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Abstract

A fractional order system of evolution partial differential equations with a constant delay is
considered. By exploiting the Lie symmetry method, we give a complete group classification
of the system. Furthermore, we establish the corresponding symmetry reductions and
construct some analytical solutions to the system.

1. Introduction

Fractional differential equations arise in cases where the extension of differential models to non-integer orders is imperative for
more generalized analysis. The theory of fractional differential equations has been considerably developed over the years with
some applications in engineering, natural sciences, economic models among others [1]-[5].
Since the extension of Lie symmetry analysis to the theory of differential equations by Ovsiannikov [6], it has remained one of
the most powerful technique of studying and constructing analytical solutions to both deterministic and stochastic differential
equations, moreover, it has advanced substantially leading to new generalizations and vast applications. For some of the recent
work about the classical Lie symmetry theory of differential equations, its applications and extensions, we refer the reader to
[7]-[18] and references therein.
Time lags occur naturally in most physical processes because they involve transfer of material or information. Although,
time delay effect may improve the system performance [19], oftentimes, it is diagnosed as source of instability [20, 21]. It is
therefore important that time delays are included in differential models in order to comprehensively investigate their effect
on the systems’ performance. Among the most recent applications of Lie symmetry theory is to the functional fractional
differential equations [22]-[27].
Analytical solutions to evolution equations play a vital role in mechanics and dynamical systems, because they can naturally
represent numerous physical phenomena, for instance, finite speed propagation, perturbations, heat transfer, solitons, among
others. Different approaches have been introduced by mathematicians and engineers to construct exact solutions to fractional
evolution equations [28]-[31].
In this article, we extend the Lie symmetry theory to the class of time fractional order system of differential equation with a
constant delay, and carry out a complete group classification of time fractional system evolution delay differential equation.
i.e.,
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∂ α u
∂ tα = wxg(w,w), gw 6= 0,

∂ α w
∂ tα = f (u,u)ux, fu 6= 0,

(1.1)

where w(t− s,x) = w, u(t− s,x) = u.
Let us recall that, for a differential equation involving some arbitrary function(s), the group classification problem consists
of firstly, finding the Lie symmetries of differential equation with arbitrary function(s) and then determining all possible
function(s) for which larger symmetry groups exist.
The motivation for the study in this paper is twofold, symmetry analysis for systems of fractional differential equations carried
out in [26, 27]. Secondly, the group classification question for delay differential equations in [32, 33].
We proceed by introducing one of the definition of fractional derivative which will be used throughout this paper, that is, the
Riemann-Liouville derivative defined by

Dα
t u(t,x) =

∂ α u
∂ tα

=

{
∂ nu
∂ tn , α = n ∈ N,

1
Γ(n−α)

∂ n

∂ tn

∫ t
0

u(µ,x)
(t−µ)α+1−n dµ, n−1 < α < n,n ∈ N,

(1.2)

where Γ is a gamma function.
The rest of the article is organized as follow, a complete group classification of the time evolution fractional system of equations
with a constant delay is presented in Section 2 and then followed by symmetry reductions and invariant solutions in Section 3.

2. Admitted Lie group transformation

In this section, we apply the method used in [6, 26, 32], to obtain the admitted Lie groups transformation of equation (1.1).
The vector field associated with the one-parameter group of transformation is

H = ξ ∂x + τ∂t +φ∂u +ζ ∂w,

where the infinitismal with infinitismals ξ ,τ,φ ,ζ depend on the variables t,x,u and v.
The Lie-Bäcklund generator up to the fractional order corresponding to (1.1) is

Hα
= φ

u
∂u +φ

ux ∂ux +ζ
wx ∂wx +φ

uα ∂uα +ζ
wα ∂wα +φ u∂u +ζ u∂w (2.1)

where the coefficient in (2.1) are define as follows;

φ
u = φ −ξ ux− τut , ζ

w = ζ −ξ wx− τwt , φ u = φ −ξ ux− τut , ζ w = ζ −ξ wx− τwt (2.2)

φ
ux = Dx(φ

u), ζ
wx = Dx(ζ

w) φ
uα = Dα

t (φ
u), ζ

wα = Dα
t (ζ

w) (2.3)

φ
ux = φx−ξxux− τxut +φuux−ξuu2

x− τuuxut −uxtτ−uxxξ +φwwx−wtuxξw−wxutτw (2.4)

and

ζ
wx = ζx−ξxwx− τxwt +ζwwx−ξww2

x− τwwxwt −wxtτ−wxxξ +ζuux−utwxξu−uxwtτu. (2.5)

The prolongations of the fractional terms above can be expanded as follows;

φ
uα =

∂ α φ

∂ tα
+φw

∂ α w
∂ tα

+(φu−αDt(τ))
∂ α u
∂ tα
−u

∂ α φu

∂ tα
−w

∂ α φw

∂ tα
− τDα+1

t (u)−ξ Dα
t (ux)

−
+∞

∑
n=1

(
α

n

)
Dn

t (ξ )D
α−n
t (ux)+

+∞

∑
n=1

[(
α

n

)
∂ nφu

∂ tn −
(

α

n+1

)
Dn+1

t (τ)

]
Dα−n

t (u)

+
+∞

∑
n=1

[(
α

n

)
∂ nφw

∂ tn

]
Dα−n

t (w)+ηα1

(2.6)

and

ζ
wα =

∂ α ζ

∂ tα
+ζu

∂ α u
∂ tα

+(ζw−αDt(τ))
∂ α w
∂ tα
−w

∂ α ζw

∂ tα
−u

∂ α ζu

∂ tα
− τDα+1

t (w)−ξ Dα
t (wx)

−
+∞

∑
n=1

(
α

n

)
Dn

t (ξ )D
α−n
t (wx)+

+∞

∑
n=1

[(
α

n

)
∂ nζw

∂ tn −
(

α

n+1

)
Dn+1

t (τ)

]
Dα−n

t (w)

+
+∞

∑
n=1

[(
α

n

)
∂ nζu

∂ tn

]
Dα−n

t (u)+ηα2

(2.7)
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with

ηα1 =
+∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!
× tn−α

Γ(n+1−α)
[−u]r

∂ m

∂ tm (uk−r)
∂ n−m+kφ

∂ tn−m∂uk

+
+∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!
× tn−α

Γ(n+1−α)
[−w]r

∂ m

∂ tm (wk−r)
∂ n−m+kφ

∂ tn−m∂wk ,

(2.8)

and

ηα2 =
+∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!
× tn−α

Γ(n+1−α)
[−w]r

∂ m

∂ tm (wk−r)
∂ n−m+kζ

∂ tn−m∂wk

+
+∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!
× tn−α

Γ(n+1−α)
[−u]r

∂ m

∂ tm (uk−r)
∂ n−m+kζ

∂ tn−m∂uk .

(2.9)

Applying the infinitesimal generator and equation(1.1), we obtain the invariance criterion of the system as;
(φ uα −gζ wx −wxgwζ w−wxgwζ w)

∣∣∣
(1.1)

= 0

(ζ wα − f φ ux −ux fuφ u−ux fuφ u)
∣∣∣
(1.1)

= 0.

(2.10)

Substituting (2.2)–(2.7) into the invariance criterion of the system (2.10) , and then equating the coefficients of various
derivatives of u,u and w,w to zero, we have the simplified system of determining equations as follows;

τu = ξw = τw = ξt = τx = ξu = 0, (2.11)

ζuu = ζww = ζut = ζwt = 0, (2.12)

φuu = φww = φut = φwt = 0, (2.13)

τ = τ, ξ = ξ , (2.14)

gζu− f φw = 0, (2.15)

f ζw + f ξx− fuφ − fuφ − f φu = 0, (2.16)

gφu +gξx−gζw−gwζ −gwζ = 0, (2.17)

∂ α ζ

∂ tα
− f φx = 0, (2.18)

∂ α φ

∂ tα
−gζx = 0. (2.19)

The lower limit in the definition of fractional derivative (1.2) is fixed, the presence of 0 requires that the manifold t = 0 is
invariant i.e.,

τ(t,x,u,u)
∣∣∣
t=0

= 0. (2.20)

Differentiating (2.18) and (2.19) with respect to w and u respectively we have

φxw = 0, and ζxw = 0. (2.21)

Solving the system of equation (2.11)–(2.14) using (2.21) and (2.20), we obtain the following infinitesimals

τ = 0, ξ = ψ1(x) φ = uwc2 +uψ2(x)+ c3w+ψ3(t,x) (2.22)
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and

ζ = c4uw+ c5u+wψ4(x)+ψ5(t,x). (2.23)

Differentiating (2.18) with respect to u and uu, we get the following system{
fuφx + f φux = 0
fuuφx + fuφux = 0.

(2.24)

Similarly, differentiating (2.19) with respect to w and ww, we obtain the following system{
guζx +gζux = 0
gwwζx +gwζux = 0.

(2.25)

Using system (2.24) and (2.25) to eliminate φux and ζux respectively we have{
( fu fu− f fuu)φx = 0
(gwgw−ggww)ζx = 0.

(2.26)

From the system (2.26) and equation (2.18), (2.19) it implies that, φ and ζ has no dependency in x i.e.,

φx = ζx = 0 (2.27)

similarly, using (2.15) and (2.22)

ζu = φw = 0. (2.28)

This reduces the infinitesimals (2.22) and (2.23) to

τ = 0, ξ = ψ1(x) φ = c6u+ψ6(t), ζ = c7w+ψ7(t). (2.29)

Using (2.27), (2.18), (2.29) and (2.19) we have

∂ α ψ7(t)
∂ tα

= 0,
∂ α ψ6(t)

∂ tα
= 0. (2.30)

Finally, equations (2.16) and (2.17) are classification equations and are assumed to be satisfied without any restriction on
f (u,u) and g(w,w). This implies that, to get a minimal symmetry algebra for any choice of functions f (u,u),g(w,w), we have
to assume

ξx = φ = ζ = 0.

Therefore, for any arbitrary functions f (u,u),g(w,w), the system (1.1) admits a one dimensional symmetry algebra spanned
by the infinitesimal generators

H1 = ∂x.

2.1. Classification

To search for a functions f (u,u),g(w,w), that may admit a larger symmetry algebra we have to consider the case when,

ξx = φ = ζ 6= 0. (2.31)

Substituting the infinitesimals in (2.29) into equation (2.16) and (2.17), we respectively get

c7 f + f ψ1x − c6u fu− fuψ6− c6 f − c6u fu−ψ6 fu = 0 (2.32)

and

c6g+gψ1x − c7g− c7wgw−gwψ7− c7wgw−gwψ7 = 0. (2.33)

Differentiating (2.32) with respect to u and u we get{
−c6(u fuu +2 fu +u fuu)+ c7 fu + fuψ1x = ψ6 fuu + fuuψ6

−c6(u fuu +2 fu +u fuu)+ c7 fu + fuψ1x = ψ6 fuu + fuuψ6.
(2.34)
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The system (2.34) is algebraic with respect to ψ6 and ψ6, with the determinant of the matrix as;

∆1 = f 2
uu− fuu fuu.

Similarly, differentiating (2.33) with respect to w and w, we obtain the system{
−c7(wgww +2gw +wgww)+ c6gw +gwψ1x = ψ7gww +gwwψ7

−c7(wgww +2gw +wgww)+ c6gw +gwψ1x = ψ7gww +gwwψ7.
(2.35)

The system (2.35) is algebraic with respect to ψ7 and ψ7, with the determinant of the matrix as

∆2 = g2
ww−gwwgww.

In the subsequent subsections, we discus the cases when the determinants of both matrices are equal to zero and otherwise;

2.2. ∆1 6= 0, ∆2 6= 0.

Solving the system (2.34) and (2.35) for ψ6,ψ6 and ψ7,ψ7 respectively to get
ψ6 =

c6(u f 2
uu+2 fu fuu−2 fu fuu−u fuu fuu)+c7( fu fuu− fu fuu)+( fu fuu− fu fuu)ψ1x

∆1
,

ψ6 =
(u f 2

uu+2 fu fuu−2 fuu fu−u fuu fuu)c6+( fuu fu− fu fuu)c7+( fuu fu− fu fuu)ψ1x
∆1

(2.36)

and 
ψ7 =

c6(wg2
ww+2gwgww−2gwgww−wgwwgww)+c7(gwgww−gwgww)+(gwgww−gwgww)ψ1x

∆1
,

ψ7 =
(wg2

ww+2gwgww−2gwwgw−wgwwgww)c6+(gwwgw−gwgww)c7+(gwwgw−gwgww)ψ1x
∆1

.

(2.37)

Since ψ6,ψ6,ψ7,ψ7 and ψ1 are independent of u,u,w,w, we can consider the case when ψ6,ψ6,ψ7,ψ7 are all constant and
ψ1 is linear in x. However, by the virtue of equation (2.30), i.e., the fractional derivative of a non-zero constant is not zero,
consequently it follows that;

ψ6(t) = ψ7(t) = constant = 0, and ψ1 = c9x+ c8. (2.38)

Therefore, equation (2.32) and (2.33) using (2.38) become;

c7 f + f c9− c6u fu− c6 f − c6u fu = 0 (2.39)

and

c6g+gc9− c7g− c7wgw− c7wgw = 0. (2.40)

Any function f (u,u) and g(w,w) satisfying (2.39), (2.40) will also satisfy the system (2.36) and (2.37) respectively. The
general solutions of (2.39) and (2.40) are;

f (u,u) = h1

(
u
u

)
u

c7+c9−c6
c6 , g(w,w) = h2

(
w
w

)
w

c6+c9−c7
c7 .

Here, h1,h2 are an arbitrary functions.
Thus, the Lie algebra extended by three dimension and is spanned by the following generators

H1, H2 = x∂x, H3 = u∂u, H4 = w∂w.

2.3. ∆1 = 0, ∆2 = 0.

In this subsection, we investigate all the possible functions that are solutions to the determinants of the matrices of the systems
(2.34) and (2.35) i.e.

∆1 = f 2
uu− fuu fuu = 0, ∆2 = g2

ww−gwwgww = 0 (2.41)

as well as deducing the extra symmetry algebras. The following cases are considered.
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2.3.1. fuu 6= 0, gww 6= 0.

The general solutions of equation (2.41) are;

fu = δ1( fu), gw = δ1(gw). (2.42)

where δ1(u) and δ2(w) are an arbitrary functions of integrations.
Substituting equation (2.42) into the systems of equations (2.34) and (2.35){

(2c6− c7−ψ1x)(δ
′
1 fu− fu) = 0

(2c7− c6−ψ1x)(δ
′
2gw−gw) = 0

(2.43)

This leads to two cases;

Case I: δ
′
1 fu = fu, δ

′
2gw = gw This implies

δ
′
1 fu = fu, δ

′
2gw = gw. (2.44)

Equation (2.44) has a general solutions

f (u,u) = f1(c16u+u), g(w,w) = g1(c17w+w). (2.45)

Substituting equation (2.45) into (2.32) and (2.33), we have

c7− c6 +ψ1x
c6u+ c6c16u+ c16ψ6 +ψ6

=
f1
′

f1
(2.46)

and

c6− c7 +ψ1x
c7w+ c7c17w+ c17ψ7 +ψ7

=
g1
′

g1
. (2.47)

Now considering the fact that f1,g1 are not functions of x, t, it is clear that, ψ1,ψ6,ψ7 must be constants and from equation
(2.30), it follows that ψ6,ψ7 are not constant except zero, since fractional derivatives of non-zero constant are not zero.
Therefore, equation (2.46) and (2.47) reduces to

f
′
1

f1
=

c7− c6 + c18

c6(c16u+u)
(2.48)

and

g
′
1

g1
=

c6− c7 + c18

c7(c17w+w)
(2.49)

with

ψ1 = c18x+ c19. (2.50)

Solving equation (2.48) and (2.49) we obtain another set of functions

f (u,u) = (c16u+u)
c7−c6+c18

c6 , g(w,w) = (c17w+w)
c6−c7+c18

c7 , (2.51)

that give an extra algebra. The Lie algebra is extended by three dimension and is spanned by the following generators;

H1, H2, H3, H4.

Case II: δ
′
1 fu 6= fu, δ

′
2gw 6= gw Under this case, it is clear from equation (2.43) that;

ψ1 = c6x+ c16, c6 = c7. (2.52)

Substituting (2.52) into the systems (2.34) and (2.35), we have{
(c6u+ψ6)δ

′
1 =−(ψ6 + c6u)

(c7w+ψ7)δ
′
2 =−(ψ7 + c7w).

(2.53)

If δ
′
1 = δ

′
2 = 0, no extra symmetry algebra is possible, so we proceed by considering the case when δ

′
1 6= 0 and δ

′
2 6= 0.



18 Fundamental Journal of Mathematics and Applications

Differentiating the system (2.53) with respect to u,w we get{
(c6u+ψ6)δ

′′
1 fuu =−c6

(c7w+ψ7)δ
′′
2 gww =−c7

(2.54)

and differentiating (2.54) with respect to temporal variable we obtain{
ψ6t δ

′′
1 = 0

ψ7t δ
′′
2 = 0.

1. If δ
′′
1 6= 0,δ

′′
2 6= 0

It implies ψ6,ψ7 are constant, and by using equation (2.30) we obtain specifically;

ψ6 = ψ7 = 0.

From (2.53), we can assumes the following functions{
f (u,u) = uF

( u
u

)
+ c21, Fuu 6= 0

g(w,w) = wG
(w

w

)
+ c22, Guu 6= 0.

(2.55)

Substituting equation (2.55) into (2.32) and (2.33) using (2.52) we note that an extra symmetry algebra can obtained if
c21 = c22 = 0. Thus, the symmetry algebra is spanned by the generators;

H1, H5 = x∂x +u∂u +w∂w.

2. If δ
′′
1 = 0,δ

′′
2 = 0 then,

fu = c23 fu + c24, gw = c25gw + c26.

This can be solved to obtain

f (u,u) = c24u+F(u+ c23u), g(w,w) = c26w+G(w+ c25w),

with Fuu 6= 0 and Fww 6= 0.
From the system (2.54) and (2.53), we have c6 = 0 and

c23ψ6 =−ψ6, c25ψ7 =−ψ7. (2.56)

However, ψ6 and ψ7 have to satisfy equation (2.30), which in turn pushes them to zero, so in this case there is no any
extra symmetry algebra possible.

2.3.2. fuu = 0, gww = 0.

Since fu 6= 0, gw 6= 0, equations (2.41) have the following solutions;

f (u,u) = c9u+h1(u), g(w,w) = c10w+h2(w) (2.57)

where h1(u), h2(w) are an arbitrary functions of integrations.
Substituting equation (2.57) into the systems of equations (2.34) and (2.35) gives;{

(c6u+ψ6)h
′′
1 = 0

(c7u+ψ7)h
′′
2 = 0

as well as;

ψ1 = c6x+ c11, c6 = c7. (2.58)

For h
′′
i 6= 0, we have no extra symmetry i.e., we get the minimal algebra, therefore we consider the case h

′′
i = 0, from which

equation (2.57) becomes;

f (u,u) = c9u+ c12u+ c13, g(w,w) = c10w+ c14w+ c15. (2.59)

Substituting equation (2.58) and (2.59) into (2.31) and (2.32), it follows that extra symmetry algebra are possible if{
c13 = c15 = 0
c9ψ6(t) =−c12ψ6(t), c10ψ7(t) =−c13ψ7(t),

but ψ6 and ψ7 have to satisfy equation (2.30), which implies that ψ6 = ψ7 = 0. Therefore, the equation admits one additional
symmetry algebra which is the linear combination of H2,H3,H4 and it is spanned by;

H1, H5 = x∂x +u∂u +w∂w.
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2.4. Summary of the classification

In the previous sections, we have carried out a complete group classification of the fractional evolution systems of partial
differential equations with a constant delay i.e.,

∂ α u
∂ tα = wxg(w,w), gw 6= 0

∂ α w
∂ tα = f (u,u)ux, fu 6= 0,

where w(t− s,x) = w, u(t− s,x) = u. We have proved that for any arbitrary functions f ,g, the system admits one dimensional
symmetry Lie algebra, which is a shift in the temporal and spatial variables i.e.,

H1 = ∂x.

We have also shown that, the Lie symmetry algebra can be extended up to dimension four in the following cases;

1. For functions;

f (u,u) = h1

(
u
u

)
u

c7+c9−c6
c6 , g(w,w) = h2

(
w
w

)
w

c6+c9−c7
c7 ,

and

f (u,u) = (c16u+u)
c7−c6+c18

c6 , g(w,w) = (c17w+w)
c6−c7+c18

c7

The Lie algebra is extended by three dimension and is spanned by the following infinitesimal generators.

H1, H2 = x∂x, H3 = u∂u, H4 = w∂w.

2. For functions {
f (u,u) = uF

( u
u

)
, Fuu 6= 0

g(w,w) = wG
(w

w

)
, Guu 6= 0.

and

f (u,u) = c9u+ c12u, g(w,w) = c10w+ c14w.

The Lie symmetry algebra was extended by one dimension and it is spanned by;

H1, H5 = x∂x +u∂u +w∂w.

It is easy to check that all the generators obtained form a Lie algebra and this takes us to the next section, were we implement
one of the applications of group classification to determine symmetry reductions and invariant solutions of the system.

3. Applications

3.1. ∆1 6= 0,∆2 6= 0

In the case above, the system (1.1) becomes {
∂ α u
∂ tα = wxh2

(w
w

)
wk1 ,

∂ α w
∂ tα = uxh1

( u
u

)
uk1 ,

(3.1)

We carry out the symmetry reduction using the sub-algebras X1 and X2 as presented below.

3.1.1. Sub-algebra X1 = H2 +H3 +H4,

dx
x

=
du
u

=
dw
w

.

The similarity transformation obtained are

z = t, u(t,x) =V1(z)x, w(t,x) =V2(z)x.

which reduces the system (3.1) to x ∂ αV1
∂ zα = h2

(
V2
V2

)
V (1+k1)

2 ,

x ∂ αV2
∂ zα = h1

(
V1
V1

)
V (1+k1)

1 .
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3.2. ∆1 = 0,∆2 = 0.

In this section, we discuss case by case resulting from the different functions obtained in Section 2.3 above. Symmetry
reductions are obtained and some invariant solutions of the system are constructed.

3.2.1. fuu 6= 0, gww 6= 0 and δ
′

1 fu = fu, δ
′

2gw = gw.

{
∂ α u
∂ tα = wx(c17w+w)k1

∂ α w
∂ tα = ux(c16u+u)k1 ,

Sub-algebra X1 = H2 +H3 +H4,

dx
x

=
du
u

=
dw
w

.

The similarity variables obtained are

z = t, u(t,x) =V1(z)x, w(t,x) =V2(z)x,

which are used to transform the system as below;{
∂ αV1
∂ zα =V2

(
c17V2 +V2

)k1 x(k1−1),
∂ αV2
∂ zα =V1

(
c16V1 +V1

)k1 x(k1−1).

3.2.2. fuu 6= 0, gww 6= 0 and δ
′

1 fu 6= fu, δ
′

2gw 6= gw.

{
∂ α u
∂ tα = wxwG

(w
w

)
, Guu 6= 0,

∂ α w
∂ tα = uxuF

( u
u

)
, Fuu 6= 0,

Sub-algebra X2 = H6

dx
x

=
du
u

=
dw
w

.

The similarity transformations obtained are

z = t, u(t,x) =V1(z)x, w(t,x) =V2(z)x,

which are utilized to reduce the system to single variable fractional delay differential equations;
∂ αV1
∂ tα =V 2

2 G
(

V2
V2

)
,

∂ αV2
∂ tα =V 1

1 F
(

V1
V1

)
.

(3.2)

3.2.3. fuu = 0, gww = 0

{
∂ α u
∂ tα = (c10w+ c14w)wx,
∂ α w
∂ tα = (c9u+ c12u)ux,

(3.3)

Sub-algebra X2 = H6

dx
x

=
du
u

=
dw
w

.

The similarity variables obtained are

z = t, u(t,x) =V1(z)x, w(t,x) =V2(z)x.

which leads to {
∂ αV1
∂ zα = (c10 + c14)V 2

2 ,
∂ αV2
∂ zα = (c9 + c12)V 2

1 .
(3.4)
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The system (3.4) has a solution of the form V1(z) = k2zλ1 , and V2(z) = k3zλ2 . Substituting this back to the system, we have

{
k2

Γ(λ1+1)
Γ(λ1+1−α) zλ1−α = (c10 + c14)k2

3z2λ2 ,

k3
Γ(λ2+1)

Γ(λ2+1−α) zλ2−α = (c9 + c12)k2
2z2λ1 .

To obtain the values of the constants k2 and k3, we assume the powers of z in the system to be the same leading to, λ1 = λ2 =−α .
As a result, we have


k2 =

(
a2

2
a5

1

) 1
3

Γ(−α+1)
Γ(1−2α) ,

k3 =
(

a2
a4

1

) 1
3 Γ(−α+1)

Γ(1−2α) .

Therefore, the exact solution of the system (3.3) is


u(t,x) =

(
a2

2
a5

1

) 1
3

Γ(−α+1)
Γ(1−2α) xt−α ,

w(t,x) =
(

a2
a4

1

) 1
3 Γ(−α+1)

Γ(1−2α) xt−α ,

(3.5)

where a1 = (c10 + c14) and a2 = (c9 + c12).

Figures 3.1 and 3.2 illustrate the solution of the system (3.5).

Figure 3.1: u,w when a1 = 2, a2 = 1, α = 0.6 with x =−10 . . .10, t = 1.1 . . .10.

Figure 3.2: u,w when a1 = 2, a2 = 1, α = 1.6 with x =−10 . . .10, t = 1.1 . . .10.
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4. Conclusion

Lie symmetry analysis of fractional order evolution system equations with a constant delay was investigated. A one dimensional
minimal symmetry algebra corresponding to an arbitrary function was obtained

H1 = ∂x.

Functions that lead to larger symmetry algebra were also found as well as their extended symmetry algebras. Further more,
invariant solutions were obtained in addition to one new exact solution.
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