
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 52 (3) (2023), 828 – 840
DOI : 10.15672/hujms.1145607

Research Article

The beta Liu-type estimator:simulation and
application

Ali Erkoç∗1, Esra Ertan2, Zakariya Yahya Algamal3,4, Kadri Ulaş Akay2
1Department of Statistics, Faculty of Science and Letters, Mimar Sinan Fine Arts University, Istanbul,

Turkey
2Department of Mathematics, Science Faculty, University of Istanbul, Istanbul, Turkey

3Department of Statistics and Informatics, University of Mosul, Mosul, Iraq
4College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq

Abstract
The Beta Regression Model (BRM) is commonly used while analyzing data where the
dependent variable is restricted to the interval [0, 1] for example proportion or probability.
The Maximum Likelihood Estimator (MLE) is used to estimate the regression coefficients
of BRMs. But in the presence of multicollinearity, MLE is very sensitive to high correlation
among the explanatory variables. For this reason, we introduce a new biased estimator
called the Beta Liu-Type Estimator (BLTE) to overcome the multicollinearity problem in
the case that dependent variable follows a Beta distribution. The proposed estimator is
a general estimator which includes other biased estimators, such as the Ridge Estimator,
Liu Estimator, and the estimators with two biasing parameters as special cases in BRM.
The performance of the proposed new estimator is compared to the MLE and other biased
estimators in terms of the Estimated Mean Squared Error (EMSE) criterion by conducting
a simulation study. Finally, a numerical example is given to show the benefit of the
proposed estimator over existing estimators.
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1. Introduction
The BRM is similar to a Binomial Generalized Linear Model (GLM) but provides

some flexibility in particular when the trials are not independent and when the standard
binomial model might be too strict. It has been used commonly in many areas, primarily
engineering, medical sciences, physical sciences and social sciences. This model is used
to examine the effect of some explanatory variables over a non-normal response variable.
But in the case of BRM, the response variable is restricted to the interval [0,1] such as
rates, proportions, percentages, probability and fractions. Firstly, the BRM was defined
by [16] by relating the mean function of its response variable to a set of linear predictors
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through a link function. This model includes a precision parameter, the inverse of which
is called a dispersion scale [1, 3].

Suppose that y1, y2, . . . , yn are the observations of the random variable that follows a
beta distribution. The beta probability density function is defined as

f(y; a, b) = Γ(a+ b)
Γ(a)Γ(b)

ya−1(1 − y)b−1, 0 < y < 1, (1.1)

where Γ(.) is the gamma function and a, b > 0. The mean and variance of beta probability
distribution are given as follows:

E(y) = a

a+ b
, Var(y) = ab

(a+ b)2(a+ b+ 1)
. (1.2)

Ferrari and Cribari-Neto [16] recommended a different parameterization by using a
a+b =

µ and a + b = ϕ, ϕ is called as the precision parameter. From these equalities a and b
found as, a = µϕ, b = ϕ(1 −µ). Eq. (1.1) can be expressed through new parameterization
as

f(y;µ, ϕ) = Γ(ϕ)
Γ(µϕ)Γ((1 − µ)ϕ)

yµϕ−1(1 − y)(1−µ)ϕ−1, 0 < y < 1, (1.3)

where 0 < µ < 1 and ϕ > 0. The precision parameter ϕ can be written as ϕ = 1−σ2

σ2 . With
these transformations, the mean and variance of y are redefined respectively as

E(y) = µ, Var(y) = µ(1 − µ)σ2. (1.4)

The model allows the mean function to depend on linear predictors by using the following
link function g(.)

g (µi) = log
(

µi

1 − µi

)
= x′

iβ = ηi, (1.5)

where β = (β1, β2, . . . , βp)′ is an p×1 unknown parameters vector and xi = (xi1, xi2, . . . , xip)′

is the vector of p regressors and ηi is the linear predictor. This link function is strictly
monotonic and twice differentiable [1, 2, 5, 8, 13, 25]. Different link functions may be used
for fitting the BRM as logit, probit, log-log, complementary log-log, and Cauchy link func-
tions. However, Eq. (1.5) is a commonly used link function which is suggested by [16].

For the estimation of the BRM parameters, the MLE method is used by [13]. The
log-likelihood function of the BRM is given by

L
(
µi, σ

2
i ; yi

)
=

n∑
i=1

{
log Γ

(
1 − σ2

i

σ2
i

)
− log Γ

(
µi

(
1 − σ2

i

σ2
i

))
− log Γ

(
(1 − µi)

(
1 − σ2

i

σ2
i

))

+
(
µi

(
1 − σ2

i

σ2
i

)
− 1

)
log (yi) +

(
(1 − µi)

(
1 − σ2

i

σ2
i

)
− 1

)
log (1 − yi)

}
.

(1.6)
The score function S(β) can be find by differentiating the log-likelihood function in Eq.
(1.6) with respect to β

S(β) = ϕx′T (y∗ − µ∗) , (1.7)

where T = diag
(

1
g(µ1) ,

1
g(µ2) , . . . ,

1
g(µn)

)
,y∗ = (y∗

1, y
∗
2, . . . , y

∗
n)′ ,µ∗ = (µ∗

1, µ
∗
2, . . . , µ

∗
n)′ , y∗

i =

log
(

yi
1−yi

)
and µ∗

i = ψ

(
µi

(
1−σ2

i

σ2
i

))
− ψ

(
(1 − µi)

(
1−σ2

i

σ2
i

))
where ψ(.) denoting the

digamma function. To obtain the estimated vector of β, the Iterative Reweighted Least
Square (IWLS) method or the Fisher Scoring method can be used [14,15]. By using these
methods, the MLE of β is obtained as

β̂MLE =
(
X′ŴX

)−1
X′Ŵz, (1.8)
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where z = η̂ + Ŵ−1T̂ (y∗ − µ∗) and Ŵ = diag (ŵ1, . . . , ŵn) with

ŵi =
(

1 − σ̂2
i

σ̂2
i

){
ψ′
(
µ̂i

(
1 − σ̂2

i

σ̂2
i

))
+ ψ′

(
(1 − µ̂i)

(
1 − σ̂2

i

σ̂2
i

))}
1

{g′ (µ̂i)}2 . (1.9)

In Eq. (1.9), Ŵ and T̂ are the estimated matrices of W and T from maximum likelihood
estimation respectively [16]. The asymptotic covariance matrix of the MLE equals to

Cov
(
β̂MLE

)
= 1
ϕ

(
X′ŴX

)−1
. (1.10)

When the explanatory variables are correlated, the multicollinearity problem appears.
In the presence of multicollinearity, X′ŴX matrix is ill-conditioned. One of the disad-
vantages of using the MLE is that the variance of parameters becomes inflated when the
collinearity among explanatory variables is severe. To prevent the undesirable effects of
multicollinearity, many researchers have chosen to generalize the biased estimators used for
linear regression models to apply on BRMs. For more detailed information about these pro-
posed biased estimators in GLMs and BRMs, the articles [1–4,6–10,12,17,18,20,21,26,27]
can be reviewed.

Firstly, to overcome the problem of the BRM, Abonazel and Taha [3] and Qasim et al.
[26] introduced the Beta Ridge Estimator (BRE) which is the generalization of Hoerl and
Kennard [17] as an alternative to the MLE. The BRE is defined as

β̂BRE =
(
X′ŴX + kI

)−1
X′Ŵz, (1.11)

where k > 0 and when k = 0, β̂BRE = β̂MLE .

Then, Karlsson et al. [18] introduced another estimation method called Beta Liu Estimator
(BLE) for the BRM as

β̂BLE =
(
X′ŴX + I

)−1 (
X′ŴX + dI

)
β̂MLE , (1.12)

where d is the Liu parameter and 0 < d < 1. The BLE is the generalization of the Liu
estimator defined by [20] for the linear regression models.

On the other hand, Liu [21] proposed the Liu-type estimator for the linear regression
model to overcome the multicollinearity problem. Algamal and Abonazel [8] adapted this
estimator to BRM and called the Liu-Type Beta Regression (LTBR) estimator as

β̂LT BR =
(
X′ŴX + kI

)−1
(XŴX − dI)β̂MLE , (1.13)

where k > 0 and −∞ < d < ∞.
In addition, the two-parameter beta regression (TPBR) estimator for the BRM is ob-

tained by [1] to combat multicollinearity as follows:

β̂T P BR =
(
X′ŴX + kI

)−1 (
X′ŴX + kdI

)
β̂MLE , (1.14)

where k > 0 and 0 < d < 1.
Abonazel et al. [2] introduced the beta version of the two-parameter estimator of [11]

as follows:

β̂BDK =
(
X′ŴX + k(1 + d)I

)−1 (
X′ŴX − k(1 + d)I

)
β̂MLE , (1.15)

where k > 0 and 0 < d < 1.
The aim of this study is to introduce a new Beta Liu-type estimator for the BRMs. Show

the superiority of this estimator from other estimators in overcoming the multicollinearity
problem. More on Liu-type estimators for different models, we refer to [19], [23] and [22]
among others.
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In this paper, a new biased estimator named the beta Liu-type estimator is proposed
and some of its statistical properties are given in Section 2. In Section 3, the approaches
used to determine the biasing parameters for proposed biased estimators are summarized.
Furthermore, several methods are proposed to determine the biasing parameters. A Monte
Carlo simulation studies are executed in Section 4 to show the superiority of this estimator
over the other biased estimators. In Section 5, a real data application is provided to
illustrate the performances of the proposed estimators. Finally, conclusions of the study
are given in Section 6.

2. The beta Liu-type estimator
Ertan and Akay [12] proposed a new general Liu-type estimator to reduce the effects of

multicollinearity in logistic regression models. We implemented this estimator in BRMs.
The beta Liu-type estimator (BLTE) is defined as

β̂BLTE =
(
X′ŴX + kI

)−1 (
X′ŴX + f(k)I

)
β̂

∗
, k > 0, (2.1)

where β̂
∗ is any estimator of β, k is a biasing parameter and f(k) is a continuous function

of the biasing parameter k. When we selected f(k) as a linear function of the biasing
parameter k such as f(k) = ak+ b where a, b ∈ R, the BLTE becomes a general estimator
which includes the other biased estimators as special cases which can be summarized as
follows:

β̂BLT E = β̂MLE , for β̂
∗ = β̂MLE and f(k) = k where a = 1 and b = 0.

β̂BLT E = β̂BRE , for β̂
∗ = β̂MLE and f(k) = 0 where a = 0 and b = 0.

β̂BLT E = β̂BLE , for β̂
∗ = β̂MLE and f(1) = a + b where a + b corresponds to the

biasing parameter d.

β̂BLT E = β̂LT BR, for β̂
∗ = β̂MLE and f(k) = −b where b corresponds to the biasing

parameter d.

β̂BLT E = β̂T P BR, for β̂
∗ = β̂MLE and f(k) = ak where a corresponds to the biasing

parameter d.

The Matrix Mean Squared Error (MMSE) and Scaler Mean Squared Error (SMSE) of
an estimator β̂ are defined as

MMSE(β̂) = Cov(β̂) + bias(β̂) bias(β̂)′, (2.2)

SMSE(β̂) = trace(MMSE(β̂)). (2.3)
For the convenience of comparisons, we assume that λ1, λ2, . . . , λp ≥ 0 are eigenvalues of

X′ŴX matrix and Q is the matrix whose columns are the eigenvectors of X′ŴX matrix.
Let Λ = diag (λ1, . . . , λp) = Q′X′ŴXQ and α = Q′β.

By using Eq. (2.2) and Eq. (2.3) the MMSE of Eqs. (1.8), (1.11)–(1.15) and (2.1) are
obtained as follows:

MMSE
(
β̂MLE

)
= 1
ϕ

QΛ−1Q′ (2.4)

MMSE
(
β̂BRE

)
= 1
ϕ

(
QΛ−1

k ΛΛ−1
k Q′

)
+ k2QΛ−1

k αα′Λ−1
k Q′, (2.5)

where Λk = diag (λ1 + k, . . . , λp + k) .
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MMSE
(
β̂BLE

)
= 1
ϕ

(
QΛ−1

1 ΛdΛ−1ΛdΛ−1
1 Q′

)
+ (d− 1)2QΛ−1

1 αα′Λ−1
1 Q′, (2.6)

where Λ1 = diag (λ1 + 1, . . . , λp + 1) and Λd = diag (λ1 + d, . . . , λp + d) .

MMSE
(
β̂LT BR

)
= 1
ϕ

(
QΛ−1

k Λ−dΛ−1Λ−dΛ−1
k Q′

)
+ (d+ k)2QΛ−1

k αα′Λ−1
k Q′, (2.7)

where Λ−d = diag (λ1 − d, . . . , λp − d) .

MMSE
(
β̂TPRR

)
= 1
ϕ

(
QΛ−1

k ΛkdΛ−1ΛkdΛ−1
k Q′

)
+ k2(d− 1)2QΛ−1

k αα′Λ−1
k Q′, (2.8)

where Λkd = diag (λ1 + kd, . . . , λp + kd) .

MMSE
(
β̂BDK

)
= 1
ϕ

(
QΛ−1

k(1+d)Λ−k(1+d)Λ−1Λ−k(1+d)Λ−1
k(1+d)Q

′
)

+
(
QΛ−1

k(1+d)Λ−k(1+d)Q′ − I
)
αα′

(
QΛ−1

k(1+d)Λ−k(1+d)Q′ − I
)′
,

(2.9)

where
Λk(1+d) = diag (λ1 + k(1 + d), . . . , λp + k(1 + d))

and
Λ−k(1+d) = diag (λ1 − k(1 + d), . . . , λp − k(1 + d)) .

MMSE
(
β̂BLT E

)
= 1
ϕ

(
QΛ−1

k Λf(k)Λ−1Λf(k)Λ−1
k Q′

)
+ (f(k) − k)2QΛ−1

k αα′Λ−1
k Q′,

(2.10)
where Λf(k) = diag (λ1 + f(k), . . . , λp + f(k)) .

Similarly, the SMSE of Eqs. (1.8), (1.11)–(1.15) and (2.1) are defined as

SMSE
(
β̂MLE

)
= 1
ϕ

p∑
j=1

1
λj
, (2.11)

SMSE
(
β̂BRE

)
= 1
ϕ

p∑
j=1

λj

(λj + k)2 + k2
p∑

j=1

α2
j

(λj + k)2 , (2.12)

SMSE
(
β̂BLE

)
= 1
ϕ

p∑
j=1

(λj + d)2

λj (λj + 1)2 + (d− 1)2
p∑

j=1

α2
j

(λj + 1)2 , (2.13)

SMSE
(
β̂LTBR

)
= 1
ϕ

p∑
j=1

(λj − d)2

λj (λj + k)2 + (d+ k)2
p∑

j=1

α2
j

(λj + k)2 , (2.14)

SMSE
(
β̂TPBR

)
= 1
ϕ

p∑
j=1

(λj + kd)2

λj (λj + k)2 + k2(d− 1)2
p∑

j=1

α2
j

(λj + k)2 , (2.15)

SMSE
(
β̂BDK

)
= 1
ϕ

p∑
j=1

(λj − k(1 + d))2

λj (λj + k(1 + d))2 + 4k2(1 + d)2
p∑

j=1

α2
j

(λj + k(1 + d))2 , (2.16)

SMSE
(
β̂BLT E

)
= 1
ϕ

p∑
j=1

(λj + f(k))2

λj (λj + k)2 + (f(k) − k)2
p∑

j=1

α2
j

(λj + k)2 . (2.17)

In these equalities, the first term is an asymptotic variance, and the second term is a
squared bias.
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3. Determination of f(k) function
There is no strict analytical rule for estimating the biasing parameters. So, it is an

important problem to find acceptable estimates of these parameters. Several approaches
have been recommended for choosing the best biasing parameters of k and d. Several
methods for estimating the value of k in BRE have been extensions of the methods pro-
posed in linear regression models. Abonazel and Taha [3] suggested the following new
estimation of biasing parameter k

kBRE1 = λmin

ϕ̂α̂2
min

, (3.1)

where α̂ = (α̂1, . . . α̂p)′ = Q′β̂BML, ϕ̂ = µ̂(1−µ̂)
σ̂2 and λmin is the minimum eigenvalue. In

addition, Qasim et al. [25] also proposed another estimator of the biasing parameter k as
follows:

kBRE2 =
∑p

j=1 λjα
2
j

p
(

1
ϕ

) . (3.2)

For BLE, Karlsson et al. [18] used the following method to estimate the biasing param-
eter d:

dBLE = max

0,min

{ β̂2
j − 1

λ̂−1
j + β̂2

j

}p

j=1

 . (3.3)

To obtain the value of k for the LTBR estimator, Algamal and Abonazel [8] used the k
parameter of [17] after tuning their formula based on the optimal k of BRMs as proposed
by [26] as follows:

kLT BR = 1
ϕ
∑p

j=1 α
2
j

. (3.4)

Additionally, Algamal and Abonazel [8] used the following biasing parameter d for LTBR
estimator:

dLT BR =

∑p
j=1

( 1
ϕ

−kLT BRα2
j

(λj+kLT BR)2

)
∑p

j=1

( 1
ϕ

+λjα2
j

λj(λj+kLT BR)2

) . (3.5)

In order to estimate TPBR parameters with minimum SMSE values, Abonazel et al.
[1] proposed the biasing parameters d and k which are given in Eqs. (3.6) and (3.7),
respectively.

dTPBR = 1
2

min
(

λjα̂
2
j

1
ϕ + λjα̂2

j

)p

j=1

, (3.6)

kTPBR = 1
p

p∑
j=1

 λj

ϕ
(
λjα̂2

j (1 − dTPBR ) − dT P BR
ϕ

)
 , (3.7)

where 0 < dTPBR < 1 and kTPBR > 0.

Recently, Abonazel et al. [2] suggested a new biasing parameter k of BDK estimator
based on the work of Dawoud and Kibria [11], as follows:

kBDK = 1
p

 p∑
j=1

1

ϕ̂ (1 + dBOK)
(

1
ϕ̂λj

+ 2α̂2
j

)


1
p

, (3.8)

where dBOK = min
(

α̂2
j

1
ϕλj

+2α̂2
j

)p

j=1
.
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The performance of our new estimator BLTE is dependent to function f(k). So that
we have only one biasing parameter k The appropriate selection of f(k) functions yield
different biased estimators. We can give a method to find the optimal f(k) function
minimizing SMSE

(
β̂BLTE

)
according to parameter k. To find the optimal f(k) function,

we take the derivative of h(k) = SMSE
(
β̂BLTE

)
with respect to k. Then, we get

h′(k) =
p∑

j=1

(f ′(k) (λj + k) − (f(k) + λj))
(

2
ϕ (λj + f(k)) + 2λjα

2
j (f(k) − k)

)
λj (λj + k)3

 . (3.9)

When the derivative given in Eq. (3.9) is set to 0, we have these two facts,

Fact 1.f ′(k) (λj + k) − (f(k) + λj) = 0. From the solution of this differential equation,
we obtain

f(k) = c1k + (c1 − 1)λj , j = 1, . . . , p, (3.10)
where c1 is the constant of integration.

Fact 2. 2
ϕ (λj + f(k)) + 2λjα

2
j (f(k) − k) = 0. From this equation we obtain

f(k) =
λjα

2
j

1
ϕ + λjα2

j

k −
λj

ϕ
1
ϕ + λjα2

j

, j = 1, . . . , p. (3.11)

According to Eqs. (3.10) and (3.11), the selection of f(k) = ak+ b (a, b ∈ R) as a linear
function of the biasing parameter k is applicable. Note that, f(k) defined in Eq. (3.11)
is a solution of the differential equation that is given in Fact 1. The f(k) in Eqs. (3.10)
and (3.11) makes the SMSE

(
β̂BLTE

)
function approximately minimum for a given value

of j. So, the function f(k) depends on the eigenvalues of X′ŴX, the biasing parameter
k and the unknown parameter α. With the structure of f(k) = ck + (c− 1)λmin where
c ∈ (0, 1) , we used the following functions for the determination of f(k) in this paper:

f1(k) = λminα
2
min

p+ λmaxα2
max

k +
(

λminα
2
min

p+ λmaxα2
max

− 1
)
λmin, (3.12)

f2(k) = λminα
2
min

n (1 + pλmaxα2
max)

k +
(

λminα
2
min

n (1 + pλmaxα2
max)

− 1
)
λmin, (3.13)

f3(k) =
min

(
λjα

2
j

)
nmax

(
ϕ+ λjα2

j

)k +

 min
(
λjα

2
j

)
nmax

(
ϕ+ λjα2

j

) − 1

λmin, (3.14)

where α2
min and α2

max is defined as the minimum and maximum value of α2
j , j = 1, 2, . . . , p.

Similarly, λmin and λmax is defined as the minimum and maximum eigenvalue of X′ŴX
respectively. Based on the simulation studies, we can use the following estimators to esti-
mate k in the BLTEs

k̂BLT E = λmax + pλmin
1 + √

p
, (3.15)

k̂BLT E =
(
npλmin
α2

max

) 1
p

, (3.16)



The beta Liu-type estimator: simulation and application 835

k̂BLT E =

√∑p
j=1 λj

p
, (3.17)

where p indicates the number of explanatory variables. We should note that k in the
BLTEs must be estimated in such a way that the conditioning of the X′ŴX matrix is
controlled.

4. Monte-Carlo simulation study
In this section, a Monte Carlo simulation experiment is conducted to examine the

performance of our new proposed estimator under different scenarios.

4.1. The design of the experiment
We designed our experiment according to the following conditions:
(1) The response variable is generated from the Beta distribution as yi ∼ Beta (µi, ϕ)

where µi = exp(x′
iβ)

(1+exp(x′
iβ)) , i = 1, 2, . . . , n,x′

i is the i th row of X, ϕ is the precision
parameter and β indicates the unknown regression coefficients vector.

(2) β = (β1, . . . , βp) parameter vector is chosen as
∑p

j=1 β
2
j = 1 and β1 = β2 = . . . =

βp.
(3) The correlated explanatory variables are generated as xij =

(
1 − ρ2) 1

2 zij +ρzip, i =
1, 2, . . . , n, j = 1, 2, . . . , p where ρ represents the correlation between the explana-
tory variables and zij are independent standard normal pseudorandom numbers.

(4) The precision parameter ϕ in the simulation is chosen as 0.5, 1.5, 5.
(5) Sample size n is taken as 50, 100 and 200.
(6) The correlation ρ between the explanatory variables taken as 0.90, 0.95 and 0.99.
(7) The number of explanatory variables p selected as 4, 8 and 12.

We used the EMSE criterion for comparison, which are computed as EMSE(β̂) =
1
N

∑N
r=1

(
β̂r − β

)′ (
β̂r − β

)
where β̂r is the estimated value vector at the rth experiment

of the simulation and β is the real parameter vector. The number of replications N is
chosen as 2000.

In the simulation study, as the proposed estimator compared with the other estimators,
the best biasing parameters suggested for each estimator were considered. To estimate
the biasing parameter k in BRE, we used the best estimation of k as given in Eqs. (3.1)
and (3.2) which are recommended by [3] and [25], respectively. For BLE, we used the best
estimate of d given in Eq. (3.3) by [18]. Based on the results given by [8], we used the
best estimation of d as defined in Eq. (3.5) in LTBR. Also kLT BR is computed from Eq.
(3.4) which is proposed by [26]. For TPBR, the biasing parameters d and k are estimated
by Eq. (3.6) and Eq. (3.7) respectively from study of [1]. Abonazel et al. [2] suggested
the biasing parameter k of BDK by Eq. (3.8). dBOK is taken by [11].

The obtained results are reported in Table 1, Table 2 and Table 3, together with the
following estimates of k and f(k) functions:

BLTE1: k̂BLT E = λmax+pλmin
1+√

p and f1(k) = λminα2
min

p+λmaxα2
max

k +
(

λminα2
min

p+λmaxα2
max

− 1
)
λmin

BLTE2: k̂BLTE =
(

npλmin
α2

max

) 1
p and f2(k) = λminα2

min
n(1+pλmaxα2

max)k +
(

λminα2
min

n(1+pλmaxα2
max) − 1

)
λmin

BLTE3: k̂BLT E =
√∑p

j=1 λj

p and f3(k) = min(λjα2
j)

n max(ϕ+λjα2
j)
k +

(
min(λjα2

j)
n max(ϕ+λjα2

j)
− 1

)
λmin.
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Table 1. The EMSE values of the estimators when p = 4.

n ρ ϕ MLE BRE1 BRE2 BLE LTBR TPBR BDK BLTE1 BLTE2 BLTE3

50 0.9 0.5 21.6311 3.6003 1.0716 1.1643 9.0118 1.4029 10.192 0.7263 0.7098 0.7260

50 0.9 1.5 18.4436 2.4824 0.9561 0.8178 5.5637 0.8992 11.1834 0.6166 0.6238 0.6163

50 0.9 5 6.6955 0.8501 0.899 0.7504 1.1668 0.8183 3.698 0.6307 0.6632 0.6202

50 0.95 0.5 43.9383 7.4231 0.9356 1.4029 18.1467 1.6364 29.7873 0.7005 0.7051 0.7015

50 0.95 1.5 48.8748 7.0033 0.7345 0.8127 13.4467 0.8631 39.909 0.5472 0.5536 0.5467

50 0.95 5 17.8857 1.3314 0.7831 0.6798 2.8619 0.7658 13.9309 0.6201 0.6245 0.6155

50 0.99 0.5 175.3199 32.5725 0.7033 2.7417 68.0766 1.5107 158.5961 0.6319 0.6668 0.6339

50 0.99 1.5 261.0659 37.8245 0.5874 1.4108 71.7951 0.7093 250.9298 0.5398 0.5369 0.5393

50 0.99 5 74.4915 2.8775 0.6471 0.639 7.73 0.7037 69.9839 0.6008 0.5668 0.5884

100 0.9 0.5 27.7197 4.1028 0.9794 1.2741 10.8069 1.5193 15.0786 0.6619 0.6668 0.6621

100 0.9 1.5 14.9681 1.7692 0.9901 0.8283 4.2902 0.9092 8.1072 0.6041 0.6409 0.6025

100 0.9 5 7.6032 0.8617 0.89 0.7487 1.2302 0.8169 4.4699 0.6368 0.6791 0.6258

100 0.95 0.5 59.5852 9.3054 0.7901 1.3429 22.5727 1.3973 45.0624 0.6165 0.6218 0.6176

100 0.95 1.5 39.3112 4.405 0.7473 0.7717 9.9867 0.8192 30.921 0.5383 0.5501 0.5363

100 0.95 5 14.3426 1.0337 0.7939 0.6886 1.9992 0.7772 10.6244 0.6176 0.6339 0.6078

100 0.99 0.5 201.1309 31.0208 0.6711 2.2665 74.9197 1.1643 185.1741 0.6116 0.6322 0.6125

100 0.99 1.5 120.4205 15.2105 0.6078 0.9044 30.3626 0.7097 111.4048 0.525 0.5197 0.5238

100 0.99 5 48.7294 2.0461 0.6597 0.6298 5.3294 0.7099 44.3548 0.5933 0.574 0.5806

200 0.9 0.5 29.7046 4.3444 0.9168 1.289 11.064 1.4069 17.2374 0.6313 0.6408 0.6317

200 0.9 1.5 14.9788 1.7006 0.942 0.7809 3.9369 0.8776 8.1203 0.5662 0.6316 0.5629

200 0.9 5 8.8419 0.8684 0.8608 0.7394 1.4213 0.8094 5.4083 0.6286 0.6837 0.6169

200 0.95 0.5 52.7961 7.6841 0.8287 1.2225 19.7501 1.2782 39.0181 0.6445 0.6453 0.6459

200 0.95 1.5 32.8096 3.3747 0.7976 0.7786 8.4448 0.8461 24.4116 0.5542 0.5822 0.5518

200 0.95 5 12.8091 0.9417 0.7838 0.6732 1.6808 0.7676 9.2515 0.6024 0.6399 0.5893

200 0.99 0.5 219.4048 30.067 0.7079 2.3876 80.3514 1.1753 203.2388 0.6436 0.6497 0.6438

200 0.99 1.5 129.3059 12.6203 0.6081 1.0003 31.0791 0.7142 119.9668 0.5331 0.5257 0.5308

200 0.99 5 59.2135 2.3877 0.6399 0.6216 5.9221 0.6946 54.9485 0.5892 0.5719 0.5764

4.2. Simulation results
For the simulation study, we used R-software. The EMSE for all the combinations of

n, p, ρ and ϕ are summarized in Table 1-2-3. The best three values of the EMSE that we
obtained at the simulation are shown in bold. According to the simulation, we conclude
the following results from the Table 1-2-3:

(1) In all the combinations of n, p, ρ and ϕ (total 81 scenarios), the estimators we
suggested had smaller EMSE values than the existing estimators that we compared.

(2) As it can be seen from Table 1-2-3, generally, BLTE1 has the best EMSE value
in many combinations. When the number of independent variables in the model
was relatively high, BLTE1 has the smallest SMSE value in many cases. When
the number of variables is relatively small, BLTE3 has the best EMSE value.

(3) In the relatively lower correlation, the BLTE1 had a smaller SMSE, while the
BLTE2 and BLTE3 had a smaller EMSE in the highly correlated models.

(4) While the BLTE1 had smaller EMSE values at small ϕ values, in general, BLTE2
and BLTE3 had better EMSEs at higher ϕ values.

(5) In general, it was observed that the EMSE values of BRE2 and our proposed
estimators tended to decrease, while the EMSE values of the other estimators
tend to increase in the case of high correlation.
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Table 2. The EMSE values of the estimators when p = 8.

n ρ ϕ MLE BRE1 BRE2 BLE LTBR TPBR BDK BLTE1 BLTE2 BLTE3

50 0.9 0.5 93.8278 11.2662 1.1812 1.1674 40.4812 2.05 64.71 0.6514 0.7142 0.7913

50 0.9 1.5 61.9516 4.315 1.1672 0.7503 17.1439 0.9192 44.7066 0.52 0.5388 0.5652

50 0.9 5 17.1674 0.8987 1.2349 0.904 2.5837 0.8186 9.3804 0.6232 0.6371 0.6649

50 0.95 0.5 136.5851 17.0555 1.0508 1.0397 63.5861 1.7514 106.1478 0.6569 0.7733 0.7987

50 0.95 1.5 76.5216 6.6043 0.9974 0.6817 21.2708 0.941 58.699 0.4837 0.5068 0.5232

50 0.95 5 27.1776 0.9881 1.0105 0.7687 3.7101 0.757 18.1247 0.5687 0.5792 0.5902

50 0.99 0.5 763.301 129.6957 0.5593 1.3888 312.7882 1.7598 728.1236 0.4836 0.5294 0.4955

50 0.99 1.5 479.6771 52.6478 0.5322 0.595 129.0926 0.7633 459.0657 0.4473 0.4417 0.4352

50 0.99 5 249.6432 10.8579 0.6105 0.5603 39.7353 0.6455 238.4401 0.5564 0.553 0.5378

100 0.9 0.5 50.9754 3.6385 1.3679 1.324 18.8995 1.3868 27.2484 0.6508 0.6521 0.7596

100 0.9 1.5 39.136 2.1362 1.2934 0.8491 9.57 0.8521 23.9414 0.5276 0.5311 0.5641

100 0.9 5 15.0022 0.8301 1.2009 0.8971 1.7139 0.8051 7.4092 0.5831 0.5782 0.5766

100 0.95 0.5 152.7753 15.5225 0.8331 0.9196 56.8754 1.5586 121.4166 0.5296 0.5668 0.584

100 0.95 1.5 75.093 5.2406 0.9504 0.6762 17.7288 0.8988 57.5188 0.4731 0.4743 0.482

100 0.95 5 29.2438 1.0334 0.9738 0.742 3.3904 0.7545 20.1553 0.5663 0.5642 0.5712

100 0.99 0.5 774.0129 114.2618 0.5404 1.2806 292.3458 1.4223 740.0923 0.4818 0.5055 0.4864

100 0.99 1.5 411.2774 39.235 0.5149 0.5392 92.8988 0.7507 391.0896 0.4327 0.4122 0.4135

100 0.99 5 179.9447 6.0944 0.6117 0.5839 23.3464 0.6517 168.6955 0.5467 0.5273 0.5241

200 0.9 0.5 68.1933 3.9271 1.1693 1.1879 22.695 1.3301 41.6812 0.5647 0.5666 0.5889

200 0.9 1.5 41.2022 1.9844 1.2116 0.814 8.8423 0.8552 25.5893 0.4846 0.4874 0.4829

200 0.9 5 18.7176 0.8346 1.0804 0.8095 1.8454 0.7905 10.6093 0.5575 0.5502 0.538

200 0.95 0.5 117.1055 8.2409 0.8906 0.9559 39.0465 1.4058 87.7555 0.5137 0.5176 0.5307

200 0.95 1.5 69.3549 3.6225 0.9341 0.6707 14.1324 0.8124 52.2297 0.4586 0.455 0.4479

200 0.95 5 29.854 0.9163 0.9438 0.7206 2.6801 0.7565 20.9637 0.5633 0.5505 0.5427

200 0.99 0.5 552.9092 52.5662 0.5955 0.8861 179.1318 1.2149 519.5047 0.5074 0.4998 0.4987

200 0.99 1.5 414.0522 33.7499 0.5048 0.5169 85.3423 0.6915 393.8937 0.4281 0.4034 0.405

200 0.99 5 150.4005 2.6752 0.626 0.5648 11.3286 0.6521 139.6566 0.5519 0.5173 0.5182

5. Real data application
To further examine and to show the practicality of our new proposed estimators, we

apply the proposed estimators to the Australian Institute of Sport Data (AIS). The AIS
data set has also been used by [24]. Also the data is included in R library sn. Here,
percentage body fat (yi), hematocrit in percent (x1) and hemoglobin concentration in
gram per deciliter (x2) are selected for rowing athletes. The correlation of independent
variables is equal to 0.963. Table 4 shows the results of these data for the logit link
function. According to the data set, for used link functions, when the variance value of
all estimators is calculated (last row in the Table 4), our proposed estimators have been
quite successful. Specifically BLTE1 and BLTE3 outperformed all other predictors. Since
BLTE2 has approximately similar variance value with BLE, it has proven to be successful
compared to other estimators.

In addition, the bootstrap sampling method is used to calculate the SMSE values of the
relevant estimators. For this reason, 10000 bootstrap samples have been created. For each
of these samples, the parameter estimates of the proposed and existing biased estimators
are calculated. The mean of the MLE estimates is considered as the real parameter and
the calculated SMSE values are given in Table 4.
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Table 3. The EMSE values of the estimators when p = 12.

n ρ ϕ MLE BRE1 BRE2 BLE LTBR TPBR BDK BLTE1 BLTE2 BLTE3

50 0.9 0.5 126.7153 9.512 1.7133 1.3808 55.5568 1.9904 84.4768 0.6313 0.7801 0.9935

50 0.9 1.5 100.8498 6.0594 1.5691 0.888 32.6452 0.9716 75.0141 0.5265 0.6424 0.7486

50 0.9 5 30.597 0.917 1.4962 1.0164 4.8008 0.7925 18.0153 0.5991 0.6834 0.7388

50 0.95 0.5 216.5942 19.6176 1.3518 1.0943 95.9499 2.1848 170.5494 0.5837 0.739 0.8552

50 0.95 1.5 172.3998 14.9221 1.2862 0.7565 65.154 1.0246 144.4295 0.5251 0.6813 0.7326

50 0.95 5 73.5961 1.8245 1.0166 0.7468 13.592 0.7115 58.0129 0.5293 0.623 0.6288

50 0.99 0.5 1417.9849 266.4884 0.5429 1.1105 675.2927 2.8763 1364.0739 0.421 0.4999 0.4719

50 0.99 1.5 782.4249 113.6931 0.543 0.4709 276.8606 1.0396 750.8841 0.3928 0.4274 0.4094

50 0.99 5 289.7669 8.4269 0.6639 0.5683 46.1859 0.6438 271.8784 0.5334 0.5406 0.5265

100 0.9 0.5 95.9181 4.9376 1.7149 1.6055 38.1135 1.4696 56.9282 0.6755 0.7923 1.0414

100 0.9 1.5 59.0279 2.0447 1.7635 1.0464 14.888 0.858 36.1809 0.5067 0.5465 0.6515

100 0.9 5 36.781 0.8521 1.2634 0.9018 4.0019 0.7679 22.9186 0.5357 0.5442 0.5663

100 0.95 0.5 213.4928 15.3818 1.0739 1.0119 77.6324 1.8604 167.9322 0.4965 0.5626 0.627

100 0.95 1.5 133.0176 7.5678 1.0691 0.6688 35.2159 0.837 106.4537 0.4237 0.4667 0.5138

100 0.95 5 53.3172 1.193 1.1257 0.8094 7.9374 0.7429 38.6889 0.5542 0.6035 0.6316

100 0.99 0.5 1127.7097 149.4226 0.5309 0.6823 443.8274 1.9407 1075.9271 0.4294 0.4692 0.459

100 0.99 1.5 740.3852 64.6641 0.5291 0.4711 188.2876 0.848 709.434 0.4079 0.4001 0.3975

100 0.99 5 254.5988 5.5096 0.6397 0.553 30.7731 0.6383 237.2881 0.5204 0.5025 0.4995

200 0.9 0.5 91.9788 3.1418 1.528 1.534 29.7031 1.2606 53.6285 0.5367 0.5734 0.6844

200 0.9 1.5 57.0663 1.6173 1.6664 1.0217 12.2218 0.8329 34.1209 0.4597 0.4692 0.5249

200 0.9 5 26.3901 0.8229 1.4629 1.0154 2.6239 0.7961 13.8923 0.5581 0.5575 0.5819

200 0.95 0.5 184.8183 8.7547 1.0716 1.0746 60.0984 1.5148 140.575 0.4957 0.5181 0.561

200 0.95 1.5 109.8284 3.9556 1.1764 0.7619 22.7946 0.8434 83.4023 0.4407 0.4427 0.4663

200 0.95 5 54.5301 0.9384 1.0891 0.7911 4.9765 0.7373 39.5982 0.5446 0.5319 0.5393

200 0.99 0.5 926.5518 79.5587 0.5613 0.6892 305.3659 1.5674 876.8201 0.4475 0.4483 0.4489

200 0.99 1.5 572.5614 37.8564 0.5309 0.4565 122.2598 0.8043 541.8656 0.3949 0.3743 0.374

200 0.99 5 253.2151 4.2294 0.6361 0.557 22.9285 0.6428 236.0445 0.5272 0.4972 0.4968

Table 4. The estimated coefficients and SMSE values for the Gasoline yield data.

MLE BRE1 BRE2 BLE LTBR TPBR BDK BLTE1 BLTE2 BLTE3

β̂1 -1.7157 -1.7156 -1.6766 -1.4037 -1.7128 -1.7103 -1.6443 -1.2208 -1.5305 -1.3222

β̂2 0.701 0.6852 -0.5322 -0.1178 0.1024 -0.0895 -1.7768 -0.0707 -0.2531 -0.1026

β̂3 -2.354 -2.3374 -0.708 -0.183 -1.7259 -1.5051 0.8863 -0.0674 -0.2448 -0.0976

var
(

β̂
)

3.2013 3.1346 0.0515 0.0068 1.19517 0.74370 2.3549 0.0025 0.0096 0.0035

SMSE
(

β̂
)

3.2013 3.13462 0.0522 0.0827 1.19519 0.74373 2.3572 0.2112 0.0327 0.1298

6. Conclusion
In this paper, the BLTE is proposed to combat the multicollinearity problem in the

BRMs. It is given the properties of the new biased estimators and shown its superiority
than the other estimators we compared. According to Monte Carlo simulation studies,
BLTEs have better performance than BML, BRE, BLE, LTBR, TPBR and BDK estima-
tors, in terms of EMSE. Especially, BLTE1 provided superiority in lower correlation and
lower precision values while BLTE2 and BLTE3 outperformed superiority in high correla-
tion and high precision values. A numerical example is given to evaluate the performance
of our proposed estimator. The obtained results are consistent with the simulation results.
Therefore, we recommend BLTEs to researchers to use in their studies.
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