

Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with g-Natural Metrics

Murat Altunbaş

(Dedicated to the memory of Prof. Dr. Krishan Lal DUGGAL (1929 - 2022))

ABSTRACT

Let (M, g) be a Riemannian manifold and (TM, \tilde{g}) be its tangent bundle with the g-natural metric. In this paper, a family of metallic Riemannian structures J is constructed on TM, found conditions under which these structures are integrable. It is proved that (TM, \tilde{g}, J) is decomposable if and only if (M, g) is flat.

Keywords: g-natural metric, metallic Riemannian structure, tangent bundle. *AMS Subject Classification (2020):* Primary: 53A45 ; Secondary: 53B20; 57N16; 58A30.

1. Introduction

Let (M, g) be a Riemannian manifold and TM be its tangent bundle. In [4], Abbassi and Sarih defined g-natural metrics on TM as metrics which arise from g through first order natural operators defined between the natural bundle of Riemannian metrics on M and the natural bundle of (0, 2)-tensor fields on TM. Some well-known examples of g-natural metrics are the Sasaki metric ([8],[20]), Sasaki type metrics ([9]), the Cheeger-Gromoll metric ([19], [21]), Cheeger-Gromoll type metrics ([7],[10]) and the Kaluza-Klein metric ([6]). Abbassi *et al.* have been studied geometric properties of tangent bundles with respect to g-natural metrics (see [1],[2],[3], for instance).

On the other hand, consider the general quadratic equation $x^2 - ax - b = 0$, where *a* and *b* are positive integers. The set of positive solutions of this equation $\sigma_{a,b} = \frac{a+\sqrt{a^2+4b}}{2}$ are referred to as the Metallic Means Family. These numbers were introduced by Spinadel in [22] and can be seen as generalizations of the golden number $\phi = \frac{1+\sqrt{5}}{2} = 1.618...$ Inspiring these numbers, Hreţcanu and Crasmareanu introduced metallic structures on Riemannian manifolds in [12]. Investigating metallic structures and their subclasses (such as golden, silver, bronze etc. structures) on Riemannian manifolds is an actual subject in differential geometry (see for example [5],[11],[13, 17]).

In this paper, we introduce a family of metallic structures J on tangent bundles TM with g-natural metrics \tilde{g} . We study integrability of these structures and prove that locally flatness of the base manifold M is necessary and sufficient for the locally decomposability of the tangent bundle (TM, \tilde{g}, J) .

2. Preliminaries

2.1. Tangent bundle

Let *M* be an *n*-dimensional Riemannian manifold and ∇ be the Levi-Civita connection of *g*. The tangent bundle *TM* of the manifold *M* is a 2*n*-dimensional smooth manifold and it is defined by disjoint tangent spaces at distinct points on *M*. If $\{U, x^i\}$ is a local coordinate system in *M*, then $\{\pi^{-1}(U), x^i, y^i\}_{i=1,...,n}$ is a local

Received : 20-07-2022, Accepted : 01-04-2022

^{*} Corresponding author

coordinate system in *TM*, where π is the natural projection defined by $\pi : TM \to M$. We have a direct sum decomposition

$$TTM = VTM \oplus HTM$$

for the tangent bundle TM, where $VTM = Ker\pi_*$ is the vertical subspace and HTM is the horizontal subspace defined by ∇ . Given a vector field X on M, the horizontal lift $X^h \in HTM$ of X is defined by $\pi_*X^h = X$ and the vertical lift $X^v \in VTM$ of X is defined by $X^v(df) = Xf$, for every smooth functions f on M. Notice that 1-forms df on M are supposed to be functions on TM. Furthermore, the vector field $y^h = y^i(\frac{\partial}{\partial x^i})^h$ yields the geodesic spray on TM. Any tangent vector $Z \in TM$ can be expressed as $Z = X^h + Y^v$, where X and Y are uniquely written vector fields on M.

From [4], it is known that the *g*-natural metric \tilde{g} on the tangent bundle *TM* of the Riemannian manifold (M, g) is completely determined as follows:

$$\begin{cases} \tilde{g}(X^{h}, Y^{h}) = (\alpha_{1} + \alpha_{3})(w^{2})g(X, Y) + (\beta_{1} + \beta_{3})(w^{2})g(X, y)g(Y, y), \\ \tilde{g}(X^{h}, Y^{v}) = \tilde{g}(X^{v}, Y^{h}) = \alpha_{2}(w^{2})g(X, Y) + \beta_{2}(w^{2})g(X, y)g(Y, y), \\ \tilde{g}(X^{v}, Y^{v}) = \alpha_{1}(w^{2})g(X, Y) + \beta_{1}(w^{2})g(X, y)g(Y, y), \end{cases}$$
(2.1)

where $w^2 = g(y, y)$, $\alpha_i, \beta_i : R^+ \to R$, i = 1, 2, 3 are six smooth functions and y, X, Y are vector fields on M. Remark that the *g*-natural metric \tilde{g} is Riemannian if and only if

$$\alpha_1(t) > 0, \ \varphi_1(t) > 0, \ \alpha(t) > 0, \ \varphi(t) > 0,$$

for all $t \in R^+$, where

$$\varphi_i(t) = \alpha_i(t) + t\beta_i(t), \ \alpha(t) = \alpha_1(t)(\alpha_1(t) + \alpha_3(t)) - \alpha_2^2(t), \ \varphi(t) = \varphi_1(t)(\varphi_1(t) + \varphi_3(t)) - \varphi_2^2(t).$$

Lemma 2.1. [8] Let (M, g) be a Riemannian manifold on TM be its tangent bundle. The Lie bracket of vertical and horizontal vector fields on TM is given by

$$\begin{split} & [X^{h}, Y^{h}] = [X, Y]^{h} - (R(X, Y)u)^{v}, \\ & [X^{h}, Y^{v}] = (\nabla_{X}Y)^{v}, \\ & [X, Y] = 0, \end{split}$$

where X, Y are vector fields on M, ∇ is the Levi-Civita connection of g and R is the Riemannian curvature of ∇ .

2.2. Metallic Riemannian structures on tangent bundles

Definition 2.1. [12] Let (M, g) be an *n*-dimensional Riemannian manifold. A metallic structure on *M* is a (1, 1)-tensor field *J* which satisfy the following relations

$$J^2 = aJ + bI, (2.2)$$

$$g(JX, JY) = ag(JX, Y) + bg(X, Y),$$
(2.3)

where a, b are positive integers and X, Y are vector fields on M.

The Riemannian metric satisfying (2.3) is referred to as J-compatible and the triple (M, g, J) is said to be a metallic Riemannian manifold. When the Nijenhuis tensor N_J of J is zero, it is said that the metallic Riemannian structure is integrable. A metallic Riemannian manifold (M, g, J) with an integrable metallic structure J is called locally decomposable metallic Riemannian manifold. The following proposition characterizes the locally decomposibility of metallic Riemannian manifolds.

Proposition 2.1. [11] Let (M, g, J) be a metallic Riemannian manifold. Then (M, g, J) is locally decomposable if and only if $\Phi_J g = 0$, where Φ_J is the Tachibana operator defined by

$$\Phi_J g(X, Y, Z) = (JX)(g(Y, Z)) - X(g(JY, Z)) + g((L_Y J)X, Z) + g(Y, (L_Z J)X).$$

Here, $(L_X J)Y = [X, JY] - J[X, Y].$

dergipark.org.tr/en/pub/iejg

3. Metallic Riemannian structures on tangent bundles with *g*-natural metrics

In this section we construct a metallic structure on the tangent bundle TM which is equipped with g-natural metrics as J-compatible metrics.

Theorem 3.1. Let (M, g) be a Riemannian manifold and TM be its tangent bundle with a g-natural metric \tilde{g} described by (2.1). The tensor field J defined by

$$J(X^h) = pX^h + qX^h,$$

$$J(X^v) = rX^h + sX^v,$$
(3.1)

is a metallic Riemannian structure if and only if

$$\begin{cases} q = -\frac{p^2 - ap - b}{r}, \ s = a - p, \ \alpha_2(w^2) = \beta_2(w^2) = 0, \\ \alpha_3(w^2) = -\frac{\alpha_1(w^2)(p^2 + r^2 - ap - b)}{r^2}, \ \beta_3(w^2) = -\frac{\beta_1(w^2)(p^2 + r^2 - ap - b)}{r^2}, \end{cases}$$
(3.2)

where a, b are positive integers, p, q, r, s are non-zero constants and X is a vector field on M.

Proof. The metric \tilde{g} described by (2.1) is *J*-compatible with the tensor *J* in (3.1) if and only if (2.2) and (2.3) are valid. Putting (3.1) and (2.1) into (2.2) and (2.3) gives us

$$\begin{cases} p^{2} + qr - ap - b = 0, \ q(p + s - a) = 0, \ r(p + s - a) = 0, \ qr + s^{2} - as - b = 0, \\ (\alpha_{1} + \alpha_{3})(w^{2})p^{2} + (2q\alpha_{2}(w^{2}) - a\alpha_{1}(w^{2}) - a\alpha_{3}(w^{2}))p + q^{2}\alpha_{1}(w^{2}) - b\alpha_{1}(w^{2}) - b\alpha_{3}(w^{2}) = 0, \\ (\beta_{1} + \beta_{3})(w^{2})p^{2} + (2q\beta_{2}(w^{2}) - a\beta_{1}(w^{2}) - a\beta_{3}(w^{2}))p + q^{2}\beta_{1}(w^{2}) - b\beta_{1}(w^{2}) - b\beta_{3}(w^{2}) = 0, \\ pr(\alpha_{1} + \alpha_{3})(w^{2}) + (p(s - a) + qr - b)\alpha_{2}(w^{2}) + q(s - a)\alpha_{1}(w^{2}) = 0, \\ pr(\beta_{1} + \beta_{3})(w^{2}) + (p(s - a) + qr - b)\beta_{2}(w^{2}) + q(s - a)\beta_{1}(w^{2}) = 0, \\ r(q\alpha_{2}(w^{2}) + (p - a)(\alpha_{1} + \alpha_{3})(w^{2})) + (ps - as - b)\alpha_{2}(w^{2}) + qs\alpha_{1}(w^{2}) = 0, \\ r(q\beta_{2}(w^{2}) + (p - a)(\beta_{1} + \beta_{3})(w^{2})) + (ps - as - b)\beta_{2}(w^{2}) + qs\beta_{1}(w^{2}) = 0, \\ (r^{2} + s^{2} - as - b)\alpha_{1}(w^{2}) + r^{2}\alpha_{3}(w^{2}) + (2s\alpha_{2}(w^{2}) - a\alpha_{2}(w^{2}))r = 0, \\ (r^{2} + s^{2} - as - b)\beta_{1}(w^{2}) + r^{2}\beta_{3}(w^{2}) + (2s\beta_{2}(w^{2}) - a\beta_{2}(w^{2}))r = 0. \end{cases}$$
(3.3)

Direct computations prove that system of equations (3.3) is satisfied if and only if (3.2) is valid. Thus, we prove the theorem. \Box

Particular cases of the g-natural metric in (2.1) give some well-known examples of Riemannian metrics on TM. More precisely, we obtain

(1) Sasaki metric g^s , if

$$\alpha_1(t) = 1, \ \alpha_2(t) = \alpha_3(t) = \beta_1(t) = \beta_2(t) = \beta_3(t) = 0,$$
(3.4)

(2) Cheeger-Gromoll metric g^{cg} , if

$$\alpha_2(t) = \beta_2(t) = 0, \ \alpha_1(t) = \beta_1(t) = -\beta_3(t) = \frac{1}{1+t}, \ \alpha_3(t) = \frac{t}{1+t},$$

(3) Cheeger-Gromoll type metrics g^{ml} , if

$$\alpha_2(t) = \beta_2(t) = 0, \ \alpha_1(t) = \frac{1}{(1+t)^m}, \ \alpha_3(t) = 1 - \alpha_1(t), \ \beta_1(t) = -\beta_3(t) = \frac{l}{(1+t)^m},$$

(4) Kaluza-Klein metric g^{kk} , if

$$\alpha_2(t) = \beta_2(t) = (\beta_1 + \beta_3)(t) = 0$$

Now, we can express the following theorems and examples for these metrics.

Theorem 3.2. Let (TM, g^s) be the tangent bundle of a Riemannian manifold (M, g) with the Sasaki metric g^s . The tensor field J given by

$$J(X^{h}) = kX^{h} + \sqrt{-k^{2} + ak + b}X^{v},$$

$$J(X^{v}) = \sqrt{-k^{2} + ak + b}X^{h} + (a - k)X^{v},$$
(3.5)

for an arbitrary non-zero constant k satisfying $-k^2 + ak + b > 0$ and an arbitrary vector field X on M is a metallic Riemannian structure on TM and (TM, J, g^s) is a metallic Riemannian manifold.

Proof. From Theorem 3.1 and (3.4), we occur that (3.3) is true if and only if

$$p = k, q = r = \sqrt{-k^2 + ak + b}, s = a - k$$

where k is a non-zero constant satisfying $-k^2 + ak + b > 0$. Thus, the theorem is proved.

Example 3.1. Let (R^2, g^e) be the Euclidean 2-manifold and (u^1, u^2) be a local coordinate neighbourhood on R^2 . In this case, the vectors $\{\frac{\partial}{\partial u^1}, \frac{\partial}{\partial u^2}\}$ yield a local frame field on R^2 . The components of the metric g^e are

$$g_{ij} = \delta_{ij} = \begin{cases} 1, \ if \ i = j, \\ 0, \ if \ i \neq j, \ i, j = 1, 2. \end{cases}$$

Denote the tangent bundle of R^2 by TR^2 and choose a local frame field on TR^2 as $\{\bar{u}^1, \bar{u}^2, v^1, v^2\}$, where $\bar{u}^i = u^i \circ \pi$, i = 1, 2. The Sasaki metric g^s on TR^2 is defined by

$$\left\{ \begin{array}{l} g^s(\frac{\partial}{\partial \overline{u}^i},\frac{\partial}{\partial v^j}) = g^e(\frac{\partial}{\partial u^i},\frac{\partial}{\partial u^j}),\\ g^s(\frac{\partial}{\partial \overline{u}^i},\frac{\partial}{\partial v^j}) = 0,\\ g^s(\frac{\partial}{\partial v^i},\frac{\partial}{\partial v^j}) = g^e(\frac{\partial}{\partial u^i},\frac{\partial}{\partial u^j}), \end{array} \right.$$

for i, j = 1, 2 (see [18]). From (3.5), we occur

$$J(\frac{\partial}{\partial \bar{u}^{i}}) = k \frac{\partial}{\partial \bar{u}^{i}} + \sqrt{-k^{2} + ak + b} \frac{\partial}{\partial v^{i}},$$

$$J(\frac{\partial}{\partial v^{i}}) = \sqrt{-k^{2} + ak + b} \frac{\partial}{\partial \bar{u}^{i}} + (a - k) \frac{\partial}{\partial v^{i}},$$
(3.6)

for an arbitrary non-zero constant k satisfying $-k^2 + ak + b > 0$. To prove the triple (TR^2, J, g^s) is a metallic Riemannian manifold, we should show that the relations (2.2) and (2.3) are fulfilled. Taking i, j = 1, 2 and using (3.6) we get

$$J^{2}(\frac{\partial}{\partial \bar{u}^{i}}) = J(k\frac{\partial}{\partial \bar{u}^{i}} + \sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{i}}) = kJ(\frac{\partial}{\partial \bar{u}^{i}}) + \sqrt{-k^{2} + ak + b}J(\frac{\partial}{\partial v^{i}})$$

$$= k(k\frac{\partial}{\partial \bar{u}^{i}} + \sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{i}})$$

$$+ \sqrt{-k^{2} + ak + b}(\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial \bar{u}^{i}} + (a - k)\frac{\partial}{\partial v^{i}})$$

$$= (ak + b)\frac{\partial}{\partial \bar{u}^{i}} + a\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{i}},$$
(3.7)

and

$$aJ(\frac{\partial}{\partial \bar{u}^{i}}) + bI(\frac{\partial}{\partial \bar{u}^{i}}) = ak\frac{\partial}{\partial \bar{u}^{i}} + a\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{i}} + b\frac{\partial}{\partial \bar{u}^{i}}$$
$$= (ak + b)\frac{\partial}{\partial \bar{u}^{i}} + a\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{i}}.$$
(3.8)

Equations (3.7) and (3.8) imply that $J^2(\frac{\partial}{\partial \bar{u}^i}) = aJ(\frac{\partial}{\partial \bar{u}^i}) + bI(\frac{\partial}{\partial \bar{u}^i})$. Similarly, taking i, j = 1, 2 and using (3.6) we obtain

$$J^{2}(\frac{\partial}{\partial v^{i}}) = J(\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial \bar{u}^{i}} + (a - k)\frac{\partial}{\partial v^{i}}) = \sqrt{-k^{2} + ak + b}J(\frac{\partial}{\partial \bar{u}^{i}}) + (a - k)J(\frac{\partial}{\partial v^{i}})$$

$$= \sqrt{-k^{2} + ak + b}(k\frac{\partial}{\partial \bar{u}^{i}} + \sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{i}})$$

$$+ (a - k)(\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial \bar{u}^{i}} + (a - k)\frac{\partial}{\partial v^{i}})$$

$$= a\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial \bar{u}^{i}} + (a^{2} - ak + b)\frac{\partial}{\partial v^{i}},$$
(3.9)

and

$$aJ(\frac{\partial}{\partial v^{i}}) + bI(\frac{\partial}{\partial v^{i}}) = a\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial \bar{u}^{i}} + a(a-k)\frac{\partial}{\partial v^{i}} + b\frac{\partial}{\partial \bar{u}^{i}}$$
$$= a\sqrt{-k^{2} + ak + b}\frac{\partial}{\partial \bar{u}^{i}} + (a^{2} - ak + b)\frac{\partial}{\partial v^{i}}.$$
(3.10)

dergipark.org.tr/en/pub/iejg

98

Equations (3.9) and (3.10) imply that $J^2(\frac{\partial}{\partial v^i}) = aJ(\frac{\partial}{\partial v^i}) + bI(\frac{\partial}{\partial v^i})$. So, the condition (2.2) is fulfilled. Now, we examine the condition (2.3). We have

$$g^{s}(J(\frac{\partial}{\partial \bar{u}^{1}}), J(\frac{\partial}{\partial \bar{u}^{1}})) = g^{s}((k\frac{\partial}{\partial \bar{u}^{1}} + \sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{1}}), k\frac{\partial}{\partial \bar{u}^{1}} + \sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{1}}))$$

$$= k^{2}g^{s}(\frac{\partial}{\partial \bar{u}^{1}}, \frac{\partial}{\partial \bar{u}^{1}}) + (-k^{2} + ak + b)g^{s}(\frac{\partial}{\partial v^{1}}, \frac{\partial}{\partial v^{1}})$$

$$= k^{2}g^{e}(\frac{\partial}{\partial u^{1}}, \frac{\partial}{\partial u^{1}}) + (-k^{2} + ak + b)g^{e}(\frac{\partial}{\partial u^{1}}, \frac{\partial}{\partial u^{1}}) = ak + b, \qquad (3.11)$$

and

$$ag^{s}(J(\frac{\partial}{\partial\bar{u}^{1}}),\frac{\partial}{\partial\bar{u}^{1}}) + bg^{s}(\frac{\partial}{\partial\bar{u}^{1}},\frac{\partial}{\partial\bar{u}^{1}}) = ag^{s}(k\frac{\partial}{\partial\bar{u}^{1}} + \sqrt{-k^{2} + ak + b}\frac{\partial}{\partial v^{1}},\frac{\partial}{\partial\bar{u}^{1}}) + bg^{s}(\frac{\partial}{\partial\bar{u}^{1}},\frac{\partial}{\partial\bar{u}^{1}}) = ak + b$$

$$(3.12)$$

From (3.11) and (3.12), we have

$$g^{s}(J(\frac{\partial}{\partial \bar{u}^{1}}), J(\frac{\partial}{\partial \bar{u}^{1}})) = ag^{s}(J(\frac{\partial}{\partial \bar{u}^{1}}), \frac{\partial}{\partial \bar{u}^{1}}) + bg^{s}(\frac{\partial}{\partial \bar{u}^{1}}, \frac{\partial}{\partial \bar{u}^{1}}) = ak + b.$$
(3.13)

By similar way, we obtain

$$g^{s}(J(\frac{\partial}{\partial \bar{u}^{2}}), J(\frac{\partial}{\partial \bar{u}^{2}})) = ag^{s}(J(\frac{\partial}{\partial \bar{u}^{2}}), \frac{\partial}{\partial \bar{u}^{2}}) + bg^{s}(\frac{\partial}{\partial \bar{u}^{2}}, \frac{\partial}{\partial \bar{u}^{2}}) = ak + b,$$
(3.14)

$$g^{s}(J(\frac{\partial}{\partial \bar{u}^{1}}), J(\frac{\partial}{\partial \bar{u}^{2}})) = ag^{s}(J(\frac{\partial}{\partial \bar{u}^{1}}), \frac{\partial}{\partial \bar{u}^{2}}) + bg^{s}(\frac{\partial}{\partial \bar{u}^{1}}, \frac{\partial}{\partial \bar{u}^{2}}) = 0,$$
(3.15)

$$g^{s}(J(\frac{\partial}{\partial v^{1}}), J(\frac{\partial}{\partial v^{1}})) = ag^{s}(J(\frac{\partial}{\partial v^{1}}), \frac{\partial}{\partial v^{1}}) + bg^{s}(\frac{\partial}{\partial v^{1}}, \frac{\partial}{\partial v^{1}}) = a(a-k) + b,$$
(3.16)

$$g^{s}(J(\frac{\partial}{\partial v^{2}}), J(\frac{\partial}{\partial v^{2}})) = ag^{s}(J(\frac{\partial}{\partial v^{2}}), \frac{\partial}{\partial v^{2}}) + bg^{s}(\frac{\partial}{\partial v^{2}}, \frac{\partial}{\partial v^{2}}) = a(a-k) + b,$$
(3.17)

$$g^{s}(J(\frac{\partial}{\partial v^{1}}), J(\frac{\partial}{\partial v^{2}})) = ag^{s}(J(\frac{\partial}{\partial v^{1}}), \frac{\partial}{\partial v^{2}}) + bg^{s}(\frac{\partial}{\partial v^{1}}, \frac{\partial}{\partial v^{2}}) = 0.$$
(3.18)

Equations (3.13)- (3.18) show that the condition (2.3) is fulfilled. Therefore, (TR^2, J, g^s) is a metallic Riemannian manifold.

Theorem 3.3. There does not exist any metallic Riemannian structure J of the form (3.1) on (TM, g^{cg}) .

Proof. It is clear that taking $\alpha_2(t) = \beta_2(t) = 0$, $\alpha_1(t) = \beta_1(t) = -\beta_3(t) = \frac{1}{1+t}$, $\alpha_3(t) = \frac{t}{1+t}$ in (3.3) does not yield a solution. This completes the proof.

Theorem 3.4. Let (TM, g^{ml}) be the tangent bundle of a Riemannian manifold (M, g) with a Cheeger-Gromoll type metric g^{ml} . The tensor field J given by

$$J(X^{h}) = (a - k_{1})X^{h} + k_{2}X^{v},$$

$$J(X^{v}) = -\frac{k_{1}^{2} - ak_{1} - b}{k_{2}}X^{h} + k_{1}X^{v},$$

for arbitrary non-zero constants k_1, k_2 when $k_1^2 - ak_1 - b > 0$ and an arbitrary vector field X on M is a metallic Riemannian structure on TM and (TM, J, g^{ml}) is a metallic Riemannian manifold if and only if l = 0 and $m = \frac{\ln(\frac{k_2^2}{k_1^2 - ak_1 - b})}{2} = m$

$$\frac{k_1^2 - ak_1 - b^2}{\ln(1 + (g(y, y))^2)} = m_\mu.$$

Proof. Taking $\alpha_2(t) = \beta_2(t) = 0$, $\alpha_1(t) = \frac{1}{(1+t)^m}$, $\alpha_3(t) = 1 - \alpha_1(t)$, $\beta_1(t) = -\beta_3(t) = \frac{l}{(1+t)^m}$ in (3.3) yields one solution as

$$s = k_1, \ q = k_2, \ p = a - k_1, \ r = -\frac{k_1^2 - ak_1 - b}{k_2}, \ l = 0, \ m = m_\mu = \frac{\ln(\frac{k_2^2}{k_1^2 - ak_1 - b})}{\ln(1 + (g(y, y))^2)}$$

for arbitrary non-zero constants k_1, k_2 when $k_1^2 - ak_1 - b > 0$. Thus the theorem is proved.

Theorem 3.5. Let (TM, g^{kk}) be the tangent bundle of a Riemannian manifold (M, g) with the Kaluza-Klein metric g^{kk} . The tensor field J given by

$$J(X^{h}) = k_{1}X^{h} + k_{2}X^{v},$$

$$J(X^{v}) = -\frac{k_{1}^{2} - ak_{1} - b}{k_{2}}X^{h} + (a - k_{1})X^{v},$$
(3.19)

for arbitrary non-zero constants k_1, k_2 and an arbitrary vector field X on M is a metallic Riemannian structure on TM and (TM, J, g^{ml}) is a metallic Riemannian manifold if and only if $\alpha_3(w^2) = -\frac{\alpha_1(w^2)(k_1^2+k_2^2-ak_1-b)}{k_1^2-ak_1-b}$ and $\beta_1(w^2) = 0$.

Proof. The proof is similar to the proof of the previous theorem.

Example 3.2. Let (R^2, g^e) be the Euclidean 2-manifold and TR^2 be its tangent bundle as in Example 3.1. The Kaluza-Klein metric g^{kk} associated with (R^2, g_e) is given by

$$\begin{cases} g^{kk}(\frac{\partial}{\partial \bar{u}^i},\frac{\partial}{\partial \bar{u}^j}) = (\alpha_1 + \alpha_3)(1)g^e(\frac{\partial}{\partial u^i},\frac{\partial}{\partial u^j}),\\ g^{kk}(\frac{\partial}{\partial \bar{u}^i},\frac{\partial}{\partial v^j}) = 0,\\ g^{kk}(\frac{\partial}{\partial v^i},\frac{\partial}{\partial v^j}) = \alpha_1(1)g^e(\frac{\partial}{\partial u^i},\frac{\partial}{\partial u^j}), \ i,j = 1,2. \end{cases}$$

where $\alpha_1, \alpha_3 : R^+ \to R$ smooth functions and $\alpha_3(1) = -\frac{\alpha_1(1)(k_1^2 + k_2^2 - ak_1 - b)}{k_1^2 - ak_1 - b}$. From (3.19), the tensor field *J* is defined by

$$J(\frac{\partial}{\partial \bar{u}^i}) = k_1 \frac{\partial}{\partial \bar{u}^i} + k_2 \frac{\partial}{\partial v^j},$$

$$J(\frac{\partial}{\partial v^j}) = -\frac{k_1^2 - ak_1 - b}{k_2} \frac{\partial}{\partial \bar{u}^i} + (a - k_1) \frac{\partial}{\partial v^j},$$

for arbitrary non-zero constants k_1, k_2 . We have

$$J^{2}(\frac{\partial}{\partial \bar{u}^{i}}) = aJ(\frac{\partial}{\partial \bar{u}^{i}}) + bI(\frac{\partial}{\partial \bar{u}^{i}}) = (ak_{1} + b)\frac{\partial}{\partial \bar{u}^{i}} + ak_{2}\frac{\partial}{\partial v^{i}},$$

$$J^{2}(\frac{\partial}{\partial v^{i}}) = aJ(\frac{\partial}{\partial v^{ii}}) + bI(\frac{\partial}{\partial v^{i}}) = -\frac{k_{1}^{2} - ak_{1} - b}{k_{2}}\frac{\partial}{\partial \bar{u}^{i}} + (a^{2} - ak_{1} + b)\frac{\partial}{\partial v^{i}}, i = 1, 2.$$

So, the condition (2.2) is fulfilled. We also have

$$\begin{split} g^{kk}(J(\frac{\partial}{\partial \bar{u}^1}), J(\frac{\partial}{\partial \bar{u}^1})) &= ag^{kk}(J(\frac{\partial}{\partial \bar{u}^1}), \frac{\partial}{\partial \bar{u}^1}) + bg^{kk}(\frac{\partial}{\partial \bar{u}^1}, \frac{\partial}{\partial \bar{u}^1}) = \frac{-ak_1k_2^2 - bk_2^2}{k_1^2 - ak_1 - b}\alpha_1(1), \\ g^{kk}(J(\frac{\partial}{\partial \bar{u}^1}), J(\frac{\partial}{\partial \bar{u}^2})) &= ag^{kk}(J(\frac{\partial}{\partial \bar{u}^1}), \frac{\partial}{\partial \bar{u}^2}) + bg^{kk}(\frac{\partial}{\partial \bar{u}^1}, \frac{\partial}{\partial \bar{u}^2}) = 0, \\ g^{kk}(J(\frac{\partial}{\partial v^1}), J(\frac{\partial}{\partial v^1})) &= ag^{kk}(J(\frac{\partial}{\partial v^1}), \frac{\partial}{\partial v^1}) + bg^{kk}(\frac{\partial}{\partial v^1}, \frac{\partial}{\partial v^1}) = (a(a-k)+b)\alpha_1(1), \\ g^{kk}(J(\frac{\partial}{\partial v^1}), J(\frac{\partial}{\partial v^2})) &= ag^{kk}(J(\frac{\partial}{\partial v^1}), \frac{\partial}{\partial v^2}) + bg^{kk}(\frac{\partial}{\partial v^1}, \frac{\partial}{\partial v^2}) = 0. \end{split}$$

Thus, the the condition (2.3) is fulfilled. This shows that the triple (TR^2, J, g^{kk}) is a metallic Riemannian manifold.

4. Integrable metallic Riemannian structures on tangent bundles with *g*-natural metrics

In this last section, we study the integrability of the metallic structure J on tangent bundles with g-natural metrics. From Proposition 2.1, we know that a metallic structure J on the tangent bundle TM with a g-natural metric \tilde{g} is integrable if and only if $\Phi_J \tilde{g} = 0$. In this case, (TM, \tilde{g}, J) is called locally decomposable metallic Riemannian manifold. We express the proposition below.

Proposition 4.1. Let (TM, g^s) be the tangent bundle of a Riemannian manifold (M, g) with the Sasaki metric g^s . The metric g^s is pure with respect to the metallic Riemannian structure J introduced in Theorem 3.2 as

$$J(X^h) = kX^h + \sqrt{-k^2 + ak + b}X^v,$$

$$J(X^v) = \sqrt{-k^2 + ak + b}X^h + (a - k)X^v$$

for an arbitrary non-zero constant k satisfying $-k^2 + ak + b > 0$ and an arbitrary vector field X on M.

Proof. The purity condition is given by $g^s(J\widetilde{X}, \widetilde{Y}) - g^s(\widetilde{X}, J\widetilde{Y}) = 0$, for all vector fields X^h , X^v , Y^h , Y^v on TM. We have

$$\begin{aligned} g^{s}(JX^{h},Y^{h}) - g^{s}(X^{h},JY^{h}) &= kg(X,Y) - kg(X,Y) = 0, \\ g^{s}(JX^{h},Y^{v}) - g^{s}(X^{h},JY^{v}) &= \sqrt{-k^{2} + ak + b}g(X,Y) - \sqrt{-k^{2} + ak + b}g(X,Y) = 0, \\ g^{s}(JX^{v},Y^{v}) - g^{s}(X^{v},JY^{v}) &= (a-k)g(X,Y) - (a-k)g(X,Y) = 0. \end{aligned}$$

So, the metric g^s is pure with respect to the metallic Riemannian structure J.

In the following theorem, we examine the conditions under which (TM, g^s, J) is locally decomposable metallic Riemannian manifold.

Theorem 4.1. Let (TM, g^s) be the tangent bundle of a Riemannian manifold (M, g) with the Sasaki metric g^s . Then (TM, g^s, J) is a locally decomposable metallic Riemannian manifold if and only if (M, g) is flat.

Proof. Having in mind Proposition 2.1 and Proposition 4.1 and using the relations

$$X^{h}(g(Y,Z))^{v} = (Xg(Y,Z))^{v}, \ X^{v}(g(Y,Z))^{v} = 0,$$

for all vector fields on *M*, we have

$$\Phi_J g^s(\tilde{X}, \tilde{Y}, \tilde{Z}) = (J\widetilde{X})(g^s(\tilde{Y}, \widetilde{Z})) - \widetilde{X}(g^s(J\widetilde{Y}, \widetilde{Z})) + g^s((L_{\widetilde{Y}}J)\widetilde{X}, \widetilde{Z}) + g^s(\widetilde{Y}, (L_{\widetilde{Z}}J)\widetilde{X}),$$

for all vector fields on TM. It follows that

$$\begin{split} \Phi_{J}g^{s}(X^{h},Y^{h},Z^{h}) &= \sqrt{-k^{2}+ak+b}g^{s}((R(Y,X)u-R(u,Y)X)^{h},Z^{h}),\\ \Phi_{J}g^{s}(X^{v},Y^{v},Z^{h}) &= \sqrt{-k^{2}+ak+b}g^{s}((R(u,Y)Z)^{h},Z^{h}),\\ \Phi_{J}g^{s}(X^{v},Y^{h},Z^{v}) &= \sqrt{-k^{2}+ak+b}g^{s}((R(X,Y)u)^{v},Z^{v}),\\ \Phi_{J}g^{s}(X^{h},Y^{h},Z^{v}) &= \Phi_{J}g^{s}(X^{h},Y^{v},Z^{v}) = \Phi_{J}g^{s}(X^{h},Y^{v},Z^{h}) = 0,\\ \Phi_{J}g^{s}(X^{v},Y^{v},Z^{v}) &= \Phi_{J}g^{s}(X^{v},Y^{h},Z^{h}) = 0, \end{split}$$

where *R* is the Riemannian curvature of *g*. So, it is clear that (TM, g^s, J) is a locally decomposable metallic Riemannian manifold if and only if (M, g) is flat.

Proposition 4.2. Let (TM, g^{ml}) be the tangent bundle of a Riemannian manifold (M, g) with a Cheeger-Gromoll type metric g^{ml} with $m = m_{\mu}$ and l = 0. The metric g^{ml} is pure with respect to the metallic Riemannian structure J introduced in Theorem 3.4 as

$$J(X^{h}) = (a - k_{1})X^{h} + k_{2}X^{v},$$

$$J(X^{v}) = -\frac{k_{1}^{2} - ak_{1} - b}{k_{2}}X^{h} + k_{1}X^{v},$$

for arbitrary non-zero constants k_1, k_2 and an arbitrary vector field X on M.

Proof. Following the same way in the proof of Proposition 4.1, one can easily show the purity of the metric g^{ml} with respect to the metallic Riemannian structure *J*. We omit here.

Theorem 4.2. Let (TM, g^{ml}) be the tangent bundle of a Riemannian manifold (M, g) with the Cheeger-Gromoll type metric g^{ml} . Then (TM, g^{ml}, J) is a locally decomposable metallic Riemannian manifold if and only if (M, g) is flat.

Proof. For l = 0 and $m = m_{\mu}$, the Cheeger-Gromoll type metric g_{ml} is given by

$$\begin{cases} g^{ml}(X^h, Y^h) = g(X, Y), \\ g^{ml}(X^h, Y^v) = g^{ml}(X^v, Y^h) = 0, \\ g^{ml}(X^v, Y^v) = \alpha_1(w^2)g(X, Y), \end{cases}$$

where $w^2 = g(y, y)$ and X, Y are vector fields on M. Taking into account Proposition 2.1 and Proposition 4.2 and using the relations

$$X^h(g(Y,Z))^v = (Xg(Y,Z))^v, \ X^v(g(Y,Z))^v = 0,$$

for all vector fields on *M*, we have

$$\Phi_J g^{ml}(\tilde{X}, \tilde{Y}, \tilde{Z}) = (J\widetilde{X})(g^{ml}(\tilde{Y}, \widetilde{Z})) - \widetilde{X}(g^{ml}(J\widetilde{Y}, \widetilde{Z})) + g^{ml}((L_{\widetilde{Y}}J)\widetilde{X}, \widetilde{Z}) + g^{ml}(\widetilde{Y}, (L_{\widetilde{Z}}J)\widetilde{X}))$$

for all vector fields on TM. By direct computations, we have

$$\begin{split} \Phi_{J}g^{ml}(X^{h},Y^{h},Z^{h}) &= k_{2}g^{ml}((R(Y,X)u-R(u,Y)X)^{h},Z^{h}), \\ \Phi_{J}g^{ml}(X^{v},Y^{v},Z^{h}) &= -\frac{k_{1}^{2}-ak_{1}-b}{k_{2}}g^{ml}((R(u,Y)Z)^{h},Z^{h}), \\ \Phi_{J}g^{ml}(X^{v},Y^{h},Z^{v}) &= -\frac{k_{1}^{2}-ak_{1}-b}{k_{2}}g^{ml}((R(X,Y)u)^{v},Z^{v}), \\ \Phi_{J}g^{ml}(X^{h},Y^{h},Z^{v}) &= \Phi_{J}g^{ml}(X^{h},Y^{v},Z^{v}) = \Phi_{J}g^{ml}(X^{h},Y^{v},Z^{h}) = 0, \\ \Phi_{J}g^{ml}(X^{v},Y^{v},Z^{v}) &= \Phi_{J}g^{ml}(X^{v},Y^{h},Z^{h}) = 0, \end{split}$$

where *R* is the Riemannian curvature of *g*. Hence, it is obvious that (TM, g^{ml}, J) is a locally decomposable metallic Riemannian manifold if and only if (M, g) is flat.

Theorem 4.3. Let (TM, g^{kk}) be the tangent bundle of a Riemannian manifold (M, g) with the Kaluza-Klein metric g^{kk} . The metric g^{kk} is pure with respect to the metallic Riemannian structure J introduced in Theorem 3.5 as

$$J(X^{h}) = k_{1}X^{h} + k_{2}X^{v},$$

$$J(X^{v}) = -\frac{k_{1}^{2} - ak_{1} - b}{k_{2}}X^{h} + (a - k_{1})X^{v},$$

for arbitrary non-zero constants k_1, k_2 and an arbitrary vector field X on M.

Proof. Direct calculations show that $g^{kk}(J\tilde{X},\tilde{Y}) - g^{kk}(\tilde{X},J\tilde{Y}) = 0$ for $\tilde{X} = X^h, Y^v$ and $\tilde{Y} = Y^h, Y^v$, where X, Y are vector fields on M. So, the metric g^{kk} is pure with respect to the metallic Riemannian structure J defined by (3.19).

Following the same method in Theorem 4.1 or 4.2, one can easily prove the final theorem of the paper below.

Theorem 4.4. Let (TM, g^{kk}) be the tangent bundle of a Riemannian manifold (M, g) with the Kaluza-Klein metric g^{kk} . Then (TM, g^{kk}, J) is a locally decomposable metallic Riemannian manifold if and only if (M, g) is flat.

Acknowledgements

The author would like to express his sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] Abbassi, M.T.K.: Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold. Comm. Math. Uni. Carolinae. 45 (4), 591-596 (2004).
- [2] Abbassi, M.T.K.: g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note di Matematica. 28 (1), 6-35 (2008).
- [3] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: *Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics*. The Quarterly Journal of Mathematics. **62** (2), 259-288 (2011).
- [4] Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41, 71-92 (2005).
- [5] Akpınar, R. Ç.: On bronze Riemannian structures. Tbilisi Math. Journal. 13 (3), 161169 (2020).
- [6] Altunbaş, M., Gezer, A., Bilen, L.: Remarks about the Kaluza-Klein metric on tangent bundle. International Journal of Geometric Methods in Modern Physics. 16 (3), 1950040 (2019).
- [7] Anastasiei, M.: Locally conformal Kaehler structures on tangent bundle of a space form. Libertas Math. 19, 71-76 (1999).
- [8] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 73-88 (1962).
- [9] Gezer, A.: On the tangent bundle with deformed Sasaki metric. International Electronic Journal of Geometry. 6 (2), 19-31 (2013).
- [10] Gezer, A., Altunbaş, M.: Some notes concerning Riemannian metrics of Cheeger Gromoll type. Journal of Mathematical Analysis and Applications. 396 (1), 119-132 (2012).
- [11] Gezer, A., Karaman, Ç: On metallic Riemannian structures. Turkish Journal of Mathematics. 39 (6), 954-962, (2015).
- [12] Hreţcanu, C.E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Revista de la Unión Matemática Argentina. 54 (2), 15-27 (2013).
- [13] Hreţcanu, C.E., Crasmareanu, M.: Applications of the golden ratio on Riemannian manifolds. Turkish Journal of Mathematics. 33 (2), 179-191 (2009).
- [14] Özkan, M., Çıtlak, A.A., Taylan, E.: Prolongations of golden structure to tangent bundle of order 2. Gazi University Journal of Science. 28 (2), 253–258 (2015).
- [15] Özkan, M., Peltek, B.: A new structure on manifolds: silver structure. International Electronic Journal of Geometry. 9 (2), 59-69 (2016).
- [16] Özkan, M., Taylan, E., Çıtlak, A.A.: On lifts of silver structure. Journal of Science and Arts. 39 (2), 223-234 (2017).
- [17] Özkan, M., Yılmaz, F.: Metallic structures on differentiable manifolds. Journal of Science and Arts. 44 (3), 645-660 (2018).
- [18] Peyghan, E., Firuzi, F., De, U.C.: Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat. 33 (8), 2543-2554 (2019).
- [19] Salimov, A., Kazimova, S.: Geodesics of the Cheeger-Gromoll metric. Turkish Journal of Mathematics. 33 (1), 99-105 (2009).
- [20] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
- [21] Sekizawa, M.: Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14 (2), 407-417 (1991).
- [22] Spinadel, V.W.: The metallic means family and forbidden symmetries. Int. Math. J. 2, 279-288 (2002).

Affiliation

MURAT ALTUNBAŞ ADDRESS: Erzincan Binali Yıldırım University, Dept. of Mathematics, 24100, Erzincan-Turkey. E-MAIL: maltunbas@erzincan.edu.tr ORCID ID: 0000-0002-0371-9913

