is linearly D-independent.
Since dimpV > 3, there exists w € V such that {w,v, T~ 1bv} is linearly D-
independent. Moreover, by the density of R, there exist ry,72,51,82 € R such
that
ro=0 rv=v mw=T""v MT =0 rT 'w=uw
s10=0 sov=v syw=T" v ;T 'bv=0 T 'bv=w

and we get

0= p{ <a[r1, ro] + T[r1, TQ]T—1b> (a[sl, so) + T'[s1, SQ]T—lb)

— ((c[sl, So] 4+ T'[s1, SQ]T_lu)[Tl,TQ]) }nv = pu.

Hence, for any v € V such that {v,T~!bv} is linearly D-independent, it follows
pv = 0. By Lemma 2.2 we get p = 0, which is a contradiction.

Therefore, for any v € V, there exists A, € D such that T~ 'bv = v),. In this case,
it is well known that there exists a unique A € D such that T~ 'bv = v, for all

v €V (see for example Lemma 1 in [7]). Thus
(ax + a(z)b)v = (ax + Ta:le)v = axv + T(zv) =

azv 4+ T((zv)\) = azv + T(T 'bav) =
azv + bxv = (a + b)zv.

Hence, for all v € V,
<a:c +a(x)b— (a+ b)z)v =0
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which implies F(z) = az + a(x)b = (a + b)z, for all z € R, since V is faithful.

Therefore we have that R satisfies
p{(a+b)[xl,xz](wb)[yl,yg] - ((a[yl,yﬂ +T[y1,y2]T1u)[x1,x2])} @)

Now assume there exists v € V such that {v, T~ 'uv} is linearly D-independent. As
above there exists w € V such that {w,v, T~ uv} is linearly D-independent and

there exist 71,79, 81, 82 € R such that

riv=0 muv=w rw=v

s510=0 sov=v s;w=T"" s T 'uv=0 s3T ‘uv=w.

From (22) it follows that

0= p{(a+b) [r1,72](a+Db)[s1, 52]— ((c[sl, so]+T[s1, s2] T~ ) [ry, 7"2]) }nv = (—1)"pv.

Once again, since p is not zero, by Lemma 2.2 we obtain a contradiction. Thus,
there exists a unique p € D such that T~ 'uv = vy, for all v € V. This implies
G(z) = cx + a(z)u = (¢ + u)z, for all x € R.

Therefore, we have proved that, if dimpV > 3, both F' and G are inner generalized

derivations. The required conclusion then follows from Proposition 2.3. O

Proposition 3.2. If R satisfies (20) then there exist a’,c’ € Q, such that F(z) =

a'z and G(xz) = 'z, for any x € R, with pa’ = pc’ = 0, unless when R satisfies s4.

Proof. Suppose firstly a is an X-inner automorphism of R. Thus assume a(z) =

qrq~ ", for all € R, that is
F(z) = ax + qrq™'b, G(z) = cx + qrqg tu
for all z € R, where ¢ is an invertible element of @,. Under our assumption, R

satisfies

p{ (a[%m] L q[th]q—lb) <a[y1,y2] + q[yhyQ](J‘lb) o

- <(C[y17 ya] + qlyr, y2)q ) [z, azg]> }n

Since « is not the identity map on R, we consider the case ¢ ¢ C. Moreover, notice
that if both ¢='b € C and ¢~ 'u € C, then F and G are inner generalized derivations

defined respectively as follows

F(z)=(a+bz, G()=(c+u)z VreR
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and the conclusion follows again from Proposition 2.3.
On the other hand, if either ¢='b ¢ C or ¢ 'u ¢ C, the identity (23) is a non-
trivial generalized polynomial identity for R as well as for @,.. In light of the same
arguments set out in Proposition 2.3, we may assume that @, is a primitive ring
having a non-zero socle H, with C' as the associated division ring. Moreover @, is
isomorphic to a dense ring of linear transformations on some vector space V' over
C. By Lemma 3.1 we conclude that dimcV < 2, that is @), satisfies s4, as required.
Then we now consider the case « is not an inner automorphism of R. Since a #
Ig,by [4] R is a GPI-ring and @, is also GPI-ring by [3]. Once again @, is isomorphic
to a dense ring of linear transformations on some vector space V and its associated
division ring D is finite-dimensional over C. Thus, by Lemma 3.1, one of the
following holds:

(1) there exist a’, ¢’ € @, such that F(xz) = o’z and G(x) = 'z, for any = € R,

with pa’ = pc’ = 0 (in this case we are done)

(2) dimpV < 2.

To complete the proof we have to study this last case. Since dimpV < 2 and by

our main hypothesis, @, satisfies

p{ (a2l + a(for, 220 (ol vl + a(ln, )0 "

- ((C[yh 2] + a([y1, yo])u) @1, x2]> }2.

Here we divide the argument into the following three cases.

Case 1: Assume char(R) =0 or char(R) =p > 3.
By [5, Theorem 3] and (24), it follows that

2
P{ (a[xlny] + [t1,t2}b> <a[y1,y2] + [21, Zz]b> - <(C[yla Y2l + [Zl,Zz]U)[$1,$2]>} ~

(25)
is a generalized polynomial identity for @,. In particular @, satisfies the blended

component

p{[t17t2]b[21,22]b}2 (26)

which implies easily b = 0, since we suppose p # 0.

Analogously, for b =0 and y; = y» = 0 in (25), we have that @, also satisfies

p{khzﬂuuhxﬂ}Q (27)
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that is uw = 0. Therefore F'(z) = ax and G(z) = cx, for any = € R, and pa = pc =0

follows from Proposition 2.3, unless @), satisfies s4.

Case 2: Assume the automorphism « is not Frobenius.
Also in this case, by (24) and [5, Theorem 2], one can see that Q. satisfies (25),

and we conclude as above.

Case 3: Assume the automorphism « is Frobenius and char(R) = 2.
Hence there exists a fixed integer h such that a(z) = 22" for all z € C. In
particular, there is x € C such that 22" # x. Moreover we assume C' is infinite,
otherwise D should be a finite division ring, that is D is a field and we are done.
Let 0 # A € C be such that A2" # \. In (24) replace y; by Ay and get

p{ (alosaal + alfor,aal)p) (ol ] + 32l )0 "

—<Mmmﬂ+vh%memwuhu0}'
If denote
Py (21, 22,Y1,Y2) = alr1, z2]alyr, yo] + a([x1, z2])balyr, yo] — clyr, yal[21, 22]

and

o (21,22, Y1, Y2) = alz1, z2]a([yr, yo])b+a([z1, 22])ba([y1, y2])b—al([y1, y2])ulz1, 2]

it follows that
2
p{flh(h,rz,rs,m) +A/<I>z(7"17r2,r3,7‘4)} =0
for all 71,72, 73,74 € Q,, with v = A\2"~1 £ 1. Expanding the latter relation, we get
P{‘D% + (21 Py + P2®y) + ’yQCI)%} =0.

For the sake of clearness, let us denote tg = p®?, t; = p(®1Po+PoP1) and to = pd3.
Then we can write

to + yt1 +v*ts = 0. (29)
Replacing in the previous argument + successively by 1,7,72, the equation (29)

gives the system of equations
to+t1+t2=0
to + 7t +7%ta =0 (30)

to + 7%t + vt = 0.
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Moreover, since C' is infinite, there exist infinitely many A € C such that Ai(2"-1) #*
1fori=1,...,4, that is there exist infinitely many v = A2"=1 € C such that Y #£1

for i = 1,...,4. Hence, the Vandermonde determinant (associated with the system

(30))

111
1oy 2= 1] =)
1 42 A4 0<i<j<4

is not zero. Thus, we can solve the above system (30) and obtain ¢; = 0 (i =0, 1,2).

In particular tg = 0 and t5 = 0, that is

2
P{a[thfz]a[yl»yz] + a([z1, z2])balyr, y2| — C[ylvyZ][mlal'Q]} (31)

and

p{a[asl, ealofyn. yal)b + o, 22l bos([y, ya])b — [y, 92]ufes, x21} (32)

are satisfied by Q..
In (31) replace z1 by Az; and get

2
p{a[xl,xz]a[yl,yg] A7 a((er, 2])balyr, o] — clyn, o) [xl,mg}} L3
Now we denote
D (x1, w2, y1,y2) = alz1, z2]alyr, y2] — c[y1, y2l[r1, 2]

and
Qo (21, 22,91, ¥2) = of[x1, z2])baly1, yo]

obtaining
2
p{Ql(T177"2,7“37T4) +VQ2(7“177‘2,7"3,7“4)} =0

for all r1,79,73,74 € @y, With v = A2 -1 # 1. Thus, as above, for zg = pQ2,
21 = p(Q1Q2 + 201) and 2z, = pQ3, one has

20+ vz1 + 7220 = 0. (34)

By the same above Vandermonde determinant argument, we arrive at zg = 0, that

is Q. satisfies

p{aler.azlali, ] - el o ]} (33)
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Application of Proposition 2.3 to (35) leads to the conclusion pa = pc = 0, unless
Q. satisfies sy4.
On the other hand, if we replace z; by Az; in (32), then @, satisfies

p{a[ﬂfl, wala(fyn, y2))b+ X2 L a([en, 22))ba([yr, ya))b — allys, o] ules, 962]} (36)
Once again, we denote

Uy (21,22, Y1, y2) = alz1, va]a([yr, y2])b — a[y1, yo])u[z1, 22]

and
Uy (21,22, Y1, y2) = a([z1, z2])ba([y1, y2])b

obtaining
2
p{\l’l(r1>r2,7“377"4) +7‘I’2(T177‘2,7‘377‘4)} =0

for all ry,rqy, 73,74 € Q,, with v = A2 -1 # 1. Therefore, for wy = p¥?, w; =
p(U1Wy + WoWy) and wy = p¥3, it follows that

wo + ywy + 2w, = 0. (37)

Similarly to what we saw previously, we get wg = 0 and wy = 0, that is both
2
p{aler.aalalln. e - alln.se)ufor, 2] | (38)

and

2
p{allon aain.veo} (39
are identities for @,. We remark that (39) means that
2
p{[rlaTZ]b[ShSQ]b} =0 Vry,re,s1,82 € Qr

implying b = 0 (since p # 0). Then (38) reduces to

p{auyl,yanu[xl,xz}}z

that is u = 0.
Hence we have proved that either @, satisfies s4, or F(z) = ax and G(x) = cz, for

any x € R, with pa = pc = 0, as required. (]
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4. The proof of Theorem 1.1

In this final section we consider the more general situation and write F(x) =
ax + d(x), G(z) = cx + §(z) for all x € R, where a,¢c € Q, and d,0 are skew
derivations of R. Let o be the automorphism associated with d and §. Thus, for

any =,y € R,
d(zy) = d(z)y + a(z)d(y)
and

6(zy) = 6(x)y + a(x)d(y).

To prove our main result, we always assume that R does not satisfy the standard
identity s4. Under this assumption, and since L is not central, there exists a non-
zero ideal I of R such that 0 # [I,R] C L ([15, pages 4-5], [12, Lemma 2 and
Proposition 1], [17, Theorem 4]). Therefore we have that there exists a non-central
ideal I of R such that

p{F(u)F(v) — Gv)u}" =0 Vu,v e [I,I].

Since R and I satisfy the same generalized differential identities with automor-

phisms, we may assume that

P{F ([z1, 22)) F(ly1,y2)) — Glyr, y2]) 21, 2]} (40)

is an identity for R. In other words R satisfies

{ (alor.aal o, aa]) (el n,nd ) = (clon e+ 802D x1}
(1)

The following results which will be useful in the sequel:

Fact 4.1. ([10, Lemma 3.2]) Let R be a prime ring, o, 8 € Aut(Q,) andd: R — R
be a skew derivation, associated with the automorphism «. If there exist 0 # 6 € C,
0#ne€C and u,b € Q, such that

d(z) = 9<uac - a(x)u) + n(bx - ,B(x)b), Ve € R
then d is an inner skew derivation of R. More precisely, either b =0 or a = .

Fact 4.2. ([11, Fact 4.2]) Let R be a prime ring, «, 8 € Aut(Q,) and d,6 : R — R

be skew derivations, associated with the automorphism «. If there exist 0 #n € C



210 VINCENZO DE FILIPPIS, NADEEM UR REHMAN AND GIOVANNI SCUDO

and p € @, such that
5(a) = nd(e) + (o= plapp), Vo< R (12)
then either a = 8 or px — B(x)p = 0 and §(z) = nd(z), for any = € R.

Remark 4.3. If we assume that both F' and G are inner generalized skew deriva-

tions, then we may write
d(z) = bx — a(x)b and F(z) = ax + bx — a(z)b VreR

and
0(x) = ux — a(z)u and G(z) = cx + ur — a(x)u Ve € R
where a,b,c,u € Q, and a € Aut(R).
We would like to point out that, in case R satisfies (41) and by Proposition 3.2, we
may conclude that one of the following holds:
(1) d=6 =0 and pa = pc = 0;
(2) R satisfies s4.

Proof of Theorem 1.1. By Propositions 2.3 and 3.2 we may assume that d, § are
not simultaneously inner skew derivations. In particular d, ¢ are not simultaneously
zero. In all that follows we may also suppose that R does not satisfy s4.

By (41), R satisfies

p{ (a[xl, xo] + d(x1)x2 + a(xy)d(x2) — d(x2)x1 — a(xg)d(atl))-

- ([y o] + dyn )y + a(y)d(ya) — d(y2)n — a<y2>d<y1>)

— cy1, yol[r1, w2] — ((5(y1)y2 + a(y1)d(y2) — 3(y2)y1 — 04(?/2)5@1)) [9617332]}

(43)
Let d # 0 and § # 0 be C—linearly independent modulo SDj.
In this case, by (43), R satisfies
p{ (a[:cl, 1'2] —+ tlﬂfg —+ a(l’l)tg — tQCEl — a($2)t1> .
: (a[yb Ya| + 2192 + (y1)22 — 2291 — a(yz)zl> (44)

— cly1, yal[z1, 2] — (w1y2 + a(y)ws — wayr — a(yz)w1> [z1, Iz]}n~
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In particular, for 1 = t5 = y; = 20 = 0, R satisfies

p{ (t1x2 - a(IZ)tl) : <Z1y2 - 04(1/2)21) }" (45)

If o is the identity map, then R satisfies p[x1,22]?", which forces p = 0, a contra-
diction. Thus « is not the identity on R. Since (45) is a non-trivial generalized
identity also for @,, then @), is isomorphic to a dense subring of the ring of linear
transformations of a vector space V over a division ring D, containing non-zero
linear transformations of finite rank and, as above, there exists a semi-linear auto-
morphism 7' € End(V) such that a(z) = TaT~* for all z € Q,.

Hence, @, satisfies

p{ (tle — T.’E2T1t1> . <Zly2 - Ty2T12’1> } . (46)

Let dimpV > 2 and suppose that, for any v € V, there exists A\, € D such
that T7'v = wA,. As mentioned above, there exists a unique A € D such that
T~1v =), for all v € V. In this case « is the identity, a contradiction.

Therefore, there exists v € V such that {v, 7~ 'v} is linearly D-independent. By

the density of @Q,., there exist 71,72, 51, 82 € @, such that
s;70=0 sov=T"Y0 s;T'w=v mv=0 rov=T""v MT lv=0v

and, by (46), we get

n
p{ (7“17“2 - TTQT_lTl) : <8152 - TSQT_181> } v = pu. (47)

As above, application of Lemma 2.2 and since p # 0, it follows dimpV = 2 and Q,

p{ <t1x2 — O[(I'Q)t1> . <z1y2 — a(yg)zl> }2. (48)

On the other hand, if dimpV =1, @, is a domain satisfying

P{ (twcz — a(wz)h) . (21y2 — a(yg)zl) }

Therefore, more generally we may assume that (48) is an identity for Q... In par-

satisfies

2
ticular, for t1 = z; and z2 = yo, Q, satisfies p(zlyQ - a(y2)21> . Since p # 0, this

last relation implies (| 1179 — a(re)ry | =0, for any r1,r2 € Q. (see [1, Theorem B

and Corollary]). It is easy to see that this case may occur only if R is commutative

and « is the identity, a contradiction.
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Let d # 0 and 0 # 0 be C—linearly dependent modulo SD;t.

Here we assume that there exist \,u € C, ¢’ € @, and v € Aut(R) such that
Ad(z) + pé(x) = dz —y(x)d for all z € R.

e We firstly study the case 0 # X € C and 0 # u € C.

Denote n = —p~ !X and p' = p~ 1. So §(x) = nd(x) + p'z — y(z)p’ for all x € R.
By Fact 4.2, we know that either §(x) = nd(x) for all x € R, or v = a.

In case ¥ = a, one has 0(z) = nd(x) +p'z — a(x)p’ for all z € R. Therefore by (43),
Q. satisfies

p{ (a[ml, xo] + d(x1)x2 + a(xr)d(x2) — d(x2)z1 — a(xg)d(x1)>~
(alynove] + e+ o)) = dhon — ()il
= cly1, yol[r1, w2 — <nd(y1)y2 + a(y1)nd(y2) — nd(y2)y1 — a(yQ)nd(y1)> (21, 22]

= (V] - falon)vatin)l ) [w]}

(49)
Applying Fact 4.1 we may assume that d is not inner. By (49) Q, satisfies
p{ <a[x1, .1'2] +tixo + Oé(xl)tg —toxq — a(l‘g)tl)'
: <a[y1,yz] + 2192 + a(y1)z2 — 2201 — a(yz)zl)
(50)

— cly1, y2][r1, w2] — (7721?/2 + a(y1)nze — nzayr — 04(:92)7721) [71, 2]

— (#l2e] ~ ). i)l Y or.zal |

In particular, for 1 =ty = y; = 20 = 0 in (50), it follows that @, satisfies again
relation (45), so that a contradiction follows as above.

Analogously, for 6 = nd, the relation (49) reduces to
p{ (a[xl, xo] + d(x1)x2 + a(z1)d(x2) — d(x2)21 — oz(xg)d(xl))-

- ([y o) + d(y2 )y + (1)) — d(y)ys — a(yz)d(y1)>

n

~ ey, e 2] — (nd(yl)yz T a(y)nd(yz) — nd(ya)ys — a(yg)nd(y1)> o1, a:g]}
(51)

It is easy to see that @, satisfies again (45) and we conclude as above.
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e Assume now A\ = 0.

1

Hence 6(z) = p'z — y(z)p’ for all x € R, where p’ = p~'¢’ and d is not inner.

Then, by relation (43), Q, satisfies

p{ (a[xl, xo] + t1xo + a(zy)te — toxy — oz(azg)tl)-

: (a[yh Yol + 2192 + a(y1)z2 — 2201 — a(y2)21) (52)

i ellen.az] = (#ln ] - D))l Yool |

Also in this case, for 1 =ty = y; = 20 = 0 in (52), Q.. satisfies (45) and we are

done.
e The case u=20

In this case, d(z) = p'z — y(z)p’ for all z € R, where p’ = A~1¢/ and § is not inner.
Moreover a = 7y (as a reduction of Fact 4.2). Relation (43) implies that @, satisfies

p{ (a[m,u] +p'for, @] — [a(o), a(u)}p') ([y o] + 9/, 2] — [o(an), a<y2>]p')

~ ey, yller, ] — (6<y1>y2 T ay2)d(y2) — (g2 — a<y2>6<y1>) ~ 3?2]} .
(53)

Since § is not inner, @, satisfies

{ (afensal 4 lor. 2] = o) ol ) (alons el + 3] = o), el )

n
— cly1, y2][r1, 2] — <21y2 +a(y1)z2 — 2291 — Oé(y2)zl> [3317332]} .
(54)
For z; = z3 = 0 in (54), it follows that

p{ (a[m,u] + Pl 2] — [a(o), a<x2>]p'> ([y o] + 9/l ) — [o(an), a(yz)]p’>

el el
(55)
is an identity for @,.. Application of Proposition 3.2 implies p’x — a(x)p’ = 0, for

any x € Q,., that is d = 0, which is a contradiction.
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The case § =0

Here we have to consider the only case when 0 # d is an outer skew derivation.
By (43), R satisfies

p{ <a[x1, o] + d(x1)xe + a(xq)d(22) — d(x2)21 — a(xg)d(xl))
(e + d)oe + o))~ dlmhn ~ almldn)) (50

- C[y17y2][9€17032]}n.

Then, since 0 # d is outer, R satisfies
p{ (a[xl, I‘Q} + tll‘g + Ot(l‘l)tg — tgxl — Oz(fbg)t1> .
: (a[yhyz] + 2192 + a(y1)z2 — 2201 — 04(92)21> (57)

- C[yhyz][a:l,xg]}n.

As above, for 21 =ty = y; = 29 = 0 in (57), (45) is an identity for R and we are

done again.

The case d =0

In this final case, relation (43) reduces to

p{dxhxﬂww,w]—cwhyﬂmhxﬂ
(58)

- (5@1)92 + a(y1)d(y2) — 0(y2)yr — a(y2)5(y1)) [961,552]} .
Moreover, we may assume that 0 # ¢ is not inner. Therefore (58) implies that R

satisfies

P{a[ﬂﬁhxz]a[yhyﬂ — cly1, yol[z1, 22]
(59)

- (Zlyz + a(y1)z — zoy1 — a(yz)zl) [331,%2]}”

and in particular, for y; = 2o = 0 in (59), it follows that

p{ <Z1y2 - 04(2/2)21) [21, xz]}n (60)

is satisfied by R, as well as by @,

Now let’s fix any two elements r1,72 € @, and denote w = r1ry — a(re)r1. By (60)
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p{w[ﬂflvxz]}n

is an identity for @,. This last implies pw = 0 (see for instance [8, Theorem]). By

we have that

the arbitrariness of r1,7s € @, it follows that @, satisfies the generalized identity
p{21y2 — a(y2)z1 }

Since p # 0, as above we get <7"1r2 —a(rg)m) =0, for any 1,79 € @, (see [1, The-

orem B and Corollary]). Once again, since R is not commutative, a contradiction
follows. 0

Availability of data and material. No datasets were generated or analysed

during the current study.
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