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Abstract

In this paper, we investigate the new traveling wave solutions for the sixth-order Boussinesq
equation using the tanh-coth method. Such a method is a type of expansion method that
represents the solutions of partial differential equations as polynomials of tanh and coth
functions. We discover several new traveling wave solutions for the sixth-order Boussinesq
equation with different parameters, which are of fundamental importance for various
applications.

1. Introduction

In this paper, we consider the following sixth-order Boussinesq equation (1.1)

utt −uxx +βuxxxx−uxxxxxx +(u2)xx = 0, (1.1)

where β = 1 or −1. The Boussinesq approximation for water waves was originally derived by Joseph Boussinesq in 1871 [1].
The fourth-order Boussinesq equations were then introduced in the following year [2]. Since then, a great number of
mathematical models have been referred as Boussinesq equations, which are usually called Boussinesq-type equations. Among
the wide range of Boussinesq-type equations, the sixth-order Boussinesq equations have attracted great attentions from the
researchers all over the world. In particular, the Boussinesq-type equations with linear strong damping and nonlinear source [3],
fourth-order dispersion term and nonlinear source [4], cubic nonlinearity [5], and the linear Boussinesq-type equation [6] have
been considered. In addition to the aforementioned work, Christov, Maugin and Velarde [7] reexamined the Boussinesq-type
equations for the shallow fluid layers and derived equation (1.1). The exact controllability and stability of the equation has
been studied in [8]. However, the traveling wave solutions for (1.1) has not been considered. In this paper, we will fill in the
gap by discussing the traveling wave solutions in the closed form.
The methodology that we use for the derivation of the traveling wave solutions is called the tanh-coth method, which belongs
to the broader category of expansion methods. The expansion methods are analytical methods that look for a summation
of finite terms in specific forms, including the tanh function and extended tanh expansion method, Jacobi elliptic functions
method, extended direct algebraic method, sine-cosine method, and modified (G′/G)-expansion method. In particular,
Amirov and Anutgan [9] applied the tanh function and polynomial function methods to derive the analytical solitary wave
solutions for the sixth-order modified Boussinesq equation. A similar method named tanh-coth method has also been used
to find the exact solutions for various partial differential equations. In [10], the author used tanh-coth method to derive
the solitons and kink solutions for nonlinear parabolic equations, including the Fisher equation, Newell-Whithead equation,
Allen-Cahn equation, FitzHugh-Nagumo equation and the Burgers-Fisher equation. The tanh-coth method for some nonlinear
pseudo-parabolic equations, including the Benjamin-Bona-Mahony-Peregrine-Burgers equation, the Oskolkov-Benjamin-
Bona-Mahony-Burgers equation, the Oskolkov equation and the generalized hyperelastic-rod wave equation, were discussed
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in [11]. Recently, the method has also been successfully applied to stochastic differential equations [12, 13] and fractional
differential equations [14, 15]. Some extended methods including the extended tanh method [16, 17] and the modified tanh-coth
method [18], were developed for the Zakharov-like equation, fourth-order Boussinesq equation, the Klein-Gordon equations,
the Khokhlov-Zabolotskaya-Kuznetsov, the Newell-Whitehead-Segel and the Rabinovich wave equations.
Other than the tanh related methods, the Jacobi elliptic function method has also been applied to find the traveling wave and
soliton solutions for partial differential equations and fractional differential equations. In [19], the authors used the F-expansion
technique to solve the sine-Gordon equation in terms of the Jacobi elliptic functions. Also in [20], Fang and Dai discussed three
different approaches for obtaining the bright and dark soliton solutions for a time-fractional higher-order nonlinear Schrodinger
equation. More specifically, the Jacobi elliptic function method, Riccati equation method and the double function method have
been used to study the time-fractional Schrodinger equation with Kerr law, power law and log law of nonlinearity. Similar
to the aforementioned methods, the extended direct algebraic method also assumes that the solution to a given differential
equation can be expressed as a finite sum of certain functions. But it requires that each of the function satisfies a specific first
order differential equation with parameters. The extended direct algebraic method has been used to find the traveling wave
solutions for the coupled systems of KdV equations, the variant Boussinesq equations and the coupled Burgers equations [21].
An alternative method named sine-cosine method was also employed to construct the traveling wave solutions for nonlinear
Schrodinger equations [22]. Instead of looking for an analytical solution in the form of a summation of some particular
functions, the sine-cosine method simply looks for an ansatz in the form of a power of a truncated sine or cosine function
with some unknown parameters. Such a method has been successfully utilized to obtain some traveling wave solutions for
several nonlinear Schrodinger equations. Another popular method called modified (G′/G)-expansion method has also been
developed for finding exact wave solutions of various PDEs. The main idea of the method is to assume that the exact solution
can be expressed as a polynomial in (G′/G) and that G satisfies a specific second-order ODE with parameters to be determined
by balancing the derivatives and nonlinear terms in the given PDE. Interest readers can check the work by Bansal and Gupta
in [23] where they used such a method to solve the Klein-Gordon-Schrodinger equation.
In this paper, we investigate the traveling wave solutions for the sixth-order Boussinesq equation (1.1) by utilizing the tanh-coth
method due to its powerfulness and simplicity. The rest of the paper is organized as follows: in section 2, we describe the
framework of the tanh-coth method for general PDEs. In section 3-5, we establish the procedure of finding the traveling
wave solutions for the sixth-order Boussinesq equation and discuss different cases for the values of parameters β in (1.1).
In particular, we discuss the Boussinesq equation with β = 1 and β = −1 in section 4 and section 5, respectively. Some
concluding remarks are given in section 6.

2. Description of the tanh-coth method

Consider a PDE in the following form

P(u,ut ,ux,utt ,uxx,utx,uxxx, . . .) = 0, (2.1)

where P is a polynomial in terms of the unknown function u(x, t) and its various derivatives. We look for a traveling wave
solution u(ξ ) with ξ = x− vt, where v is the wave speed. Then equation (2.1) can be written as

P(u,u′,u′′,u′′′, . . .) = 0, (2.2)

which is an ODE with respect to u(ξ ), the traveling wave solution.
Next, we let Y = tanh(µξ ) and assume that u(ξ ) can be expressed as a finite expansion given in the following equation

u(ξ ) = a0 +
M

∑
i=1

aiY i(ξ )+
M

∑
i=1

biY−i(ξ ). (2.3)

Here ai for 0≤ i≤M and b j for 1≤ j ≤M are unknown constants to be determined, and we assume that aM 6= 0. We then
substitute (2.3) into (2.2) and balance the coefficients of the various powers of Y . One key component in such a process is to
apply the following equality for Y :

Y ′ = µ−µY 2, (2.4)

so that the various derivatives of Y can be converted to powers of Y . Also note that we need to consider the change of variables
before we apply (2.4). That is, when we calculate u′(ξ ), the following change of derivative is needed:

u′(ξ ) = µ(1−Y 2)
du
dY

= µ(1−Y 2)

(
M

∑
i=1

iaiY i−1−
M

∑
i=1

ibiY−i−1

)
.

Note that the highest power of Y in u′(ξ ) is (M+1) which is one more than the highest power of Y in u(ξ ). In addition, we
can further calculate the second derivative of u(ξ ) to get

u′′(ξ ) = µ(1−Y 2)
du′(ξ )

dY
= µ

2(1−Y 2)

(
−2Y

du
dY

+(1−Y 2)
d2u
dY 2

)
.
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Since the leading terms in Y du
dY and (1−Y 2) d2u

dY 2 are both Y M , the highest power of Y in u′′(ξ ) is (M+2), which is two more
than the highest power of Y in u(ξ ). Similarly, one can show that if the highest order of derivatives for all the linear terms
in (2.2) is K, then the leading term for all the linear terms in the equation is a constant times Y M+k. Usually, one can calculate
the value of M by balancing the linear terms of the highest order and the leading nonlinear terms. For example, if P in (2.1)
is defined to be P(u,ut ,uxx) = ut −uxx +u−u3, then the linear term of the highest order in (2.2) is u′′ which leads to Y M+2

terms, and the leading nonlinear term is u3 which leads to Y 3M terms. By matching the highest power of these two terms, we
can get M = 1.
Once the value of M is determined, we can rewrite (2.2) as a finite expansion in terms of Y using (2.4) and (2.3). We then
further collect all the coefficients of Y i for all i and derive a system of equations by setting theses coefficients to be equal to
zero. By solving the algebraic system, we can obtain the values of ai (for 0 ≤ i ≤M), b j (for 1 ≤ j ≤M), µ and v, which
leads to an analytical solution in the form of (2.3). Note that if we assume that b j = 0 for 1≤ j ≤M in (2.3), then the method
recovers the standard tanh method. The tanh-coth method works very well for PDEs in the form of (2.1). Even for PDEs
that are not in the given form as in (2.1), we may still apply the tanh-coth method if the PDEs can be transformed to (2.1).
Interested readers can refer to [24] for a thorough discussion about finding the exact solutions of the sine-Gordon and the
sinh-Gordon equations using the tanh method.

3. The tanh-coth Method for the sixth-order Boussinesq equation

We now discuss how to solve the sixth-order Boussinesq equation (1.1) using the tanh-coth method. Let u(x, t) = u(ξ ) be the
traveling wave solution to (1.1) where ξ = x− vt with v being the constant speed of the traveling wave. Then, equation (1.1)
becomes

v2u′′−u′′+βu(4)−u(6)+(u2)′′ = 0. (3.1)

Here u′′, u(4) and u(6) represent d2u
dξ 2 , d4u

dξ 4 and d6u
dξ 6 , respectively. We then integrate (3.1) with respect to ξ twice, and set the

integration constants to zero, to obtain the following equation

(v2−1)u+βu′′−u(4)+u2 = 0. (3.2)

We now use the tanh-coth method by letting

u(ξ ) =
M

∑
i=0

aiY i(ξ )+
M

∑
i=1

biY−i(ξ ), (3.3)

where Y = tanh(µξ ) satisfies

Y ′ = µ−µY 2, (3.4)

and ai for i = 0,1, . . . ,M and b j for j = 1,2, . . . ,M are constants to be determined. Based on the ansarz of u(ξ ) given in (3.3)
and the derivative of Y in (3.4), as well as the description of the tanh-coth method in section 2, we can balance the highest
power of Y in the leading nonlinear term u2 with the power of Y in the linear term of the highest order, i.e.,u(4), in (3.2). Thus,
we can get

2M = M+4,

which leads to M = 4. Therefore, equation (3.3) becomes

u(ξ ) =
4

∑
i=0

aiY i(ξ )+
4

∑
i=1

biY−i(ξ ). (3.5)

Detailed calculations show that

u′′ = 20µ
2a4Y 6 +12µ

2a3Y 5 +(6µ
2a2−32µ

2a4)Y 4 +(2µ
2a1−18µ

2a3)Y 3 +(12µ
2a4−8µ

2a2)Y 2

+(6µ
2a3−2µ

2a1)Y +(2µ
2a2 +2µ

2b2)+(6µ
2b3−2µ

2b1)Y−1 +(12µ
2b4−8µ

2b2)Y−2

+(2µ
2b1−18µ

2b3)Y−3 +(6µ
2b2−32µ

2b4)Y−4 +12µ
2b3Y−5 +20µ

2b4Y−6, (3.6)

u(4) = 840µ
4a4Y 8 +360µ

4a3Y 7 +(120µ
4a2−2080µ

4a4)Y 6 +(24µ
4a1−816µ

4a3)Y 5

+(1696µ
4a4−240µ

4a2)Y 4 +(576µ
4a3−40µ

4a1)Y 3 +(136µ
4a2−480µ

4a4)Y 2

+(16µ
4a1−120µ

4a3)Y +(24µ
4a4−16µ

4a2−16µ
4b2 +24µ

4b4)

+(16µ
4b1−120µ

4b3)Y−1 +(136µ
4b2−480µ

4b4)Y−2 +(576µ
4b3−40µ

4b1)Y−3

+(1696µ
4b4−240µ

4b2)Y−4 +(24µ
4b1−816µ

4b3)Y−5 +(120µ
4b2−2080µ

4b4)Y−6

+360µ
4b3Y−7 +840µ

4b4Y−8, (3.7)
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and

u2 = a2
4Y 8 +2a3a4Y 7 +(a2

3 +2a2a4)Y 6 +(2a1a4 +2a2a3)Y 5 +(a2
2 +2a0a4 +2a1a3)Y 4

+(2a0a3 +2a1a2 +2a4b1)Y 3 +(a2
1 +2a0a2 +2a3b1 +2a4b2)Y 2

+(2a0a1 +2a2b1 +2a3b2 +2a4b3)Y +(a2
0 +2a1b1 +2a2b2 +2a3b3 +2a4b4)

+(2a0b1 +2a1b2 +2a2b3 +2a3b4)Y−1 +(b2
1 +2a0b2 +2a1b3 +2a2b4)Y−2

+(2a0b3 +2a1b4 +2b1b2)Y−3 +(b2
2 +2a0b4 +2b1b3)Y−4 +(2b1b4 +2b2b3)Y−5

+(b2
3 +2b2b4)Y−6 +2b3b4Y−7 +b2

4Y−8. (3.8)

We then substitute (3.5), (3.6), (3.7) and (3.8) into (3.2), collect all the coefficients of Y i for i =−8,−7, . . . ,8, and set them
equal to zero so that we can obtain a system of equations. Next, we discuss the results for β = 1 and −1.

4. The Boussinesq equation with β = 1

For the case of β = 1, we get the following system

O(Y 8) : a2
4−840µ

4a4 = 0,
O(Y 7) : −360a3µ

4 +2a3a4 = 0,
O(Y 6) : 2a2a4 +20µ

2a4−120µ
4a2 +2080µ

4a4 +a2
3 = 0,

O(Y 5) : 2a1a4 +2a2a3 +12µ
2a3−24µ

4a1 +816µ
4a3 = 0,

O(Y 4) : 240µ
4a2−1696a4µ

4 +6µ
2a2−32a4µ

2 +a2
2 +a4v2−a4 +2a0a4 +2a1a3 = 0,

O(Y 3) : 2a0a3−a3 +2a1a2 +2a4b1 +2µ
2a1−18µ

2a3 +40µ
4a1−576µ

4a3 +a3v2 = 0,
O(Y 2) : 2a0a2−a2 +2a3b1 +2a4b2−8µ

2a2 +12µ
2a4−136µ

4a2 +480µ
4a4 +a2v2 +a2

1 = 0,
O(Y ) : 2a0a1−a1 +2a2b1 +2a3b2 +2a4b3−2µ

2a1 +6µ
2a3−16µ

4a1 +120µ
4a3 +a1v2 = 0,

O(Y 0) : 2a1b1−a0 +2a2b2 +2a3b3 +2a4b4 +2µ
2a2 +16µ

4a2−24µ
4a4 +2µ

2b2 +16µ
4b2

−24µ
4b4 +a0v2 +a2

0 = 0,
O(Y−1) : 2a0b1−b1 +2a1b2 +2a2b3 +2a3b4−2µ

2b1 +6µ
2b3−16µ

4b1 +120µ
4b3 +b1v2 = 0,

O(Y−2) : 2a0b2−b2 +2a1b3 +2a2b4−8µ
2b2 +12µ

2b4−136µ
4b2 +480µ

4b4 +b2v2 +b2
1 = 0,

O(Y−3) : 2a0b3−b3 +2a1b4 +2b1b2 +2µ
2b1−18µ

2b3 +40µ
4b1−576µ

4b3 +b3v2 = 0,
O(Y−4) : 240µ

4b2−1696b4µ
4 +6µ

2b2−32b4µ
2 +b2

2 +b4v2−b4 +2a0b4 +2b1b3 = 0,
O(Y−5) : 2b1b4 +2b2b3 +12µ

2b3−24µ
4b1 +816µ

4b3 = 0,
O(Y−6) : 2b2b4 +20µ

2b4−120µ
4b2 +2080µ

4b4 +b2
3 = 0,

O(Y−7) : −360b3µ
4 +2b3b4 = 0,

O(Y−8) : −840µ
4b4 +b2

4 = 0.

4.1. When a4 = 0

We can show that if a4 = 0, then a3 = a2 = a1 = 0 based on the coefficients of O(Y i) with i = 1,2, . . . ,8. Then the coefficient
of O(Y 0) leads to

−a0 +2µ
2b2 +16µ

4b2−24µ
4b4 +a0v2 +a2

0 = 0.

If we further assume b4 = 0, then b3 = b2 = b1 = 0, and the equation above leads to the trivial solutions to (3.2), namely, u = 0
or u = 1− v2. Therefore, for the case of a4 = 0, we assume b4 6= 0 so that the coefficient of Y−8 gives

b4 = 840µ
4.

Thus we can solve for b3, b2, b1 using the coefficients of Y−i for i = 7,6 and 5 to get

b3 = 0, b2 =−
140
13

µ
2−1120µ

4, b1 = 0.

We further substitute the value of b1, b2, b3 and ai with 1≤ i≤ 4 into the coefficients of Y−4, Y−2 and Y 0, respectively, to
obtain

1568µ
4 +

560
13

µ
2−
(

3v2 +6a0−
476
169

)
= 0, (4.1)

3968µ
6 +

1904
13

µ
4 +

(
−8v2−16a0 +

112
13

)
µ

2 +

(
− 1

13
v2− 2

13
a0 +

1
13

)
= 0, (4.2)

38080µ
8 +

31360
13

µ
6 +

280
13

µ
4−a2

0−a0v2 +a0 = 0. (4.3)
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Equation (4.1) and (4.2) lead to

v2 +2a0 =
3968µ6 + 1904

13 µ4 + 112
13 µ2 + 1

13

8µ2 + 1
13

=
1568µ4 + 560

13 µ2 + 476
169

3
. (4.4)

Thus we get the following equation about µ:

640µ
6 +

336
13

µ
4− 31

2197
=

(
µ

2− 13
676

)(
640µ

4 +
496
13

µ
2 +

124
169

)
= 0.

The roots of the equation above are µ1 =−
√

13
26 , µ2 =

√
13

26 , µ3 =

√
−31+3

√
31i

1040 , µ4 =

√
−31−3

√
31i

1040 , µ5 =−
√
−31+3

√
31i

1040 and

µ6 =−
√
−31−3

√
31i

1040 .

4.1.1. For µ = µ1 =−
√

13
26

We substitute the value of µ into equation (4.4) to get

v2 +2a0 =
238
169

. (4.5)

We then substitute the value of µ into equation (4.3), and obtain

a2
0 +a0v2−a0 =

3465
114244

. (4.6)

Solving (4.5) and (4.6) leads to

(1)a0 =
105
338

,v =

√
133
13

; (2)a0 =
105
338

,v =−
√

133
13

;

(3)a0 =
33

338
,v =

√
205
13

; (4)a0 =
33
338

,v =−
√

205
13

.

In addition, we can calculate that

b4 =
105
338

, b3 = 0, b2 =−
105
169

, b1 = 0.

Based on the discussion above, we can obtain four traveling wave solutions:

u1(x, t) =
105
338
− 105

169
coth2(−

√
13

26
(x−

√
133
13

t))+
105
338

coth4(−
√

13
26

(x−
√

133
13

t)).

u2(x, t) =
105
338
− 105

169
coth2(−

√
13

26
(x+

√
133
13

t))+
105
338

coth4(−
√

13
26

(x+

√
133
13

t)).

u3(x, t) =
33

338
− 105

169
coth2(−

√
13

26
(x−

√
205
13

t))+
105
338

coth4(−
√

13
26

(x−
√

205
13

t)).

u4(x, t) =
33

338
− 105

169
coth2(−

√
13

26
(x+

√
205
13

t))+
105
338

coth4(−
√

13
26

(x+

√
205
13

t)).

The traveling wave solution u1(x, t) at T = 1 and T = 3 is given in Figure 4.1. The figure is generated using MATLAB 2019a.
Note that u1(x, t) is defined for x 6=

√
133
13 t, thus we only plot part of the spatial domain such that x−

√
133
13 t is large enough.

The formulation of u1(x, t) indicates that the wave travels from left to right, and it is consistent with the observation from
Figure 4.1. The behavior of u2, u3 and u4 are very similar to that of u1. Therefore, we skip the plots of these solutions.

4.1.2. For µ = µ2 =
√

13
26

It is easy to show that the values of bi (1 ≤ i ≤ 4), a j (0 ≤ j ≤ 4) and v0 are the same as their values in the case when
µ = µ1 =−

√
13

26 . Also note that coth2(−ξ ) = coth2(ξ ) and coth4(−ξ ) = coth4(ξ ). Therefore, the traveling wave solutions
for this case are exactly the same as u1(x, t), u2(x, t), u3(x, t) and u4(x, t) in the previous section.

4.1.3. For µ = µ3 =

√
−31+3

√
31i

1040

We substitute the value of µ into equation (4.4) to get

v2 +2a0 =
14203−819

√
31i

16900
. (4.7)
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Figure 4.1: The traveling wave solution u1(x, t) at T = 1 (the left figure) and T = 3 (the right figure).

We then substitute the value of µ into equation (4.3) to get

a2
0 +a0v2−a0 =

−6595281+2189313
√

31i
456976000

. (4.8)

(4.7) and (4.8) lead to

a2
0 +

2697+819
√

31i
16900

a0 +
−6595281+2189313

√
31i

456976000
= 0.

Thus a0 =
−5394−1638

√
31i±
√

11873682−4222386
√

31i
67600 and v can be solved using (4.7).

4.2. When a4 6= 0 and b4 = 0

Note that the coefficients of O(Y i) and O(Y−i) for i = 1, . . . ,8 are symmetric in the sense that if we interchange ai, bi in the
formulations of O(Y i), we can obtain the formulations of O(Y−i). Thus, we can show that

b4 = b3 = b2 = b1 = 0,

and

a4 = 840µ
4, a3 = 0, a2 =−

140
13

µ
2−1120µ

4, a1 = 0.

In addition, it is also easy to verify that equations (4.1), (4.2) and (4.3) are also satisfied. Therefore, the solution of µ is the

same as that in the case when a4 = 0, i.e., µ1 =−
√

13
26 , µ2 =

√
13

26 , µ3 =

√
−31+3

√
31i

1040 , µ4 =

√
−31−3

√
31i

1040 , µ5 =−
√
−31+3

√
31i

1040

and µ6 =−
√
−31−3

√
31i

1040 . So we can obtain another four traveling wave solutions for µ = µ1 and µ = µ2:

u5(x, t) =
105
338
− 105

169
tanh2(

√
13

26
(x−

√
133
13

t))+
105
338

tanh4(

√
13

26
(x−

√
133
13

t)).

u6(x, t) =
105
338
− 105

169
tanh2(

√
13

26
(x+

√
133
13

t))+
105
338

tanh4(

√
13

26
(x+

√
133
13

t)).

u7(x, t) =
33
338
− 105

169
tanh2(

√
13

26
(x−

√
205
13

t))+
105
338

tanh4(

√
13

26
(x−

√
205
13

t)).

u8(x, t) =
33
338
− 105

169
tanh2(

√
13

26
(x+

√
205
13

t))+
105
338

tanh4(

√
13

26
(x+

√
205
13

t)).

We further use MATLAB 2019a to visualize the traveling wave solutions u5, u6, u7 and u8 for t ∈ [0,30]. Note that these
functions are defined for all real numbers. Figure 4.2 shows that u5 travels in the positive x-direction and u6 travels in the
negative x-direction. As one can observe in Figure 4.3, the solutions u7 and u8 have quite similar behavior as u5 and y6, though
they have slightly different magnitudes and propagating speeds.
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Figure 4.2: The traveling wave solution u5(x, t) (the left figure) and u6(x, t) (the right figure).

Figure 4.3: The traveling wave solution u7(x, t) (the left figure) and u8(x, t) (the right figure).

4.3. When a4 6= 0 and b4 6= 0

Similar to the procedure discussed in the previous sections, we can solve that

a4 = b4 = 840µ
4, a3 = b3 = a1 = b1 = 0, a2 = b2 =−

140
13

µ
2−1120µ

4.

We can also show that equations (4.1), (4.2) and (4.4) are also satisfied, and the solutions of µ are µ1 = −
√

13
26 , µ2 =

√
13

26 ,

µ3 =

√
−31+3

√
31i

1040 , µ4 =

√
−31−3

√
31i

1040 , µ5 =−
√
−31+3

√
31i

1040 and µ6 =−
√
−31−3

√
31i

1040 . The coefficient of O(Y 0) leads to

−2(2µ
2a2 +16µ

4a2−24µ
4a4)−2a2

2−2a2
4−a2

0−a0v2 +a0 = 0.

For µ = µ1 or µ = µ2, the equation above leads to

a2
0 +a0v2−a0 =−

23380
28561

.

Since v2 +2a0 =
238
169 , we have

a2
0−

69
169

a0−
23380
28561

= 0.

Its solution is a0 =
69±
√

98281
338 . Thus, we have

v =

√
238
169
−2a0 =

√
1±
√

98281
169

.
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Figure 4.4: The traveling wave solution u9(x, t) at T = 1 (the left figure) and T = 1.6 (the right figure).

Since we assume the constant velocity v of the traveling wave solution is a real number, here we only take v =
√

1+
√

98281
169 ,

and the corresponding value of a0 is a0 =
69−
√

98281
338 . We then use the value of µ to find a4 = b4 =

105
338 , and a2 = b2 =− 105

169 .
Note that tanh2(−ξ ) = tanh2(ξ ), tanh4(−ξ ) = tanh4(ξ ), coth2(−ξ ) = coth2(ξ ) and coth4(−ξ ) = coth4(ξ ). Therefore, we
can obtain the following traveling wave solutions for µ = µ1 and µ2:

u9(x, t) =
69−

√
98281

338
− 105

169
tanh2

√13
26

x−

√
1+
√

98281
169

t


−105

169
coth2

√13
26

x−

√
1+
√

98281
169

t

+
105
338

tanh4

√13
26

x−

√
1+
√

98281
169

t


+

105
338

coth4

√13
26

x−

√
1+
√

98281
169

t

 .

Due to the coth function in the formulation of u9(x, t), the domain of u9 is not the entire real axis. We plot the traveling wave
solution u9(x, t) at T = 1 and T = 1.6 in Figure 4.4. The figure shows that the solution is traveling in the positive x-direction.
When µ = µ3, µ4, µ5 or µ6, there is no real solution for v, thus we do not consider the other cases of µ .

5. The Boussinesq equation with β =−1

For the case of β =−1, we get the following system

O(Y 8) : a2
4−840µ

4a4 = 0,
O(Y 7) : −360a3µ

4 +2a3a4 = 0,
O(Y 6) : 2a2a4−20µ

2a4−120µ
4a2 +2080µ

4a4 +a2
3 = 0,

O(Y 5) : 2a1a4 +2a2a3−12µ
2a3−24µ

4a1 +816µ
4a3 = 0,

O(Y 4) : 240µ
4a2−1696a4µ

4−6µ
2a2 +32a4µ

2 +a2
2 +a4v2−a4 +2a0a4 +2a1a3 = 0,

O(Y 3) : 2a0a3−a3 +2a1a2 +2a4b1−2µ
2a1 +18µ

2a3 +40µ
4a1−576µ

4a3 +a3v2 = 0,
O(Y 2) : 2a0a2−a2 +2a3b1 +2a4b2 +8µ

2a2−12µ
2a4−136µ

4a2 +480µ
4a4 +a2v2 +a2

1 = 0,
O(Y ) : 2a0a1−a1 +2a2b1 +2a3b2 +2a4b3 +2µ

2a1−6µ
2a3−16µ

4a1 +120µ
4a3 +a1v2 = 0,
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O(Y 0) : 2a1b1−a0 +2a2b2 +2a3b3 +2a4b4−2µ
2a2 +16µ

4a2−24µ
4a4−2µ

2b2 +16µ
4b2

−24µ
4b4 +a0v2 +a2

0 = 0,
O(Y−1) : 2a0b1−b1 +2a1b2 +2a2b3 +2a3b4 +2µ

2b1−6µ
2b3−16µ

4b1 +120µ
4b3 +b1v2 = 0,

O(Y−2) : 2a0b2−b2 +2a1b3 +2a2b4 +8µ
2b2−12µ

2b4−136µ
4b2 +480µ

4b4 +b2v2 +b2
1 = 0,

O(Y−3) : 2a0b3−b3 +2a1b4 +2b1b2−2µ
2b1 +18µ

2b3 +40µ
4b1−576µ

4b3 +b3v2 = 0,
O(Y−4) : 240µ

4b2−1696b4µ
4−6µ

2b2 +32b4µ
2 +b2

2 +b4v2−b4 +2a0b4 +2b1b3 = 0,
O(Y−5) : 2b1b4 +2b2b3−12µ

2b3−24µ
4b1 +816µ

4b3 = 0,
O(Y−6) : 2b2b4−20µ

2b4−120µ
4b2 +2080µ

4b4 +b2
3 = 0,

O(Y−7) : −360b3µ
4 +2b3b4 = 0,

O(Y−8) : −840µ
4b4 +b2

4 = 0.

5.1. When a4 = 0 and b4 6= 0

By considering the coefficients for Y 7,Y 6 and Y 5, we can show that a4 = a3 = a2 = a1 = 0. Then we use the coefficient for Y 0

terms to get

−a0−2µ
2b2 +16µ

4b2−24µ
4b4 +a0v2 +a2

0 = 0.

Since b4 6= 0, we have b4 = 840µ4 using the coefficient for Y−8. Similarly, we can calculate the values of b1, b2 and b3, i.e.,

b1 = b3 = 0, b2 =
140
13

µ
2−1120µ

4.

Similar to equations (4.1)-(4.3), we can use the coefficients of Y−4, Y−2 and Y 0 to derive the following equalities:

1568µ
4− 560

13
µ

2−
(

3v2 +6a0−
476
169

)
= 0, (5.1)

3968µ
6− 1904

13
µ

4 +

(
−8v2−16a0 +

112
13

)
µ

2 +

(
− 1

13
v2− 2

13
a0 +

1
13

)
= 0, (5.2)

38080µ
8− 31360

13
µ

6 +
280
13

µ
4−a2

0−a0v2 +a0 = 0. (5.3)

Equation (5.1) and (5.2) lead to

v2 +2a0 =
3968µ6− 1904

13 µ4 + 112
13 µ2 + 1

13

8µ2 + 1
13

=
1568µ4− 560

13 µ2 + 476
169

3
. (5.4)

Eventually, we can obtain the equation about µ . That is,

640µ
6 +

2800
13

µ
4− 1120µ2

169
− 31

2197
= 0.

There are two real roots and four pure imaginary roots to the equation above, but here we only consider the two real roots, i.e.,

µ =± 6263491387804093
36028797018963968

≈±0.1738468. (5.5)

For either two values of µ , we can substitute it into equation (5.4) to get

v2 +2a0 =
8847763345396973
9007199254740992

≈ 0.9822991. (5.6)

We then use the value of µ in equation (5.3) to get

a2
0 +a0v2−a0 =−

4366459107829337
288230376151711744

≈−0.0151492. (5.7)

(5.6) and (5.7) lead to

a2
0 +

159435909344019
9007199254740992

a0−
4366459107829337

288230376151711744
= 0.

Therefore, we have

a0 =
±
√

4941615711925531876692800332649−159435909344019
18014398509481984

≈−0.1322503 or 0.1145494.
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Next, we use the values of a0 to calculate the value of v so that we can eventually get

v =

√
2
√

11230173773696513
134217728

≈ 1.1166090 or

√
2
√

27136898943141883
268435456

≈ 0.8678711.

We then further calculate

b4 = 840µ
4 ≈ 0.7672664 and b2 =

140
13

µ
2−1120µ

4 ≈−0.6975465.

Therefore, the four traveling wave solutions for this case are of the following form u(x, t) = a0 + b2 coth2(µ(x− vt)) +
b4 coth4(µ(x− vt)), where a0,b2,b4,µ and v are given in the previous calculations. Since there exist two distinct values for µ

and v, there are four traveling wave solutions in such a form.

5.2. When a4 6= 0 and b4 = 0

Since the coefficients for Y i and Y−i terms (for i = 1,2, . . . ,8) are symmetric, the calculations from the previous sections can
be directly applied here. Therefore, the four traveling wave solutions for this case are of the form u(x, t) = a0 +a2 tanh2(µ(x−
vt))+a4 tanh4(µ(x− vt)). Here, the values of a0,µ and v are the same as that in the previous section, and the values of a2 and
a4 are equal to the values of b2 and b4 in the previous section, respectively.

5.3. When a4 6= 0 and b4 6= 0

Using the algebraic equations for the coefficients of Y i and Y−i for i = 1,2, . . . ,8, we can find the values of ai and b j for
i, j = 1,2,3,4:

a4 = b4 = 840µ
4, a1 = a3 = b1 = b3 = 0, a2 = b2 =

140
13

µ
2−1120µ

4. (5.8)

One can also show that the value of µ is the same as in (5.5). That is, µ =± 6263491387804093
36028797018963968 . In addition, we can show that

equation (5.6) also holds. So we have v2 +2a0 =
8847763345396973
9007199254740992 . We further use the equation about O(Y 0) to get

−2(2µ
2a2 +16µ

4a2−24µ
4a4)+2a2

2 +2a2
4 +a2

0 +a0v2−a0 = 0.

We then substitute the values of a4 and a2 from (5.8) into the equation above to get

a2
0 +a0v2−a0 +3996160µ

8− 573440
13

µ
6 +

31920
160

µ
4 = 0,

which can be further reduced to

a2
0 +a0v2−a0 +

5154129393924667
2251799813685248

= 0

using the value of µ . Eventually, we can use the equation about v2 +2a0 to derive a quadratic equation with respect to a0:

a2
0 +

159435909344019
9007199254740992

a0−
5154129393924667
2251799813685248

= 0.

The two roots to the equation above are

a0 =
±
√

742813746781938776364458008666985−15943590934019
18014398509481984

≈−1.5217852 or 1.5040843.

Since v2 +2a0 ≈ 0.9822991 and we look for a real number v, here we only choose the negative number for a0, i.e.,

a0 =−
√

742813746781938776364458008666985+15943590934019
18014398509481984

≈−1.5217852.

Finally, we can calculate the two values of v, i.e., v ≈ ±2.0064570, and we have a2 ≈ −0.6975465 and a4 ≈ 0.7672664.
Therefore, the two traveling wave solutions for this case are in the following form:

u(x, t) = a0 +a2 tanh2(µ(x− vt))+a4 tanh4(µ(x− vt))+a2 coth2(µ(x− vt))+a4 coth4(µ(x− vt)),

where the values of µ , v, a0, a2 and a4 can be found in the discussion above.
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6. Conclusion

In this paper, we apply the tanh-coth method to obtain several new traveling wave solutions for the sixth-order Boussinesq
equation with β = 1 or β =−1. By balancing the nonlinear quadratic term and the sixth-order derivative term in the equation,
we are able to determine the number of terms in the expansion solution. By further solving the algebraic system about the
unknown parameters, we obtain new solutions for the equation. These new exact solutions can also be used to assess the
performance of various numerical methods for the sixth-order Boussinesq equation.
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