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Abstract. Let R be a prime ring, Qr its right Martindale quotient ring, L

a non-central Lie ideal of R, n ≥ 1 a fixed integer, F and G two generalized

skew derivations of R with the same associated automorphism, p ∈ R a fixed

element. If p
(
F (x)F (y) − G(y)x

)n
= 0, for any x, y ∈ L, then there exist

a, c ∈ Qr such that F (x) = ax and G(x) = cx, for any x ∈ R, with pa = pc = 0,

unless when R satisfies the standard polynomial identity s4(x1, . . . , x4).
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1. Introduction

This work is devoted to consider some related problems concerning annihilators

of power values of some appropriate identities involving additive maps in prime

rings. Throughout this paper R always denotes a prime ring, Z(R) the center of

R, Qr the right Martindale quotient ring of R and C = Z(Qr), the center of Qr

(C is usually called the extended centroid of R). We introduce on R an additive

mapping d which satisfies the following rule:

d(xy) = d(x)y + α(x)d(y)

for all x, y ∈ R. The map d is said to be a skew derivation of R and α is called

the associated automorphism of d. Consequently, let us also define the concept of

a generalized skew derivation F of R, that is an additive mapping F such that

F (xy) = F (x)y + α(x)d(y)

for all x, y ∈ R, where d is a skew derivation of R and α is the associated au-

tomorphism of d. The map d is called an associated skew derivation of F . The

automorphism α is called the associated automorphism of F .

Nilpotent values of skew derivations and generalized skew derivations of prime

rings were recently studied by several authors.
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In [2], J.-C. Chang shows that if F is a generalized skew derivation of R, L is

a non-commutative Lie ideal of R and n ≥ 1 a fixed integer such that F (x)n = 0,

for all x ∈ L, then F (x) = 0, for all x ∈ R. Later, in [20], a generalization of the

previous cited result involving an annihilator condition is given. More precisely,

the main result in [20] proves that if F is a generalized skew derivation of R, L

is a non-commutative Lie ideal of R, n ≥ 1 a fixed integer and a ∈ R is a fixed

element such that aF (x)n = 0, for all x ∈ L, then aF (x) = 0, for all x ∈ R, unless

R satisfies the standard identity s4.

This last result has recently been further improved as follows: let 0 6= p be an

element of R, F and G generalized skew derivations with the same associated skew

derivation d of a prime ring R, L a non-commutative Lie ideal of R, l1, . . . , lk, n

nonnegative integers with l1 6= 0 and n > 0. If

p

(
F (u)l1G(u)l2F (u)l3G(u)l4 · · ·G(u)lk

)n

= 0 ∀u ∈ L,

then d = 0 and there exist a, c ∈ Qr such that F (x) = ax and G(x) = cx, for

any x ∈ R. Moreover either pa = 0 or c = 0, unless R satisfies s4 (see [14, Main

Theorem]).

Further nil-power conditions have been investigated in another recent paper (see

[19]) and the following result was proved: If R is a prime ring, F is a generalized

skew derivation of R, L is a non-central Lie ideal of R and n ≥ 1 is a fixed integer

such that (F (x)F (y) − yx)n = 0, for any x, y ∈ L, then char(R) = 2 and R ⊆
M2(C), the 2× 2 matrix ring over C.

Following this line of investigation, the aim of this paper is to generalize the

result in [19] to the case when two different generalized skew derivations act on

the non-central Lie ideal L, also introducing an annihilating condition. To be more

precise, we will prove the following:

Theorem 1.1. Let R be a prime ring, Qr its right Martindale quotient ring, L a

non-central Lie ideal of R, n ≥ 1 a fixed integer, F and G two generalized skew

derivations of R with the same associated automorphism, p ∈ R a fixed element.

If p
(
F (x)F (y) − G(y)x

)n
= 0, for any x, y ∈ L, then there exist a, c ∈ Qr such

that F (x) = ax and G(x) = cx, for any x ∈ R, with pa = pc = 0, unless when R

satisfies the standard polynomial identity s4(x1, . . . , x4).

Let us recall some well known results and notations which will be useful in the

sequel.

We will denote by SDer(Qr) the set of all skew-derivations of Qr and by SDint

the C-subspace of SDer(Qr) consisting of all inner skew-derivations of Qr.
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Two different skew derivations d and δ are said to be C−linearly dependent

modulo SDint, if there exist λ, µ ∈ C, a ∈ Qr and α ∈ Aut(Q) such that λd(x) +

µδ(x) = ax− α(x)a for all x ∈ R.

If d and δ are C−linearly independent skew derivations modulo SDint, associated

with the same automorphism α, such that Φ(xi, d(xj), δ(xk)) is a skew-differential

identity on R, then Φ(xi, yj , zk) is a generalized polynomial identity of R, where

xi, yj , zk are distinct indeterminates (it follows from main results in [4,5,6]).

It is known that, if I is a two-sided ideal I ofR, then I, R, andQr satisfy the same

generalized polynomial identities with coefficients in Qr (see [3]). Furthermore, I,

R, and Qr satisfy the same generalized polynomial identities with automorphisms

(see [5, Theorem 1]).

2. The result for inner generalized derivations

We start by proving the main theorem in case both F and G are generalized

inner derivations of R and [R,R] ⊆ L. In this sense we assume that there are

a, b, c, q ∈ Qr such that F (x) = ax+xb and G(x) = cx+xq, for any x ∈ R. Hence,

by our assumption, R satisfies the generalized polynomial identity

Ψ(x1, x2, y1, y2) =

p

{
(a[x1, x2] + [x1, x2]b)(a[y1, y2] + [y1, y2]b)− (c[y1, y2] + [y1, y2]q)[x1, x2]

}n

.
(1)

For brevity we denote X = [x1, x2], Y = [y1, y2] and

Ψ(X,Y ) =

p

{
(aX +Xb)(aY + Y b)− (cY + Y q)X

}n

.
(2)

Lemma 2.1. Assume p 6= 0. Either Ψ(X,Y ) is a non-trivial generalized polynomial

identity for R or b, q ∈ C with p(a+ b) = p(c+ q) = 0.

Proof. Assume that Ψ(X,Y ) is a trivial generalized polynomial identity for R.

Let T = Qr ∗C C{X} be the free product over C of the C-algebra Qr and the

free C-algebra C{X}, with X the set consisting of non-commuting indeterminates

x1, x2, y1, y2.

Now consider the generalized polynomial Ψ(X,Y ) ∈ Qr ∗C C{X}.
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By our hypothesis,

Ψ(X,Y ) = p

{
(aX +Xb)(aY + Y b)− (cY + Y q)X

}n

= p

{
(aX +Xb)(aY + Y b)− (cY + Y q)X

}n−1

·

·
{

(aX +Xb)aY − (cY + Y q)X + (aX +Xb)Y b

}
= 0 ∈ T.

(3)

Suppose firstly b /∈ C, that is {b, 1} is linearly C-independent. Therefore, since

Ψ(X,Y ) = 0 ∈ T ,

p

{
(aX +Xb)(aY + Y b)− (cY + Y q)X

}n−1

· (aX +Xb)Y b = 0 ∈ T

implying

p

{
(aX +Xb)(aY + Y b)− (cY + Y q)X

}n−1

· (aX +Xb) = 0 ∈ T

that is

p

{
(aX +Xb)(aY + Y b)− (cY + Y q)X

}n−1

·Xb = 0 ∈ T.

Thus

p

{
(aX +Xb)(aY + Y b)− (cY + Y q)X

}n−1

= 0 ∈ T.

Continuing this process, we get

p

{
(aX +Xb)(aY + Y b)− (cY + Y q)X

}
= 0 ∈ T

which means that

p(aX +Xb)Y b = 0 ∈ T.

Hence the contradiction pXb = 0 follows. Thus {b, 1} is linearly C-dependent, that

is b ∈ C.

Analogously, by (3) and a′ = a+ b, it follows that

p

{
a′Xa′Y − (cY + Y q)X

}n−1

· (a′Xa′)Y−

p

{
a′Xa′Y − (cY + Y q)X

}n−1

· (cY + Y q)X = 0 ∈ T

that is, both

p

{
a′Xa′Y − (cY + Y q)X

}n−1

· (a′Xa′)Y = 0 ∈ T
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and

p

{
a′Xa′Y − (cY + Y q)X

}n−1

· (cY + Y q)X = 0 ∈ T. (4)

In particular, (4) implies

p

{
a′Xa′Y − (cY + Y q)X

}n−1

· (cY + Y q) = 0 ∈ T.

Hence, if we suppose q /∈ C, it follows that

p

{
a′Xa′Y − (cY + Y q)X

}n−1

· Y q = 0 ∈ T

which implies

p

{
a′Xa′Y − (cY + Y q)X

}n−1

= 0 ∈ T.

As above, continuing this process we get

p

{
a′Xa′Y − (cY + Y q)X

}
= 0 ∈ T

and arrive at the contradiction pY q = 0.

Therefore q ∈ C and, for c′ = c+ q, we write relation (3) as follows

p

{
a′Xa′Y − c′Y X

}
·
{
a′Xa′Y − c′Y X

}n−1

= 0 ∈ T. (5)

It is easy to see that if either pa′ = 0 or pc′ = 0 then both pa′ and pc′ must be zero.

Then we finally assume pa′ 6= 0 and pc′ 6= 0. In case there exists 0 6= λ ∈ C such

that pc′ = λpa′ 6= 0, then (5) implies{
a′Xa′Y − c′Y X

}n−1

= 0 ∈ T (6)

which is a contradiction, since a′ 6= 0 and c′ 6= 0.

Hence {pc′, pa′} is linearly independent and by (5) we get

pa′Xa′Y ·
{
a′Xa′Y − c′Y X

}n−1

= 0 ∈ T.

Once again relation (6) holds and we are done. �

Lemma 2.2. Assume that R is a primitive ring, which is isomorphic to a dense

ring of linear transformations on some vector space V over a division ring D,

dimDV ≥ 2, f ∈ End(V ) and a ∈ R. If av = 0, for any v ∈ V such that {v, f(v)}
is linearly D-independent, then a = 0, unless dimDV = 2 and char(R) = 2.
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Proof. We fix a vector v ∈ V such that {v, f(v)} is linearly D-independent, then

av = 0. Let w ∈ V be such that {w, v} is linearly D-dependent. Then both aw = 0

and w ∈ Span{v, f(v)} follow trivially.

Let now w ∈ V such that {w, v} is linearly D-independent and aw 6= 0. By the

hypothesis it follows that {w, f(w)} is linearly D-dependent, as are {w+v, f(w+v)}
and {w − v, f(w − v)}. Therefore there exist λw, λw+v, λw−v ∈ D such that

f(w) = wλw, f(w + v) = (w + v)λw+v, f(w − v) = (w − v)λw−v.

In other words we have

wλw + f(v) = wλw+v + vλw+v (7)

and

wλw − f(v) = wλw−v − vλw−v. (8)

Assume dimDV ≥ 3. It is easy to see that w ∈ Span{v, f(v)}, otherwise (7) forces

a contradiction. Therefore, for any choice of w ∈ V , we have w ∈ Span{v, f(v)},
that is V = Span{v, f(v)}, a contradiction.

In order to complete the proof, we then consider the case dimDV = 2 and assume

char(R) 6= 2, if not we are finished.

By comparing (7) with (8) we get both

w(2λw − λw+v − λw−v) + v(λw−v − λw+v) = 0 (9)

and

2f(v) = w(λw+v − λw−v) + v(λw+v + λw−v). (10)

By (9) and since {w, v} is D-independent and char(R) 6= 2, we have λw = λw+v =

λw−v. Thus by (10) it follows 2f(v) = 2vλw. Since {f(v), v} is D-independent,

the conclusion λw = λw+v = 0 follows, that is f(w) = 0 and f(w + v) = 0, which

implies the contradiction f(v) = 0. Thus, if dimDV = 2 and char(R) 6= 2, it

follows that aw = 0, for any choice of w ∈ V , that is aV = (0). Therefore a = 0

follows. �

Proposition 2.3. If R satisfies (1) then b, q ∈ C and p(a + b) = p(c + q) = 0,

unless when char(R) = 2 and R satisfies s4.

Proof. We of course suppose p 6= 0. In light of Lemma 2.1, we may assume that

the generalized polynomial Ψ(x1, x2, y1, y2) is a non-trivial generalized polynomial

identity for R. By [3] it follows that Ψ(x1, x2) is a non-trivial generalized polynomial

identity for Qr. In view of [13, Theorem 2.5 and Theorem 3.5], we know that both

Qr andQr

⊗
C C are centrally closed, where C is the algebraic closure of C. We may
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replace Qr by itself or Qr

⊗
C C according as C is finite or infinite. Therefore we

may assume that Qr is centrally closed over C which is either finite or algebraically

closed. By Martindale’s theorem [18], Qr is a primitive ring having a non-zero

socle H, with C as the associated division ring. In light of Jacobson’s theorem [16,

page 75], Qr is isomorphic to a dense ring of linear transformations on some vector

space V over C. Since R is not commutative, we have dimCV ≥ 2. Moreover, if

dimCV = 2 we would assume char(R) 6= 2, if not we are done.

We divide the proof in several steps.

Step 1. b ∈ C:

Suppose b /∈ C and let v ∈ V be such that {v, bv} is linearly C-independent. Since

dimCV ≥ 2 and by the density of Qr, there exist r1, r2, s1, s2 ∈ Qr such that

r1v = 0 r2v = v r1(bv) = −v r2(bv) = 0

s1v = 0 s2v = v s1(bv) = −v s2(bv) = 0.

By (1) we get

0 =

p

{
(a[r1, r2] + [r1, r2]b)(a[s1, s2] + [s1, s2]b)− (c[s1, s2] + [s1, s2]q)[r1, r2]

}n

v = pv.

Hence we have proved that pv = 0 for any vector v ∈ V such that {v, bv} is linearly

independent. By Lemma 2.2, p = 0 follows. This contradiction says that b must be

a central element of Qr and (1) reduces to

p

{
a′[x1, x2]a′[y1, y2]− (c[y1, y2] + [y1, y2]q)[x1, x2]

}n

(11)

where a′ = a+ b.

Step 2. q ∈ C:

Assume now q /∈ C and let v ∈ V be such that {v, qv} is linearly C-independent.

As above, there are r1, r2, s1, s2 ∈ Qr such that

r1v = 0 r2v = qv r1(qv) = v

s1v = 0 s2v = v s1(qv) = v s2(qv) = 0.

By (11) we get

0 = p

{
a′[r1, r2]a′[s1, s2]− (c[s1, s2] + [s1, s2]q)[r1, r2]

}n

v = pv.
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Thus pv = 0 for any vector v ∈ V such that {v, qv} is linearly independent. As

above the contradiction p = 0 follows.

Therefore both b ∈ C and q ∈ C, that is Qr satisfies

p

{
a′[x1, x2]a′[y1, y2]− c′[y1, y2][x1, x2]

}n

(12)

where a′ = a+ b and c′ = c+ q.

Step 3. Either pa′ = 0 or a′ ∈ C:

If a′ /∈ C then there is v ∈ V such that {v, a′v} is linearly C-independent. By the

density of Qr, there are r1, r2, s1, s2 ∈ Qr such that

r1(a′v) = 0 r2(a′v) = v r1v = v

s1v = 0 s2v = v s1(a′v) = −v s2(a′v) = 0.

By (12) it follows

0 = p

{
a′[r1, r2]a′[s1, s2]− c′[s1, s2][r1, r2]

}n

a′v = pa′v.

Thus pa′v = 0 for any vector v ∈ V such that {v, a′v} is linearly independent,

implying pa′ = 0.

Step 4. Let dimCV ≥ 3, then either pc′ = 0 or c′ ∈ C:

If c′ /∈ C then there is v ∈ V such that {v, c′v} is linearly C-independent. Moreover,

since dimCV ≥ 3, there exists w ∈ V such that {v, c′v, w} is linearly C-independent.

Again by the density of Qr, there are r1, r2, s1, s2 ∈ Qr such that

r1(c′v) = 0 r2(c′v) = v r1v = v

s1v = 0 s2v = w s1w = v s1(c′v) = 0 s2(c′v) = c′v.

Relation (12) implies

0 = p

{
a′[r1, r2]a′[s1, s2]− c′[s1, s2][r1, r2]

}n

c′v = (−1)npc′v.

Hence, pc′v = 0 for any vector v ∈ V such that {v, c′v} is linearly independent,

that is pc′ = 0.

Step 5. Let dimCV ≥ 3. If pa′ = 0, then pc′ = 0:

If c′ /∈ C the conclusion follows from Step 4. Moreover, if a′ ∈ C then p = 0, which

is not possible. Hence we assume c′ ∈ C and a′ /∈ C. Therefore Qr satisfies

pc′[y1, y2][x1, x2]

{
a′[x1, x2]a′[y1, y2]− c′[y1, y2][x1, x2]

}n−1

. (13)
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Since a′ /∈ C, there is v ∈ V such that {v, a′v} is linearly C-independent. More-

over, since dimCV ≥ 3, there exists w ∈ V such that {v, a′v, w} is linearly C-

independent. By the density of Qr, there are r1, r2, s1, s2 ∈ Qr such that

r1v = 0 r2v = a′v r1(a′v) = a′v

s1v = 0 s2v = v s1(a′v) = 0 s2(a′v) = w s1w = v.

Relation (13) implies

0 = pc′[s1, s2][r1, r2]

{
a′[r1, r2]a′[s1, s2]− c′[s1, s2][r1, r2]

}n−1

v = (−c′)npv.

Hence (−c′)npv = 0 for any vector v ∈ V such that {v, a′v} is linearly independent,

that is pc′ = 0 (we remark that, since we assume p 6= 0, this implies c′ = 0).

Step 6. Let dimCV ≥ 3. If pc′ = 0, then pa′ = 0:

The proof of this step is quite similar to the previous one and we omit it for brevity.

Step 7. If dimCV ≥ 3, then both pa′ = 0 and pc′ = 0:

In light of the previous argument, to complete the proof of this step we may assume

both a′ ∈ C and c′ ∈ C. In this case Qr satisfies

p

{
a′2[x1, x2][y1, y2]− c′[y1, y2][x1, x2]

}n

. (14)

Let {v, w} be a set of linearly independent vectors of V and r1, r2, s1, s2, r
′
1, r
′
2, s
′
1, s
′
2 ∈

Qr such that

r1v = 0 r2v = v s1v = 0 s2v = w s1w = w r1w = v r2w = 0

and

s′1v = 0 s′2v = v r′1v = 0 r′2v = w r′1w = w s′1w = v s′2w = 0.

Thus (14) implies both

p

{
a′2[r1, r2][s1, s2]− c′[s1, s2][r1, r2]

}n

v = (−1)npa′2nv

and

p

{
a′2[r′1, r

′
2][s′1, s

′
2]− c′[s′1, s′2][r′1, r

′
2]

}n

v = pc′nv.

As above we may conclude that pa′ = 0 and pc′ = 0, as required.

Finally, in all that follows we assume dimCV = 2, that is Qr
∼= M2(C), with

char(C) 6= 2. Firstly we notice that (12) reduces to

p

{
a′[x1, x2]a′[y1, y2]− c′[y1, y2][x1, x2]

}2

. (15)
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We resume our proof starting from the Step 3, so we know that either pa′ = 0 or

a′ ∈ C.

Step 8. If Qr
∼= M2(C) and pa′ = 0 then pc′ = 0:

Under this assumption Qr satisfies

pc′[y1, y2][x1, x2]

{
a′[x1, x2]a′[y1, y2]− c′[y1, y2][x1, x2]

}
. (16)

Of course we may assume that a′ is not a scalar matrix, if not p = 0 follows.

We firstly suppose C is an infinite field. By [9, Lemma 1] there exists an C-

automorphism ϕ of M2(C) such that ϕ(a′) has all non-zero entries. Clearly ϕ(a′),

ϕ(c′) and ϕ(p) must satisfy the condition (16) that is

ϕ(pc′)[y1, y2][x1, x2]

{
ϕ(a′)[x1, x2]ϕ(a′)[y1, y2]− ϕ(c′)[y1, y2][x1, x2]

}
(17)

is an identity for M2(C). Let eij denote the matrix unit with 1 in (i, j)-entry

and zero elsewhere. Thus, for [x1, x2] = e12 and [y1, y2] = e21 in (17), and right

multiplying by e11 we get

ϕ(pc′)e22ϕ(a′)e12ϕ(a′)e21 = 0.

Since ϕ(a′) has all non-zero entries, it follows that both (1, 2)-entry and (2, 2)-entry

of the matrix ϕ(pc′) must be zero. Similarly, for [x1, x2] = e21 and [y1, y2] = e12 in

(17), and right multiplying by e22 we have that both (2, 1)-entry and (1, 1)-entry

of the matrix ϕ(pc′) must be zero. Therefore ϕ(pc′) = 0, that is pc′ = 0.

Now let K be an infinite field which is an extension of the field C and let Qr =

M2(K) ∼= Qr ⊗C K. Consider the generalized polynomial

P (x1, x2, x3, x4) = pc′[x3, x4][x1, x2]

{
a′[x1, x2]a′[x3, x4]− c′[x3, x4][x1, x2]

}
which is a generalized polynomial identity for Qr. Moreover it is multi-homogeneous

of multi-degree (2, 2, 2, 2) in the indeterminates x1, x2, x3, x4.

Hence the complete linearization of P (x1, x2, x3, x4) is a multilinear generalized

polynomial Θ(x1, . . . , x4, z1, . . . , z4) in 8 indeterminates, moreover

Θ(x1, . . . , x4, z1, . . . , z4) = 24P (x1, x2, x3, x4).

Clearly the multilinear polynomial Θ(x1, . . . , x4, z1, . . . , z4) is a generalized polyno-

mial identity for Qr and Qr too. Since char(C) 6= 2 we obtain P (r1, r2, r3, r4) = 0,

for all r1, . . . , r4 ∈ Qr, and the conclusion pc′ = 0 follows from the above argument.

Step 9. If Qr
∼= M2(C) and a′ ∈ C then a′ = 0 and pc′ = 0:
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In this final case Qr satisfies

p

{
a′2[x1, x2][y1, y2]− c′[y1, y2][x1, x2]

}2

. (18)

For [x1, x2] = e12 and [y1, y2] = e21 in (18), and right multiplying by e11 we get

a′4pe11 = 0, implying that both (2, 1)-entry and (1, 1)-entry of the matrix a′4p

must be zero. Once again, for [x1, x2] = e21 and [y1, y2] = e12 in (18), and right

multiplying by e22 we have a′4pe22 = 0, that is both (2, 2)-entry and (1, 2)-entry

of the matrix a′4p must be zero. Therefore a′4p = 0, that is a′ = 0. Hence (18)

reduces to

p

{
c′[y1, y2][x1, x2]

}2

. (19)

Notice that, if c′ ∈ C it follows that c′2p[x1, x2]4 is an identity for Qr. In this case

it is well known that c′2p = 0, that is c′ = 0. On the other hand, if we assume that

c′ /∈ C, there is v ∈ V such that {v, c′v} is linearly C-independent. By the density

of Qr, there are r1, r2, s1, s2 ∈ Qr such that

r1(c′v) = 0 r2(c′v) = v r1v = v

s1v = 0 s2v = c′v s1(c′v) = v.

Thus, relation (19) implies

0 = p

{
c′[s1, s2][r1, r2]

}2

c′v = pc′v.

as above, this last relation implies pc′ = 0, as required. �

3. The case of inner generalized skew derivations

In this section we consider the case when the maps have the following forms:

F (x) = ax+ α(x)b, G(x) = cx+ α(x)u

for all x ∈ R, for suitable fixed elements p, a, b, c, u ∈ Qr and α ∈ Aut(Qr). More-

over we suppose that Qr satisfies

p

{(
a[x1, x2] + α([x1, x2])b

)(
a[y1, y2] + α([y1, y2])b

)
−
(

(c[y1, y2] + α([y1, y2])u)[x1, x2]

)}n

.

(20)

In light of Proposition 2.3 we may always assume α 6= IR, the identity map on R.
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Lemma 3.1. Assume that R is isomorphic to a dense ring of linear transforma-

tions on some vector space V over a division ring D, containing non-zero linear

transformations of finite rank. If R satisfies (20) then there exist a′, c′ ∈ Qr such

that F (x) = a′x and G(x) = c′x, for any x ∈ R, with pa′ = pc′ = 0, unless when

dimDV ≤ 2.

Proof. We suppose dimDV ≥ 3.

Since R is a primitive ring with non-zero socle, by [16, p. 79], there exists a semi-

linear automorphism T ∈ End(V ) such that α(x) = TxT−1 for all x ∈ R.

Hence, R satisfies

p

{(
a[x1, x2] + T [x1, x2]T−1b

)(
a[y1, y2] + T [y1, y2]T−1b

)
−
(

(c[y1, y2] + T [y1, y2]T−1u)[x1, x2]

)}n

.

(21)

Assume there exists v ∈ V such that {v, T−1bv} is linearly D-independent.

Since dimDV ≥ 3, there exists w ∈ V such that {w, v, T−1bv} is linearly D-

independent. Moreover, by the density of R, there exist r1, r2, s1, s2 ∈ R such

that

r1v = 0 r2v = v r1w = T−1v r1T
−1bv = 0 r2T

−1bv = w

s1v = 0 s2v = v s1w = T−1v s1T
−1bv = 0 s2T

−1bv = w

and we get

0 = p

{(
a[r1, r2] + T [r1, r2]T−1b

)(
a[s1, s2] + T [s1, s2]T−1b

)
−
(

(c[s1, s2] + T [s1, s2]T−1u)[r1, r2]

)}n

v = pv.

Hence, for any v ∈ V such that {v, T−1bv} is linearly D-independent, it follows

pv = 0. By Lemma 2.2 we get p = 0, which is a contradiction.

Therefore, for any v ∈ V , there exists λv ∈ D such that T−1bv = vλv. In this case,

it is well known that there exists a unique λ ∈ D such that T−1bv = vλ, for all

v ∈ V (see for example Lemma 1 in [7]). Thus(
ax+ α(x)b

)
v =

(
ax+ TxT−1b

)
v = axv + T (xvλ) =

axv + T ((xv)λ) = axv + T (T−1bxv) =

axv + bxv = (a+ b)xv.

Hence, for all v ∈ V , (
ax+ α(x)b− (a+ b)x

)
v = 0
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which implies F (x) = ax + α(x)b = (a + b)x, for all x ∈ R, since V is faithful.

Therefore we have that R satisfies

p

{
(a+ b)[x1, x2](a+ b)[y1, y2]−

(
(c[y1, y2] + T [y1, y2]T−1u)[x1, x2]

)}n

. (22)

Now assume there exists v ∈ V such that {v, T−1uv} is linearly D-independent. As

above there exists w ∈ V such that {w, v, T−1uv} is linearly D-independent and

there exist r1, r2, s1, s2 ∈ R such that

r1v = 0 r2v = w r1w = v

s1v = 0 s2v = v s1w = T−1v s1T
−1uv = 0 s2T

−1uv = w.

From (22) it follows that

0 = p

{
(a+b)[r1, r2](a+b)[s1, s2]−

(
(c[s1, s2]+T [s1, s2]T−1u)[r1, r2]

)}n

v = (−1)npv.

Once again, since p is not zero, by Lemma 2.2 we obtain a contradiction. Thus,

there exists a unique µ ∈ D such that T−1uv = vµ, for all v ∈ V . This implies

G(x) = cx+ α(x)u = (c+ u)x, for all x ∈ R.

Therefore, we have proved that, if dimDV ≥ 3, both F and G are inner generalized

derivations. The required conclusion then follows from Proposition 2.3. �

Proposition 3.2. If R satisfies (20) then there exist a′, c′ ∈ Qr such that F (x) =

a′x and G(x) = c′x, for any x ∈ R, with pa′ = pc′ = 0, unless when R satisfies s4.

Proof. Suppose firstly α is an X-inner automorphism of R. Thus assume α(x) =

qxq−1, for all x ∈ R, that is

F (x) = ax+ qxq−1b, G(x) = cx+ qxq−1u

for all x ∈ R, where q is an invertible element of Qr. Under our assumption, R

satisfies

p

{(
a[x1, x2] + q[x1, x2]q−1b

)(
a[y1, y2] + q[y1, y2]q−1b

)
−
(

(c[y1, y2] + q[y1, y2]q−1u)[x1, x2]

)}n

.

(23)

Since α is not the identity map on R, we consider the case q /∈ C. Moreover, notice

that if both q−1b ∈ C and q−1u ∈ C, then F and G are inner generalized derivations

defined respectively as follows

F (x) = (a+ b)x, G(x) = (c+ u)x ∀x ∈ R
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and the conclusion follows again from Proposition 2.3.

On the other hand, if either q−1b /∈ C or q−1u /∈ C, the identity (23) is a non-

trivial generalized polynomial identity for R as well as for Qr. In light of the same

arguments set out in Proposition 2.3, we may assume that Qr is a primitive ring

having a non-zero socle H, with C as the associated division ring. Moreover Qr is

isomorphic to a dense ring of linear transformations on some vector space V over

C. By Lemma 3.1 we conclude that dimCV ≤ 2, that is Qr satisfies s4, as required.

Then we now consider the case α is not an inner automorphism of R. Since α 6=
IR,by [4]R is a GPI-ring andQr is also GPI-ring by [3]. Once againQr is isomorphic

to a dense ring of linear transformations on some vector space V and its associated

division ring D is finite-dimensional over C. Thus, by Lemma 3.1, one of the

following holds:

(1) there exist a′, c′ ∈ Qr such that F (x) = a′x and G(x) = c′x, for any x ∈ R,

with pa′ = pc′ = 0 (in this case we are done)

(2) dimDV ≤ 2.

To complete the proof we have to study this last case. Since dimDV ≤ 2 and by

our main hypothesis, Qr satisfies

p

{(
a[x1, x2] + α([x1, x2])b

)(
a[y1, y2] + α([y1, y2])b

)
−
(

(c[y1, y2] + α([y1, y2])u)[x1, x2]

)}2

.

(24)

Here we divide the argument into the following three cases.

Case 1: Assume char(R) = 0 or char(R) = p ≥ 3.

By [5, Theorem 3] and (24), it follows that

p

{(
a[x1, x2] + [t1, t2]b

)(
a[y1, y2] + [z1, z2]b

)
−
(

(c[y1, y2] + [z1, z2]u)[x1, x2]

)}2

.

(25)

is a generalized polynomial identity for Qr. In particular Qr satisfies the blended

component

p

{
[t1, t2]b[z1, z2]b

}2

(26)

which implies easily b = 0, since we suppose p 6= 0.

Analogously, for b = 0 and y1 = y2 = 0 in (25), we have that Qr also satisfies

p

{
[z1, z2]u[x1, x2]

}2

(27)
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that is u = 0. Therefore F (x) = ax and G(x) = cx, for any x ∈ R, and pa = pc = 0

follows from Proposition 2.3, unless Qr satisfies s4.

Case 2: Assume the automorphism α is not Frobenius.

Also in this case, by (24) and [5, Theorem 2], one can see that Qr satisfies (25),

and we conclude as above.

Case 3: Assume the automorphism α is Frobenius and char(R) = 2.

Hence there exists a fixed integer h such that α(x) = x2
h

, for all x ∈ C. In

particular, there is x ∈ C such that x2
h 6= x. Moreover we assume C is infinite,

otherwise D should be a finite division ring, that is D is a field and we are done.

Let 0 6= λ ∈ C be such that λ2
h 6= λ. In (24) replace y1 by λy1 and get

p

{(
a[x1, x2] + α([x1, x2])b

)(
a[y1, y2] + λ2

h−1α([y1, y2])b

)
−
(

(c[y1, y2] + λ2
h−1α([y1, y2])u)[x1, x2]

)}2

.

(28)

If denote

Φ1(x1, x2, y1, y2) = a[x1, x2]a[y1, y2] + α([x1, x2])ba[y1, y2]− c[y1, y2][x1, x2]

and

Φ2(x1, x2, y1, y2) = a[x1, x2]α([y1, y2])b+α([x1, x2])bα([y1, y2])b−α([y1, y2])u[x1, x2]

it follows that

p

{
Φ1(r1, r2, r3, r4) + γΦ2(r1, r2, r3, r4)

}2

= 0

for all r1, r2, r3, r4 ∈ Qr, with γ = λ2
h−1 6= 1. Expanding the latter relation, we get

p

{
Φ2

1 + γ(Φ1Φ2 + Φ2Φ1) + γ2Φ2
2

}
= 0.

For the sake of clearness, let us denote t0 = pΦ2
1, t1 = p(Φ1Φ2+Φ2Φ1) and t2 = pΦ2

2.

Then we can write

t0 + γt1 + γ2t2 = 0. (29)

Replacing in the previous argument γ successively by 1, γ, γ2, the equation (29)

gives the system of equations

t0 + t1 + t2 = 0

t0 + γt1 + γ2t2 = 0

t0 + γ2t1 + γ4t2 = 0.

(30)
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Moreover, since C is infinite, there exist infinitely many λ ∈ C such that λi(2
h−1) 6=

1 for i = 1, . . . , 4, that is there exist infinitely many γ = λ2
h−1 ∈ C such that γi 6= 1

for i = 1, . . . , 4. Hence, the Vandermonde determinant (associated with the system

(30)) ∣∣∣∣∣∣∣∣
1 1 1

1 γ γ2

1 γ2 γ4

∣∣∣∣∣∣∣∣ =
∏

0≤i<j≤4

(γi − γj)

is not zero. Thus, we can solve the above system (30) and obtain ti = 0 (i = 0, 1, 2).

In particular t0 = 0 and t2 = 0, that is

p

{
a[x1, x2]a[y1, y2] + α([x1, x2])ba[y1, y2]− c[y1, y2][x1, x2]

}2

(31)

and

p

{
a[x1, x2]α([y1, y2])b+ α([x1, x2])bα([y1, y2])b− α([y1, y2])u[x1, x2]

}2

(32)

are satisfied by Qr.

In (31) replace x1 by λx1 and get

p

{
a[x1, x2]a[y1, y2] + λ2

h−1α([x1, x2])ba[y1, y2]− c[y1, y2][x1, x2]

}2

. (33)

Now we denote

Ω1(x1, x2, y1, y2) = a[x1, x2]a[y1, y2]− c[y1, y2][x1, x2]

and

Ω2(x1, x2, y1, y2) = α([x1, x2])ba[y1, y2]

obtaining

p

{
Ω1(r1, r2, r3, r4) + γΩ2(r1, r2, r3, r4)

}2

= 0

for all r1, r2, r3, r4 ∈ Qr, with γ = λ2
h−1 6= 1. Thus, as above, for z0 = pΩ2

1,

z1 = p(Ω1Ω2 + Ω2Ω1) and z2 = pΩ2
2, one has

z0 + γz1 + γ2z2 = 0. (34)

By the same above Vandermonde determinant argument, we arrive at z0 = 0, that

is Qr satisfies

p

{
a[x1, x2]a[y1, y2]− c[y1, y2][x1, x2]

}2

. (35)
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Application of Proposition 2.3 to (35) leads to the conclusion pa = pc = 0, unless

Qr satisfies s4.

On the other hand, if we replace x1 by λx1 in (32), then Qr satisfies

p

{
a[x1, x2]α([y1, y2])b+ λ2

h−1α([x1, x2])bα([y1, y2])b− α([y1, y2])u[x1, x2]

}2

(36)

Once again, we denote

Ψ1(x1, x2, y1, y2) = a[x1, x2]α([y1, y2])b− α([y1, y2])u[x1, x2]

and

Ψ2(x1, x2, y1, y2) = α([x1, x2])bα([y1, y2])b

obtaining

p

{
Ψ1(r1, r2, r3, r4) + γΨ2(r1, r2, r3, r4)

}2

= 0

for all r1, r2, r3, r4 ∈ Qr, with γ = λ2
h−1 6= 1. Therefore, for w0 = pΨ2

1, w1 =

p(Ψ1Ψ2 + Ψ2Ψ1) and w2 = pΨ2
2, it follows that

w0 + γw1 + γ2w2 = 0. (37)

Similarly to what we saw previously, we get w0 = 0 and w2 = 0, that is both

p

{
a[x1, x2]α([y1, y2])b− α([y1, y2])u[x1, x2]

}2

(38)

and

p

{
α([x1, x2])bα([y1, y2])b

}2

(39)

are identities for Qr. We remark that (39) means that

p

{
[r1, r2]b[s1, s2]b

}2

= 0 ∀r1, r2, s1, s2 ∈ Qr

implying b = 0 (since p 6= 0). Then (38) reduces to

p

{
α([y1, y2])u[x1, x2]

}2

that is u = 0.

Hence we have proved that either Qr satisfies s4, or F (x) = ax and G(x) = cx, for

any x ∈ R, with pa = pc = 0, as required. �
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4. The proof of Theorem 1.1

In this final section we consider the more general situation and write F (x) =

ax + d(x), G(x) = cx + δ(x) for all x ∈ R, where a, c ∈ Qr and d, δ are skew

derivations of R. Let α be the automorphism associated with d and δ. Thus, for

any x, y ∈ R,

d(xy) = d(x)y + α(x)d(y)

and

δ(xy) = δ(x)y + α(x)δ(y).

To prove our main result, we always assume that R does not satisfy the standard

identity s4. Under this assumption, and since L is not central, there exists a non-

zero ideal I of R such that 0 6= [I,R] ⊆ L ([15, pages 4-5], [12, Lemma 2 and

Proposition 1], [17, Theorem 4]). Therefore we have that there exists a non-central

ideal I of R such that

p
{
F (u)F (v)−G(v)u

}n
= 0 ∀u, v ∈ [I, I].

Since R and I satisfy the same generalized differential identities with automor-

phisms, we may assume that

p
{
F ([x1, x2])F ([y1, y2])−G([y1, y2])[x1, x2]

}n
(40)

is an identity for R. In other words R satisfies

p

{(
a[x1, x2]+d([x1, x2]

)(
a[y1, y2])+d([y1, y2]

)
−
(
c[y1, y2]+δ([y1, y2])

)
[x1, x2]

}n

.

(41)

The following results which will be useful in the sequel:

Fact 4.1. ([10, Lemma 3.2]) Let R be a prime ring, α, β ∈ Aut(Qr) and d : R→ R

be a skew derivation, associated with the automorphism α. If there exist 0 6= θ ∈ C,

0 6= η ∈ C and u, b ∈ Qr such that

d(x) = θ

(
ux− α(x)u

)
+ η

(
bx− β(x)b

)
, ∀x ∈ R

then d is an inner skew derivation of R. More precisely, either b = 0 or α = β.

Fact 4.2. ([11, Fact 4.2]) Let R be a prime ring, α, β ∈ Aut(Qr) and d, δ : R→ R

be skew derivations, associated with the automorphism α. If there exist 0 6= η ∈ C
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and p ∈ Qr such that

δ(x) = ηd(x) +

(
px− β(x)p

)
, ∀x ∈ R (42)

then either α = β or px− β(x)p = 0 and δ(x) = ηd(x), for any x ∈ R.

Remark 4.3. If we assume that both F and G are inner generalized skew deriva-

tions, then we may write

d(x) = bx− α(x)b and F (x) = ax+ bx− α(x)b ∀x ∈ R

and

δ(x) = ux− α(x)u and G(x) = cx+ ux− α(x)u ∀x ∈ R

where a, b, c, u ∈ Qr and α ∈ Aut(R).

We would like to point out that, in case R satisfies (41) and by Proposition 3.2, we

may conclude that one of the following holds:

(1) d = δ = 0 and pa = pc = 0;

(2) R satisfies s4.

Proof of Theorem 1.1. By Propositions 2.3 and 3.2 we may assume that d, δ are

not simultaneously inner skew derivations. In particular d, δ are not simultaneously

zero. In all that follows we may also suppose that R does not satisfy s4.

By (41), R satisfies

p

{(
a[x1, x2] + d(x1)x2 + α(x1)d(x2)− d(x2)x1 − α(x2)d(x1)

)
·

·
(
a[y1, y2] + d(y1)y2 + α(y1)d(y2)− d(y2)y1 − α(y2)d(y1)

)
− c[y1, y2][x1, x2]−

(
δ(y1)y2 + α(y1)δ(y2)− δ(y2)y1 − α(y2)δ(y1)

)
[x1, x2]

}n

.

(43)

Let d 6= 0 and δ 6= 0 be C−linearly independent modulo SDint.

In this case, by (43), R satisfies

p

{(
a[x1, x2] + t1x2 + α(x1)t2 − t2x1 − α(x2)t1

)
·

·
(
a[y1, y2] + z1y2 + α(y1)z2 − z2y1 − α(y2)z1

)
− c[y1, y2][x1, x2]−

(
w1y2 + α(y1)w2 − w2y1 − α(y2)w1

)
[x1, x2]

}n

.

(44)
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In particular, for x1 = t2 = y1 = z2 = 0, R satisfies

p

{(
t1x2 − α(x2)t1

)
·
(
z1y2 − α(y2)z1

)}n

. (45)

If α is the identity map, then R satisfies p[x1, x2]2n, which forces p = 0, a contra-

diction. Thus α is not the identity on R. Since (45) is a non-trivial generalized

identity also for Qr, then Qr is isomorphic to a dense subring of the ring of linear

transformations of a vector space V over a division ring D, containing non-zero

linear transformations of finite rank and, as above, there exists a semi-linear auto-

morphism T ∈ End(V ) such that α(x) = TxT−1 for all x ∈ Qr.

Hence, Qr satisfies

p

{(
t1x2 − Tx2T−1t1

)
·
(
z1y2 − Ty2T−1z1

)}n

. (46)

Let dimDV ≥ 2 and suppose that, for any v ∈ V , there exists λv ∈ D such

that T−1v = vλv. As mentioned above, there exists a unique λ ∈ D such that

T−1v = vλ, for all v ∈ V . In this case α is the identity, a contradiction.

Therefore, there exists v ∈ V such that {v, T−1v} is linearly D-independent. By

the density of Qr, there exist r1, r2, s1, s2 ∈ Qr such that

s1v = 0 s2v = T−1v s1T
−1v = v r1v = 0 r2v = T−1v r1T

−1v = v

and, by (46), we get

p

{(
r1r2 − Tr2T−1r1

)
·
(
s1s2 − Ts2T−1s1

)}n

v = pv. (47)

As above, application of Lemma 2.2 and since p 6= 0, it follows dimDV = 2 and Qr

satisfies

p

{(
t1x2 − α(x2)t1

)
·
(
z1y2 − α(y2)z1

)}2

. (48)

On the other hand, if dimDV = 1, Qr is a domain satisfying

p

{(
t1x2 − α(x2)t1

)
·
(
z1y2 − α(y2)z1

)}
.

Therefore, more generally we may assume that (48) is an identity for Qr. In par-

ticular, for t1 = z1 and x2 = y2, Qr satisfies p

(
z1y2 − α(y2)z1

)2

. Since p 6= 0, this

last relation implies

(
r1r2 − α(r2)r1

)
= 0, for any r1, r2 ∈ Qr (see [1, Theorem B

and Corollary]). It is easy to see that this case may occur only if R is commutative

and α is the identity, a contradiction.
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Let d 6= 0 and δ 6= 0 be C−linearly dependent modulo SDint.

Here we assume that there exist λ, µ ∈ C, c′ ∈ Qr and γ ∈ Aut(R) such that

λd(x) + µδ(x) = c′x− γ(x)c′ for all x ∈ R.

• We firstly study the case 0 6= λ ∈ C and 0 6= µ ∈ C.

Denote η = −µ−1λ and p′ = µ−1c′. So δ(x) = ηd(x) + p′x − γ(x)p′ for all x ∈ R.

By Fact 4.2, we know that either δ(x) = ηd(x) for all x ∈ R, or γ = α.

In case γ = α, one has δ(x) = ηd(x)+p′x−α(x)p′ for all x ∈ R. Therefore by (43),

Qr satisfies

p

{(
a[x1, x2] + d(x1)x2 + α(x1)d(x2)− d(x2)x1 − α(x2)d(x1)

)
·

·
(
a[y1, y2] + d(y1)y2 + α(y1)d(y2)− d(y2)y1 − α(y2)d(y1)

)
− c[y1, y2][x1, x2]−

(
ηd(y1)y2 + α(y1)ηd(y2)− ηd(y2)y1 − α(y2)ηd(y1)

)
[x1, x2]

−
(
p′[y1, y2]− [α(y1), α(y2)]p′

)
[x1, x2]

}n

.

(49)

Applying Fact 4.1 we may assume that d is not inner. By (49) Qr satisfies

p

{(
a[x1, x2] + t1x2 + α(x1)t2 − t2x1 − α(x2)t1

)
·

·
(
a[y1, y2] + z1y2 + α(y1)z2 − z2y1 − α(y2)z1

)
− c[y1, y2][x1, x2]−

(
ηz1y2 + α(y1)ηz2 − ηz2y1 − α(y2)ηz1

)
[x1, x2]

−
(
p′[y1, y2]− [α(y1), α(y2)]p′

)
[x1, x2]

}n

.

(50)

In particular, for x1 = t2 = y1 = z2 = 0 in (50), it follows that Qr satisfies again

relation (45), so that a contradiction follows as above.

Analogously, for δ = ηd, the relation (49) reduces to

p

{(
a[x1, x2] + d(x1)x2 + α(x1)d(x2)− d(x2)x1 − α(x2)d(x1)

)
·

·
(
a[y1, y2] + d(y1)y2 + α(y1)d(y2)− d(y2)y1 − α(y2)d(y1)

)
− c[y1, y2][x1, x2]−

(
ηd(y1)y2 + α(y1)ηd(y2)− ηd(y2)y1 − α(y2)ηd(y1)

)
[x1, x2]

}n

.

(51)

It is easy to see that Qr satisfies again (45) and we conclude as above.
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• Assume now λ = 0.

Hence δ(x) = p′x− γ(x)p′ for all x ∈ R, where p′ = µ−1c′ and d is not inner.

Then, by relation (43), Qr satisfies

p

{(
a[x1, x2] + t1x2 + α(x1)t2 − t2x1 − α(x2)t1

)
·

·
(
a[y1, y2] + z1y2 + α(y1)z2 − z2y1 − α(y2)z1

)
− c[y1, y2][x1, x2]−

(
p′[y1, y2]− [γ(y1), γ(y2)]p′

)
[x1, x2]

}n

.

(52)

Also in this case, for x1 = t2 = y1 = z2 = 0 in (52), Qr satisfies (45) and we are

done.

• The case µ = 0

In this case, d(x) = p′x− γ(x)p′ for all x ∈ R, where p′ = λ−1c′ and δ is not inner.

Moreover α = γ (as a reduction of Fact 4.2). Relation (43) implies that Qr satisfies

p

{(
a[x1, x2] + p′[x1, x2]− [α(x1), α(x2)]p′

)(
a[y1, y2] + p′[y1, y2]− [α(y1), α(y2)]p′

)
− c[y1, y2][x1, x2]−

(
δ(y1)y2 + α(y1)δ(y2)− δ(y2)y1 − α(y2)δ(y1)

)
[x1, x2]

}n

.

(53)

Since δ is not inner, Qr satisfies

p

{(
a[x1, x2] + p′[x1, x2]− [α(x1), α(x2)]p′

)(
a[y1, y2] + p′[y1, y2]− [α(y1), α(y2)]p′

)
− c[y1, y2][x1, x2]−

(
z1y2 + α(y1)z2 − z2y1 − α(y2)z1

)
[x1, x2]

}n

.

(54)

For z1 = z2 = 0 in (54), it follows that

p

{(
a[x1, x2] + p′[x1, x2]− [α(x1), α(x2)]p′

)(
a[y1, y2] + p′[y1, y2]− [α(y1), α(y2)]p′

)
− c[y1, y2][x1, x2]

}n

.

(55)

is an identity for Qr. Application of Proposition 3.2 implies p′x − α(x)p′ = 0, for

any x ∈ Qr, that is d = 0, which is a contradiction.
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The case δ = 0

Here we have to consider the only case when 0 6= d is an outer skew derivation.

By (43), R satisfies

p

{(
a[x1, x2] + d(x1)x2 + α(x1)d(x2)− d(x2)x1 − α(x2)d(x1)

)
·

·
(
a[y1, y2] + d(y1)y2 + α(y1)d(y2)− d(y2)y1 − α(y2)d(y1)

)
− c[y1, y2][x1, x2]

}n

.

(56)

Then, since 0 6= d is outer, R satisfies

p

{(
a[x1, x2] + t1x2 + α(x1)t2 − t2x1 − α(x2)t1

)
·

·
(
a[y1, y2] + z1y2 + α(y1)z2 − z2y1 − α(y2)z1

)
− c[y1, y2][x1, x2]

}n

.

(57)

As above, for x1 = t2 = y1 = z2 = 0 in (57), (45) is an identity for R and we are

done again.

The case d = 0

In this final case, relation (43) reduces to

p

{
a[x1, x2]a[y1, y2]− c[y1, y2][x1, x2]

−
(
δ(y1)y2 + α(y1)δ(y2)− δ(y2)y1 − α(y2)δ(y1)

)
[x1, x2]

}n

.

(58)

Moreover, we may assume that 0 6= δ is not inner. Therefore (58) implies that R

satisfies

p

{
a[x1, x2]a[y1, y2]− c[y1, y2][x1, x2]

−
(
z1y2 + α(y1)z2 − z2y1 − α(y2)z1

)
[x1, x2]

}n (59)

and in particular, for y1 = z2 = 0 in (59), it follows that

p

{(
z1y2 − α(y2)z1

)
[x1, x2]

}n

(60)

is satisfied by R, as well as by Qr.

Now let’s fix any two elements r1, r2 ∈ Qr and denote w = r1r2 −α(r2)r1. By (60)
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we have that

p

{
w[x1, x2]

}n

is an identity for Qr. This last implies pw = 0 (see for instance [8, Theorem]). By

the arbitrariness of r1, r2 ∈ Qr, it follows that Qr satisfies the generalized identity

p

{
z1y2 − α(y2)z1

}
.

Since p 6= 0, as above we get

(
r1r2−α(r2)r1

)
= 0, for any r1, r2 ∈ Qr (see [1, The-

orem B and Corollary]). Once again, since R is not commutative, a contradiction

follows. �

Availability of data and material. No datasets were generated or analysed

during the current study.
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