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Abstract 

Principal Component Analysis is a method for reducing the dimensionality of datasets 

while also limiting information loss. It accomplishes this by producing uncorrelated 

variables that maximize variance one after the other. The accepted criterion for 

evaluating a Principal Component’s (PC) performance is 
𝜆𝑗

𝑡𝑟(𝑺)
 where 𝑡𝑟(𝑺) indicates 

the trace of the covariance matrix S. It is standard procedure to determine how many 

PCs should be maintained using a specified total variance. In this study, the diagonal 

elements of the covariance matrix are used instead of the eigenvalues to determine how 

many PCs need to be considered to obtain the defined threshold of the total variance. 

For this, an approach which uses one of the important theorems of majorization theory 

is proposed. Based on the tests, this approach lowers computational costs. 
 

 
1. Introduction 

 

In many disciplines, high-dimensional datasets are 

becoming more common. Although researchers 

intend to collect more detailed information with every 

added dimension, higher dimensional datasets have 

several drawbacks. They require more sophisticated 

methods to analyze, interpret, and visualize. Even 

processing is impractical or impossible in some cases. 

Additionally, storing the data and related costs, such 

as maintenance and security, are more expensive. 

However, these drawbacks are avoidable with no 

considerable information lost. One of the solutions is 

the reorganization of the dataset (a.k.a. dimension 

reduction). Thus, the dimensions can be described by 

a linear combination of newly defined dimensions 

since in high-dimensional data, dimensions are 

generally correlated and the data has a lower 

dimensional structure in essence. 
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Dimension reduction, taking the correlation 

of dimensions into account, is the process of obtaining 

a representation of the data that has lower dimensions. 

Dimensionality can be reduced by using the Principal 

Component Analysis (PCA) algorithm, which is 

suggested by [1] and [2]. Although more than 100 

years have passed, it is still a widely used data 

reduction method. Its objective is to preserve as much 

variability as possible while lessening the dataset's 

dimensionality [3].  Namely, PCA extracts new 

variables that are linear functions of the variables in 

the original dataset for maximized variance. These 

new variables are called Principal Components (PCs). 

The spectral decomposition of the covariance matrix, 

which defines the PCs' variance by their eigenvalues 

and their directions by their eigenvectors, is the key 

to PCA. In other words, the process of obtaining PCs 

is mathematically an eigenvalue/eigenvector 

problem. Since the covariance matrix's eigenvectors 

and eigenvalues are used to define PCA, many matrix 

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1144360
https://orcid.org/:%200000-0002-3027-6927
https://orcid.org/:%200000-0002-3071-1159
https://orcid.org/:%200000-0002-4247-0786
https://orcid.org/:%200000-0002-9111-9095
mailto:igumus@adiyaman.edu.tr


İ. H. Gümüş, C. Karakuzulu, S. Güldal, M. Yavaş / BEU Fen Bilimleri Dergisi 12 (2), 299-306, 2023 

300 
 

analysis methods can be used to improve the quality 

of the newly defined dataset. 

Despite being frequently used for 

unsupervised linear dimensionality reduction and 

visualization, PCA has also been employed to solve 

statistical problems like regression, clustering, and 

nonlinear dimensionality reduction [4-6]. Because the 

utility of PCA has been discovered in many different 

scientific fields, it is called by many different names 

today. In numerical analysis and matrix analysis, it is 

known as Singular Value Decomposition, Karhunen-

Loẽve transforms in signal processing, and 

characteristic vector analysis in the physical sciences. 

Thurstone and other psychologists pioneered the 

development of Factor Analysis (FA) in the 1930s [7]. 

This is worth mentioning because FA and PCA are 

very related, and these two methods are sometimes 

confused. Incorrectly, these two names are used 

interchangeably. 

In recent years, important research has been 

done using PCA. In [8], a method for investigating 

systematic co-variation of vowels has been presented 

by using PCA. In [9], an application of principal 

component analysis has been obtained to reduce the 

dimensionality of variables representing the speech 

signal. The obtained results have been used for the 

disturbed and fluent speech recognition processes. In 

[10], a new combination strategy based on PCA to 

increase the predictability of crude oil futures market 

returns has been proposed. In [11], the status of PCA 

in the area of ECG signal processing has been 

reviewed. The use of PCA for spectral data reduction 

and colorant estimation has been illustrated in [12]. 

For interested readers, there are many excellent works 

investigating the various facets of PCA [13-16]. In 

addition, there are works in the literature examining 

how many principal components should be in PCA. 

For example, see [17-20] and the references therein. 

In this study, a method is proposed to help 

select the right number of dimensions in the newly 

defined dataset quickly and efficiently. In section 2, 

the method and its theoretical basis are given. In 

section 3, the proposed method is tested for various 

datasets and extreme cases. In the last section, 

concluding remarks and future works are presented. 

 

2. Material and Method 

 

As a data analysis tool, PCA involves a dataset with 

observations on 𝑝 features for 𝑛 samples. These data 

values define an 𝑛 ×  𝑝 data matrix 𝑿. The 𝑗𝑡ℎ 

column of 𝑿 is the vector 𝒙𝒋 of observations on the 

𝑗𝑡ℎ  feature. The purpose of PCA is to find a linear 

combination of the columns of the matrix 𝑿 that has 

the optimal variance. These linear combinations are 

obtained by 𝑿𝒂 such that 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑝 ]
𝑇
 is a 

𝑝 ×  1 vector where 𝑇 stands for transpose. Finding 

the linear combination which has the optimal variance 

is equivalent to the computation of a 𝑝-dimensional 

vector that maximizes the 𝒂 𝑻𝑺𝒂 where 𝑺 is data 

covariance matrix, namely 𝑉𝑎𝑟(𝑿𝒂) =  𝒂 𝑻𝑺𝒂. It is 

worth noting that increasing the magnitude of the 

vector arbitrarily increases variance. 

Therefore, ‖𝒂‖ = 1 is taken, resulting in a 

constrained optimization problem in which we look 

for the data in the most variable direction. This 

constrained optimization problem can be written in 

the following form 

max
𝒂
𝒂 𝑻𝑺𝒂  

𝑠. 𝑡. ‖𝒂‖2 = 1 
(1) 

For solving this optimization problem, we write the 

Lagrangian  

𝑳 = 𝒂 𝑻𝑺𝒂 + 𝜆(1 − 𝒂𝑻 𝒂) (2) 

By computing the partial derivative of 𝑳 with respect 

to 𝒂 and 𝜆 and equating these partial derivatives to 𝟎, 

we get  

𝑺𝒂 = 𝜆𝒂 
𝒂𝑻 𝒂 = 1. 

(3) 

 

So, the Lagrange multiplier acts as the corresponding 

eigenvalue and must be an eigenvector of the data 

covariance matrix 𝑺. By multiplying both sides of 

𝑺𝒂 = 𝜆𝒂 with 𝒂𝑇from the left side, the following 

equation is obtained. 

 

𝑉𝑎𝑟(𝑿𝒂) = 𝒂 𝑻𝑺𝒂 = 𝒂𝑻 𝜆𝒂 = 𝜆 (4) 

This means that the eigenvalue associated with the 

basis vector that spans this subspace is equal to the 

variance of the data projected onto a one-dimensional 

subspace. As a result, the selected basis was related to 

the greatest eigenvalue of the data covariance matrix 

to optimize the variance of the low-dimensional 

representation. Since 𝑺 is a symmetric matrix, it has 

exactly 𝑝 real eigenvalues. The eigenvectors 

corresponding to these eigenvalues can be 

constructed to create an orthonormal set of vectors. 

By adding restrictions of orthogonality of different 

coefficient vectors on the Lagrange multipliers 

method, we can obtain all eigenvectors of 𝑺. These 

answers to the problem of producing up to 𝑝 new 

linear combinations 𝑿𝒂𝑘 = ∑ 𝑎𝑗𝑘𝒙𝑗
𝑝
𝑗=1  and 

maximizing variance that is uncorrelated with earlier 

linear combinations [3].  
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The linear combinations 𝑿𝒂𝑘 are the 

Principal Components (PCs) of the dataset. 

Sometimes, many researchers also use the term PCs 

when mentioning to the eigenvectors 𝒂𝑘. The 

variance associated with the set of retained PCs can 

be used to assess the quality of any 𝑞-dimensional 

subspace. The trace of the covariance matrix 𝑺 is the 

sum of variances of the 𝑝 original variables. It is 

simple to prove that this value is exactly the sum of 

the variances of all PCs. As a result, the accepted 

gauge of a PC’s quality is 
𝜆𝑗

𝑡𝑟(𝑺)
 where 𝑡𝑟(𝑺) denotes 

the trace of matrix 𝑺. Determination of how many PCs 

should be preserved is usual practice to utilize a 

predetermined percentage of the total variance. This 

predetermined percentage is commonly 70% [21]. As 

noticed, in order to obtain the predetermined 

percentage of the total variance, we need to find all 

the eigenvalues of the matrix. Then, it is necessary to 

identify the 
𝜆𝑗

𝑡𝑟(𝑺)
 values whose sum exceeds this 

predetermined percentage of the total variance.  

It is known that the eigenvalues of a matrix 

are obtained by finding the roots of the characteristic 

polynomial of that matrix. It is not possible to obtain 

these roots analytically for matrices larger than 4 × 4. 

Based on the Abel-Ruffini theorem, for polynomials 

of degree 5 or more, there is no algebraic solution. As 

a result, eigenvalues are obtained by using numerical 

methods. However, this means extra time for a data 

analyst who decides how many PCs to take based on 

finding the 
𝜆𝑗

𝑡𝑟(𝑺)
. 

Now let’s introduce the concept of 

majorization, which allows us to compare two vectors 

and observe which has "less spread out" components. 

Comparison of two vectors frequently leads to 

inequalities that can be expressed as majorization 

relations. Let 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑛) ∈ ℝ
𝑛 and 𝑧↓ be the 

vector obtained by repositioning the coordinates of 𝑧 

in decreasing order. Thus if 𝑧↓ = (𝑧1
↓, 𝑧2

↓, … , 𝑧𝑛
↓) ∈

ℝ𝑛, then 𝑧𝑛
↓ ≤ ⋯ ≤ 𝑧2

↓ ≤ 𝑧1
↓.  

For  𝑥, 𝑦 ∈ ℝ𝑛, 𝑦 majorizes 𝑥 (or 𝑥 is majorized by 

𝑦), written as 𝑥 ≺ 𝑦, if   
 

 

    ∑𝑥𝑗
↓ ≤

𝑘

𝑗=1

∑𝑦𝑗
↓

𝑘

𝑗=1

  
 

(5) 

 

for 1 ≤ 𝑘 < 𝑛  and 

 

 

 ∑𝑥𝑗
↓ =

𝑛

𝑗=1

∑𝑦𝑗
↓.

𝑛

𝑗=1

 
 

(6) 

 

If inequality is put in place of the equality 

 

 
∑𝑥𝑗

↓ ≤

𝑛

𝑗=1

∑𝑦𝑗
↓,

𝑛

𝑗=1

 
 

(7) 

we state that 𝑦 weakly majorizes 𝑥, and is indicated 

by 𝑥 ≺𝑤 𝑦. 

Majorization theory is a crucial tool that enables us to 

solve problems in various disciplines. One of these 

disciplines is matrix theory. Let’s write the diagonal 

elements and eigenvalues of a 𝑛 × 𝑛 symmetric 

matrix 𝑿 as vectors, respectively, by  

𝑑(𝑿) = (𝑑1(𝑿), 𝑑2(𝑿),… , 𝑑𝑛(𝑿)) (8) 

and 

𝜆(𝑿) = (𝜆1(𝑿), 𝜆2(𝑿),… , 𝜆𝑛(𝑿))    (9) 

Note that the components of these vectors are always 

arranged in decreasing order throughout the paper. 

The following theorem which is known as Schur’s 

Theorem has a key role in our study, which can be 

found in [22]. 

Theorem: Let 𝑿 be a 𝑛 × 𝑛 symmetric matrix. Then 

 

 

 

𝑑(𝑿) ≺ 𝜆(𝑿). 
 

(10) 

 

This theorem says that  

 

𝑑1(𝑿) ≤ 𝜆1(𝑿) 
𝑑1(𝑿) + 𝑑2(𝑿) ≤ 𝜆1(𝑿) + 𝜆2(𝑿) 
𝑑1(𝑿) + 𝑑2(𝑿) +⋯+ 𝑑𝑛(𝑿)

= 𝜆1(𝑿) + 𝜆2(𝑿)
+⋯+ 𝜆𝑛(𝑿)
= 𝑡𝑟(𝑿) 

 

(11) 

 

for symmetric matrix 𝑿. Namely, the total of the 

largest 𝑘 eigenvalues of a symmetric matrix is 

bounded below by the total of the largest 𝑘 diagonal 

elements of that matrix. Considering the fact that the 

covariance matrix is a symmetric matrix, if we want 

to use a predetermined percentage of the total 

variance, instead of calculating the total of the 𝑘 

largest eigenvalues of the covariance matrix that 

exceed this value, it will be sufficient to calculate the 

total of the 𝑘 largest diagonal elements of the 

covariance matrix that exceeds this value. Using 

diagonal elements instead of calculating eigenvalues 

will provide us processing speed and convenience. 

In this study, the diagonal elements of the 

covariance matrix are used instead of the eigenvalues. 

For this, we will make use of the majorization theory, 

which is commonly used to obtain inequalities. Thus, 

before starting the PCA process, the predetermined 
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percentage of the total variance will be obtained more 

quickly with the help of the diagonal elements. The 

approach is validated by numerical simulations (See 

Hata! Başvuru kaynağı bulunamadı.). Let’s 

illustrate this fact with examples in the following 

section.

Figure 1. Flowchart of the proposed approach 
 

 

3. Results and Discussion 

 

The proposed approach is tested for 5 different 

datasets. Also, the method is tested for symmetric 

matrices up to 100 × 100. Yeast dataset is selected to 

exemplify the approach  [23, 24]. Since this dataset 

has 8 features, the covariance matrix is an 8 × 8 

which is obtained as 

 

𝒀 =

(

 
 
 
 
 

355.953 82.8840 −21.243 21.7097 0.44443 −0.8670 4.14396 −17.0248
82.8840 325.978 −14.622 22.9344 0.33581 −4.3622 7.31506 −7.0348
−21.243 −14.622 258.660 −0.8992 −0.1108 −2.1924 −2.49194 3.07863
21.7097 22.9344 −0.8992 206.712 −0.0527 −0.8870 −10.7392 −2.3823
0.44443 0.33581 −0.1108 −0.0527 0.23378 −0.0296 0.34835 −0.2966
−0.8670 −4.3622 −2.1924 −0.8870 −0.0296 50.7703 −1.0152 −1.6376
4.14396 7.31506 −2.4919 −10.739 0.34835 −1.0152 227.085 8.58366
−17.024 −7.0348 3.07863 −2.3823 −0.2966 −1.6376 8.58366 117.485 )
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When we computed the components of the diagonal 

elements and eigenvalues of this covariance matrix in 

descending order, we get the following two vectors 

 

𝑑(𝒀) = (355.953, 325.978, 258.660, 227.085, 206.712, 117.485, 50.7703, 0.23378)        (12) 

and 

𝜆(𝒀) = (434.575, 259.07, 253.696, 231.774, 197.33, 115.579, 50.6234, 0.231774)           (13) 

As noticed,  

355.953 ≤ 434.575 

 

355.953 +  325.978 ≤ 434.575 + 259.07 

 

355.953 +  325.978 +  258.660 ≤ 434.575 + 259.07 + 253.696 

⋮ 

355.953 + 325.978 + 258.660 +  227.085 +  206.712 + 117.485 +  50.7703
+  0.23378 

= 434.575 + 259.07 +  253.696 +  231.774 +  197.33 + 115.579 + 50.6234
+ 0.231774 

 

 

 

 

(14) 

 

Both sides of the last equality give us the trace of the 

covariance matrix, 𝑡𝑟(𝒀) = 1542,879. Cumulative 

percentage values of sums of  
λj(𝐘)

tr(𝐘)
  and 

dj(𝐘)

tr(𝐘)
   for j =

1,2,… ,8 are depicted in Hata! Başvuru kaynağı 

bulunamadı.. 

 
Figure 2. Cumulative summation of eigenvalues and   

                   diagonals are shown in percentage for Yeast  

                   dataset. 

It is observed that the cumulative sums of eigenvalues 

and diagonals are almost the same. In the specified 

example, the ratio of the sum of the four largest 

eigenvalues to the trace of the covariance matrix is 

approximately 76% which is higher than 70%. This 

result shows that the first 4 largest eigenvalues (i.e. 4 

PCs) should be taken for no considerable information 

lost.  Additionally, corresponding diagonal values are 

approximately 76%. Therefore, instead of computing 

how many eigenvalues provide the predetermined 

percentage of the total variance (70%), as claimed in 

the previous sections, we can utilize the information 

from the diagonal elements of the covariance matrix. 

To highlight the value of the proposed 

approach, computational times of eigenvalue and 

diagonal calculations are compared for 5 datasets. 

The list of datasets is given in Table 1. Here, Yeast is 

a medical dataset and consists of a protein-protein 

network [23, 24]. Accelerometer is used to estimate 

the engine failure time. Data obtained from the 

vibrations of the cooling fan with weights on its 

blades. It can be used for classification and other 

purposes for situations requiring vibration analysis 

[25]. Breast Cancer Coimbra is a medical dataset, 

anthropometric data and parameters that can be 

collected in routine blood analysis. These data 

indicate the presence and absence of cancer and are 

all quantitative data [26]. Cardiotocography is also a 

medical dataset, consisting of measurements of fetal 

heart rate and uterine contraction properties in 

cardiotocograms. This dataset is classified and 

labeled by expert obstetricians [27]. Combined Cycle 

Power Plant dataset is the data collected from a power 

plant operating at full load for six years. It is aimed to 

estimate the hourly net electrical energy output of the 

facility from the hourly average Temperature, 

Ambient Pressure, Relative Humidity and Exhaust 
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Vacuum characteristics [28, 29]. All features of 

datasets consist of numeric values. They are 

frequently used in machine learning classification and 

regression studies.  The datasets are collected from 

different fields. Variation in the number of features 

requires different computation times. The 

computation efforts are shown in Figure 1. The results 

show the computation with eigenvalues requires more 

time than diagonals in every case. This difference is 

as great as 30 times for Cardiotocography datasets at 

maximum because of the higher number of features. 

Table 1. 5 different datasets are selected from various subjects 

Datasets Number of features Number of samples 

Yeast [23, 24] 8 1484 

Accelerometer [25] 5 153000 

Breast Cancer Coimbra [26] 10 116 

Cardiotocography [27] 23 2126 

Combined Cycle Power Plant [28, 29] 4 9568 

 

Figure 1. Computation time varieties for datasets, but the computation of eigenvalues requires more time than  

                               the computation of diagonal elements. 

The covariance matrix of the listed datasets 

changes from 4 × 4 to 25 × 25. Computation of 

eigenvalues is relatively efficient. However, it is a 

known fact that increasing the size of the matrices will 

complicate the calculation of their eigenvalues. To 

illustrate this situation, let's take a randomly chosen 

positive semi-definite matrix (for an 𝑛 × 𝑛 matrix 𝑀, 

𝑀𝑇𝑀 is always positive semidefinite, and elements in 
[1,5]). Increment in the size of this matrix regularly 

up to 100 × 100 shows that computation with 

diagonals has linear complexity and eigenvalues have 

exponential complexity. 
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Figure 2. Required computational time is shown for eigenvalues (a), and diagonals (b). 

4. Conclusion 
 

In Principal Component Analysis, it is a standard 

procedure to determine how many Principal 

Components should be retained using a 

predetermined percentage of the total variance. For 

this, it is necessary to calculate all the eigenvalues of 

the covariance matrix. Then the necessary step is to 

identify how many of the largest eigenvalues we need 

so that the cumulative sum of the 
𝜆𝑗

𝑡𝑟(𝑺)
 exceeds the 

specified threshold. However, calculating the 

eigenvalues of the covariance matrix brings a 

computational cost. In this study, this process was 

done by using the diagonal elements of the covariance 

matrix instead of the eigenvalues of the covariance 

matrix. For this, Schur's theorem, which is well 

known in majorization theory, was used. The time 

savings of using diagonal elements was demonstrated 

using five different datasets. In addition, the increase 

in time required for computations as a result of 

increasing the matrix size is illustrated using 

randomly taken positive semi-definite matrices. As a 

result, it is seen that it is advantageous to use diagonal 

elements instead of calculating eigenvalues. 
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