
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 52 (3) (2023), 708 – 720
DOI : 10.15672/hujms.1148258

Research Article

When every ideal is ϕ-P-flat

Hwankoo Kim∗1, Najib Mahdou2, El Houssaine Oubouhou2
1Division of Computer Engineering, Hoseo University, Asan 31499, Republic of Korea

2Modelling and Mathematical Structures Laboratory, Department of Mathematics, Faculty of Science and
Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco

Abstract
Let R be a commutative ring with nonzero identity. An R-module M is called ϕ-P-flat
if x ∈ Ann(s)M for every non-nilpotent element s ∈ R and x ∈ M such that sx = 0. In
this paper, we introduce and study the class of ϕ-PF-rings, i.e., rings in which all ideals
are ϕ-P-flat. Among other results, the transfer of the ϕ-PF-ring to the amalgamation is
investigated. Several examples which delineate the concepts and results are provided.
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1. Introduction
Throughout this paper, all rings considered are assumed to be commutative with the

identity element and all modules are unitary.
Let R be a ring. Denote by Nil(R) and Z(R) the ideal of all nilpotent elements of R

and the set of all zero-divisors of R respectively. A ring R is called an NP-ring (resp., a
ZN-ring) if Nil(R) is a prime ideal (resp., Z(R) = Nil(R)). An ideal I of R is called a
nonnil ideal if I * Nil(R). Let R be a PN-ring and M an R-module. Set

ϕ- tor(M) := {x ∈ M | sx = 0 for some s ∈ R \ Nil(R)}.
Then M is called a ϕ-torsion (resp., ϕ-torsion-free) module if ϕ- tor(M) = M (resp.,
ϕ- tor(M) = 0). Recall from [22, 23] that an R-module F is said to be ϕ-flat if for any
R-monomorphism f : A → B with Coker(f) a ϕ-torsion R-module, 1F ⊗R f : F ⊗R A →
F ⊗R B is an R-monomorphism, equivalently TorR

1 (P, F ) = 0 for any ϕ-torsion R-module
P .

An R-module M is said to be P-flat if x ∈ Ann(s)M for any (s, x) ∈ R ×M such that
sx = 0. If M is flat, then M is naturally P-flat. When R is a domain, M is P-flat if and
only if it is torsion-free. When R is an arithmetic ring, any P-flat module is flat by [8, p.
236]. Also every P-flat cyclic module is flat by [8, Proposition 1(2)]. A ring R is called a
PF-ring if all principal ideals of R are flat. Recall that R is a PF-ring if and only if every
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ideal of R is P-flat; if and only if for any element (s, x) ∈ R2 with sx = 0, there exists an
α ∈ Ann(s) such that x = αx by [7, Theorem 2.1].

Let A andB be two rings, J be an ideal of B and let f : A → B be a ring homomorphism.
In this setting, we consider the following subring of A×B:

A ◃▹f J = {(a, f(a) + j) | a ∈ A and j ∈ J}
is called the amalgamation of A and B along J with respect to f . This construction is a
generalization of the amalgamated duplication of a ring along an ideal, denoted by A ◃▹ I
(introduced and studied by D’Anna and Fontana in [9, 13, 14]). The interest of amalga-
mation resides partly in its ability to cover several basic constructions in commutative
algebra including pullbacks and trivial ring extensions. See for instance [10,11,15].

Let A be a ring and let M be an R-module. Then R ∝ M , the set of pairs (r,m) with
componentwise addition and multiplication defined by: (r,m)(b, f) = (rb, rf + bm), is a
unitary commutative ring, called the trivial extension (or idealization) of R by M . Recall
that prime (resp., maximal) ideals of R have the form p ∝ E, where p is a prime (resp.,
maximal) ideal of A. The basic properties of the trivial ring extension are summarized in
[2, 5, 17,18].

In this paper, we introduce and investigate a new class of rings, called “ϕ-PF-rings", in
which every ideal is ϕ-P-flat. Examples of such rings are the ϕ-Prüfer rings, the PF-rings,
and the ϕ-von Neumann regular rings. Thereby some properties and new examples are
provided.

For any undefined terminology and notation the reader is referred to [16,17,20,21].

2. Main results
An R-module M is said to be ϕ-P-flat if x ∈ Ann(s)M for any s ∈ R \ Nil(R) and

x ∈ M such that sx = 0.
Now we state our definition of ϕ-PF-rings.

Definition 2.1. A ring R is called a ϕ-PF-ring if every ideal of R is ϕ-P-flat.
Recall from [7, Theorem 2.1] that every ideal of R is P-flat if and only if every principal

ideal of R is P-flat; if and only if R is a PF-ring (i.e., every principal ideal of R is flat);
if and only if for any element (s, x) ∈ R2 with sx = 0 there exists α ∈ Ann(s) such that
x = αx.

Now we have an analog of this characterization for the ϕ-PF-rings.
Theorem 2.2. The following conditions are equivalent for a ring R.

(1) R is a ϕ-PF-ring.
(2) Every principal ideal of R is ϕ-P-flat.
(3) Every submodule of any ϕ-P-flat R-module is ϕ-P-flat.
(4) TorR

2 (N,R/Ra) = 0 for every R-module N and any a ∈ R \ Nil(R).
(5) Every nonnil principal ideal of R is flat.
(6) For any element x ∈ R and s ∈ R \ Nil(R) with sx = 0, there exists α ∈ Ann(x)

such that s = αs.
(7) For any element x ∈ R and s ∈ R \ Nil(R) with sx = 0, there exists α ∈ Ann(s)

such that x = αx.
Proof. (1) ⇒ (2) Straightforward.

(2) ⇒ (5) Let I = Ra be a nonnil principal ideal of R and J a principal ideal of R.
Consider the map 1 ⊗ λa : J ⊗ aR → J ⊗ R, where λa : aR → R is the inclusion. If
m ⊗ a ∈ Ker (1 ⊗ λa), where m ∈ J , then m ⊗ a = 0 in J ⊗ R; hence am = 0 in J . By
hypothesis, m = Σjsjmj , where sj ∈ Ann(a) and mj ∈ J . Thus m ⊗ a = Σjsjmj ⊗ a =
Σj(mj ⊗ sja) = 0. Hence Ker (1 ⊗ λa) = {0}. So TorR

1 (J,R/aR) = 0. Then

TorR
1 (R/J, I) ∼= TorR

2 (R/I,R/J) ∼= TorR
1 (R/I, J) = 0
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for any principal ideal J of R, and hence I is P-flat. As I is principal, it is flat by
[8, Proposition 1].

(5) ⇒ (3) Let N be a submodule of a ϕ-P-flat R-module M and a ∈ R \ Nil(R). Then
Ra is flat. Consider the following commutative diagram:

N ⊗R Ra
µ−−−−→ N ⊗R Ryα

y
M ⊗R Ra

β−−−−→ M ⊗R R

Since Ra is flat, α is a monomorphism. Our claim is to show that β is injective. For
this, let m ⊗ a ∈ Kerβ. Then ma = 0. Since M is a ϕ-P-flat R-module, there exist
(βi)i=1,...,n ∈ Ann(a)n and (mi)i=1,...,n ∈ Mn such that m =

∑n
i=1 βimi. Consequently

m⊗ a =
n∑

i=1
βimi ⊗ a =

n∑
i=1

mi ⊗ βia = 0.

So β and α are monomorphisms, and hence µ is a monomorphism. Next we must demon-
strate that if na = 0 where n ∈ N and a ∈ R \ Nil(R), then n ∈ Ann(a)M . So n⊗ a = 0
since β(n ⊗ a) = na = 0. Consider the map f : R → Ra defined by f(1) = a. Since
0 → Ker(f) i→ R

f→ Ra → 0 is an exact sequence, we get the following exact sequence:

Ker(f) ⊗N
i⊗1N→ R⊗N

f⊗1N→ Ra⊗N → 0.
As (f ⊗ 1N ) (1 ⊗ n) = a⊗ n = 0, we have (1 ⊗ n) ∈ Ker (f ⊗ 1N ) = Im (i⊗ 1N ). So there
exist (yj , nj)15j5k ∈ Ker(f) ×N such that:

1 ⊗ n = (i⊗ 1N )

 ∑
15j5k

(yj ⊗ nj)


=

∑
15j5k

(i (yj) ⊗ nj)

= 1 ⊗
∑

15i5k

i (yj)nj .

Therefore n =
∑

15i5k i (yi)ni. Since i (yj) a = i (yja) = i (f (yj)) = i(0) = 0 for all
j ∈ {1, . . . , k}, we get i(yi) ∈ Ann(a). Thus N is ϕ-P-flat.

(3) ⇒ (4) For any R-module N , there exists an exact sequence 0 → K → F → N → 0
with F a free R-module. Then K is ϕ-P-flat by (3), and so as in (5) ⇒ (3) we have
TorR

1 (K,R/Ra) = 0 for any a ∈ R \ Nil(R). Consider the induced exact sequence:

0 = TorR
2 (F,R/Ra) → TorR

2 (N,R/Ra) → TorR
1 (K,R/Ra) = 0.

Hence TorR
2 (N,R/Ra) = 0.

(4) ⇒ (1) Let I be an ideal of R and a ∈ R \ Nil(R). Then TorR
2 ( R/I,R/Ra) = 0 by

(4). On the other hand, the exact sequence 0 → I → R → R/I → 0 induces the exact
sequence:

0 = TorR
2 (R/I,R/Ra) → TorR

1 (I,R/Ra) → TorR
1 (R,R/Ra) = 0.

Hence TorR
1 (I,R/Ra) = 0. Thus the map I ⊗ aR → I defined by m⊗ a 7→ am is injective

for every a ∈ R \ Nil(R). So we have the following exact sequence of R-modules:

0 → (0 : a) i→ R
f→ aR → 0

with f(1) = a. It is clear that 1⊗m ∈ Ker (f ⊗ 1I) = Im (ι⊗ 1I). Hence 1⊗m = Σjsj ⊗mj

where sj ∈ (0 : a) and mj ∈ I. Thus 1 ⊗ m = 1 ⊗ (Σjsjmj), and so m = Σjsjmj .
Consequently I is a ϕ-P-flat module.
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(5) ⇒ (6) Let x ∈ R and s ∈ R \ Nil(R) such that sx = 0. Since I = sR is a nonnil
principal ideal of R, we get I is P-flat, which implies that s ∈ (0 : x)I. Therefore there
exists α ∈ Ann(x) such that s = αs.

(6) ⇒ (5) Let I = sR be a nonnil principal ideal of R. If y = as ∈ I and x ∈ R such that
yx = 0, then there exists α ∈ Ann(ax) such that s = αs. Hence y = as = aαs ∈ Ann(x)I.

(2) ⇒ (7) Let x ∈ R and s ∈ R \ Nil(R) such that sx = 0. Since I = xR is ϕ-P-flat, we
get x ∈ Ann(s)I. So there exists α ∈ Ann(s) such that x = αx.

(7) ⇒ (1) Let I be an ideal of R. Let x ∈ I and s ∈ R \ Nil(R) such that sx = 0. Then
there exists α ∈ Ann(s) such that x = αx, and so x ∈ Ann(s)I. Thus I is ϕ-P-flat. �

Recall that an ideal I of a ring R is said to be pure if for every x ∈ I, there exists y ∈ I
such that xy = x.

Corollary 2.3. A ring R is a ϕ-PF-ring if and only if Ann(a) is a pure ideal of R for
every a ∈ R \ Nil(R).

We next give some examples of ϕ-PF-rings.

Example 2.4. (1) Every PF-ring is a ϕ-PF-ring.
(2) Every ring R with Z(R) = Nil(R) is a ϕ-PF-ring.

Remark 2.5. In general, R being a ϕ-PF-ring does not imply that Z(R) = Nil(R). It
suffices to consider R := Z/6Z. Then R is a ϕ-PF-ring since it is a PF-ring by [7, Theorem
2.7]. But Z(R) = {0, 2, 3, 4} ̸= Nil(R) = 0.

Recall that a ring R is said to be présimplifiable if for every a, r ∈ R, ar = a implies
a = 0 or r is a unit. It is easy to check that any local ring is présimplifiable.

The following corollary shows that if we assume that R is a présimplifiable ring or
a PN-ring, we will have an equivalence between the ϕ-PF-rings and the rings R with
Z(R) = Nil(R).

Corollary 2.6. (1) If R is a PN-ring, then R is a ϕ-PF-ring if and only if Z(R) =
Nil(R).

(2) If R is présimplifiable, then R is a ϕ-PF-ring if and only if Z(R) = Nil(R).

Proof. (1) Assume that R is a PN-ring and let x ∈ Z(R). Then there is a nonzero s ∈ R
such that sx = 0. If x /∈ Nil(R), then s = αs for some α ∈ Ann(x). Since α ∈ Ann(x), we
get αx = 0. Hence α ∈ Nil(R), and so αn = 0 for some n ∈ N. Then

s = αs = α(αs) = α2s = · · · = αns = 0,
a contradiction. Thus x is nilpotent.

(2) Assume that R is présimplifiable and let x ∈ R \ Nil(R). It is only required to show
that x /∈ Z(R). Let s ∈ R such that sx = 0. Then there is α ∈ Ann(s) such that x = αx.
Since R is présimplifiable and x ̸= 0, we get α is a unit, and hence s = 0. Therefore
x /∈ Z(R). �

Recall from [4] that a prime ideal P of R is said to be divided if it is comparable to
every ideal of R. Set

H := {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}.
Then R is called a ϕ-ring if R ∈ H.

Following [23], a ϕ-ring R is said to be ϕ-von Neumann regular if every R-module is
ϕ-flat. Thus a ϕ-von Neumann regular ring is naturally a ϕ-PF-ring, while the converse is
not true in general, as the following example shows.

Example 2.7. Let D be a domain which is not a field and set R := D ∝ D. Then R is a
ϕ-PF-ring which is not a ϕ-von Neumann regular ring.
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Recall that a ϕ-ring is called a ϕ-Prüfer ring if R/Nil(R) is a Prüfer domain by [1,
Theorem 2.6].
Corollary 2.8. Let R be a ϕ-ring. Then every ideal of R is ϕ-flat if and only if R is a
ϕ-Prüfer ring with Z(R) = Nil(R).
Proof. Assume that every ideal of R is ϕ-flat. Let K/Nil(R) be a nonzero ideal of
R/Nil(R). Then K is a nonnil ideal of R. Thus as in the proof of (2) ⇒ (5) in Theorem
2.2 we have

TorR
1 (R/I,K) ∼= TorR

2 (R/I,R/K) ∼= TorR
1 (R/K, I) = 0

for any ideal I of R. Hence K is a flat R-module. Note that Nil(R)K = Nil(R) [19, Lemma
2.9(1)]. Therefore K/Nil(R) is a flat R/Nil(R)-module by [21, Corollary 2.5.12(1)]. Thus
all ideals of R/Nil(R) are flat. Hence R/Nil(R) is a Prüfer domain, and so R is a ϕ-
Prüfer ring by [1, Theorem 2.6]. On the other hand, if every ideal of R is ϕ-flat, then
every ideal of R is ϕ-P-flat, i.e., R is a ϕ-PF-ring. Since R is a ϕ-ring, R is a PN-ring,
whence Z(R) = Nil(R). For the converse see [22, Theorem 4.3]. �

Recently Chang and Kim [6] introduced a new pullback. Let D be a domain with K
its quotient field. Let K[X] be the polynomial ring over K, n ≥ 2 be an integer and
K[θ] = K[X]/⟨Xn⟩, where θ = X + ⟨Xn⟩. Denote by i : D ↪→ K the natural embedding
map and π : K[θ] � K a ring homomorphism satisfying π(f) = f(0). Consider the
pullback of i and π as follows:

Rn := D + θK[θ] //

��

K[θ]

π
����

D � � i // K

Then Rn = D + θK[θ] = {f ∈ K[θ] | f(0) ∈ D} is a subring of K[θ]. Note that Rn is a
ϕ-ring and Z(Rn) = Nil(Rn) = θK[θ]. Thus we have the following:
Corollary 2.9. Let the notation be as above. Then every ideal of Rn is ϕ-flat if and only
if Rn is a ϕ-Prüfer ring.
Proposition 2.10. Let R be a ϕ-ring and let I be a nonnil ideal of R. Then I is ϕ-flat
over R if and only if I/Nil(R) is flat over R/Nil(R).
Proof. Assume that I is ϕ-flat over R and let K/Nil(R) be a nonzero ideal of R/Nil(R).
Then K is a nonnil ideal of R. Thus R/K is ϕ-torsion, and so is R/K ⊗R R/Nil(R).
Consider the following exact sequence: 0 → K → R → R/K → 0. Note that R/Nil(R)
is ϕ-flat. So 0 → K ⊗R R/Nil(R) → R⊗R R/Nil(R) → R/K ⊗R R/Nil(R) → 0 is exact.
Since I is ϕ-flat, we have the following exact sequence:

0 → I ⊗R K ⊗R R/Nil(R) → I ⊗R R⊗R R/Nil(R) → I ⊗R R/K ⊗R R/Nil(R) → 0.
Note that I⊗RR/Nil(R) = I/I Nil(R) = I/Nil(R) and K⊗RR/Nil(R) = K/K Nil(R) =
K/Nil(R) as I and K are nonnil. Thus we have the following exact sequence:

0 → (I ⊗R R/Nil(R)) ⊗R/ Nil(R) (K ⊗R R/Nil(R))
→ (I ⊗R R/Nil(R)) ⊗R/ Nil(R) (R⊗R R/Nil(R))
→ (I ⊗R R/Nil(R)) ⊗R/ Nil(R) (R/K ⊗R R/Nil(R)) → 0.

That is,
0 → I/Nil(R) ⊗R/ Nil(R) K/Nil(R) → I/Nil(R) ⊗R/ Nil(R) R/Nil(R)

→ I/Nil(R)) ⊗R/ Nil(R) R/K → 0
is exact. Therefore I/Nil(R) is flat over R/Nil(R). The converse follows from [23, Theo-
rem 3.8]. �
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Remark 2.11. (1) The necessity of Proposition 2.10 can be proved by using [23,
Theorem 3.8] since for a domain the flat modules and the ϕ-flat modules coincide.

(2) The first part of the necessity of Corollary 2.8 can be proved by Proposition 2.10.

A ring R being a ϕ-PF-ring does not guarantee that it is also a ϕ-Prüfer ring as shown
by the following example.

Example 2.12. Let A be a domain which is not a Prüfer domain and K its quotient field.
Set R = A ∝ K. Then:

(1) R is a ϕ-ring with Z(R) = Nil(R).
(2) Every ideal of R is ϕ-P-flat.
(3) R is not a ϕ-Prüfer ring, and hence there is an ideal of R which is not ϕ-flat.

Recall from Theorem 2.2 that a ring R is a ϕ-PF-ring if and only if every nonnil principal
ideal of R is P-flat. However, this does not imply that any nonnil finitely generated ideal
is P-flat as shown in the following remark.

Remark 2.13. If R is a ϕ-PF-ring, then it does not imply that every nonnil finitely
generated ideal of R is P-flat.

Proof. Let R = Z ∝ Z. Since Z(R) = Nil(R), we get R is a ϕ-PF-ring. Set I =
(2, 0)R + (0, 3)R. Then I is a finitely generated nonnil ideal of R. Set a = (0, 1). Then
a(0, 3) = 0 and Ann(a) = 0 ∝ Z. So Ann(a)I = 0 ∝ 2Z, whence (0, 3) /∈ Ann(a)I. Thus I
is not P-flat. �

Note that a PF-ring is a ϕ-PF-ring, but the converse is not true in general. As an
example, we may consider the ring R = Z/4Z. The following theorem gives a necessary
and sufficient condition to have the converse. Recall that a ring R is said to be reduced if
Nil(R) = 0.

Theorem 2.14. Let R be a ring. Then R is a PF-ring if and only if it is a reduced
ϕ-PF-ring.

Proof. Assume that R is a PF-ring. Then R is naturally a ϕ-PF-ring. It is known that a
PF-ring is reduced [16, Theorem 4.2.2]. The converse is straightforward since if Nil(R) = 0,
then the notion of ϕ-P-flat rings is equivalent to that of P-flat rings. �

In [3, Theorem 2.3] Aritico and Marconi proved that a ring R is a PF-ring if and only
if Ann(a) + Ann(b) = R, whenever ab = 0. We next give an analogous result for the
ϕ-PF-rings.

Theorem 2.15. The following conditions are equivalent for a ring R.
(1) R is a ϕ-PF-ring.
(2) For every a ∈ R \ Nil(R) and b ∈ R such that ab = 0, Ann(a) + Ann(b) = R.
(3) For every a ∈ R \ Nil(R) and b ∈ R, Ann(a) + Ann(b) = Ann(ab).

Proof. (1) ⇒ (2) Let a ∈ R \ Nil(R). Then Ann(a) is a pure ideal of R. Let b ∈ R
such that ab = 0. We claim that Ann(a) + Ann(b) = R. Assume on the contrary that
Ann(a) + Ann(b) ̸= R. Then there exists a maximal ideal m containing Ann(a) + Ann(b).
Since ab = 0, we have b ∈ Ann(a). Then by purity of Ann(a) there exists c ∈ Ann(a)
such that b = bc. So 1 − c ∈ Ann(b) ⊆ m. But c ∈ Ann(a) ⊆ m, and hence 1 ∈ m, a
contradiction. Thus Ann(a) + Ann(b) = R.

(2) ⇒ (3) Let a ∈ R \ Nil(R) and b ∈ R. As Ann(a) ⊆ Ann(ab) and Ann(b) ⊆ Ann(ab),
it follows that Ann(a)+Ann(b) ⊆ Ann(ab). For the other inclusion, let x ∈ Ann(ab). Then
x(ab) = a(xb) = 0, and so Ann(a) + Ann(xb) = R. Hence there exist y ∈ Ann(xb) and
z ∈ Ann(a) such that 1 = y + z. Thus x = xy + xz with xy ∈ Ann(b) and xz ∈ Ann(a).
Therefore Ann(a) + Ann(b) = Ann(b).
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(3) ⇒ (1) Let a ∈ R\Nil(R) and b ∈ Ann(a) such that ab = 0. Then Ann(a)+Ann(b) =
Ann(ab) = Ann(0) = R. In particular 1 = α1 +α2 for some α1 ∈ Ann(a) and α2 ∈ Ann(b).
Multiplying by b, we get b = α1b. Thus R is a ϕ-PF-ring. �

As a corollary to Theorem 2.15, we can provide another proof for [3, Theorem 2.3.]

Corollary 2.16. The following conditions are equivalent for a ring R.
(1) R is a PF-ring.
(2) For every a, b ∈ R such that ab = 0, Ann(a) + Ann(b) = R.
(3) For every a, b ∈ R, Ann(a) + Ann(b) = Ann(ab).

Proof. (1) ⇒ (2) Assume that R is a PF-ring. Then R is a reduced ϕ-PF-ring by Theorem
2.14. So Ann(a) + Ann(b) = R whenever ab = 0 by Theorem 2.15 .

(2) ⇒ (3) Assume that Ann(a) + Ann(b) = R for every a, b ∈ R such that ab = 0. Then
Ann(a) + Ann(b) = Ann(ab) for every a ∈ R \ Nil(R) and b ∈ R by the previous theorem.
Let a ∈ Nil(R). Then an = 0 for some n ∈ N. Hence Ann(a) + Ann(an−1) = R since
a · an−1 = 0. Thus Ann(a) = R, and so R is a reduced. Therefore Ann(a) + Ann(b) = R
for every a, b ∈ R.

(3) ⇒ (1) Assume that for every a, b ∈ R, Ann(a) + Ann(b) = Ann(ab). Then R is a
ϕ-PF-ring and we can easily verify that Ann(a) = Ann(an) for every n > 0. Therefore R
is a reduced ϕ-PF-ring, and hence by Theorem 2.14 R is a PF-ring. �

Note that every domain is présimplifiable, however the converse is not true in general.
Examine the ring Z/4Z for example. Similarly, any domain is a PF-ring, while the converse
is not true, for this it is enough to consider the ring Z/6Z.

The following corollary shows that a présimplifiable PF-ring is a domain.

Corollary 2.17. Let R be a ring. Then R is a domain if and only if it is a présimplifiable
PF-ring.

Proof. If R is a domain, then it is straightforward that R is a présimplifiable PF-ring.
Conversely, assume that R is a présimplifiable PF-ring. Then R is a reduced ϕ-PF-ring
by Theorem 2.14. By Corollary 2.6, we get Z(R) = Nil(R), and so Z(R) = 0. Thus R is
a domain. �

Note that every ϕ-flat module is ϕ-P-flat, and any P-flat module is ϕ-P-flat. However
the converse of the two statements may not be true. Now, our goal is to construct a
class of ϕ-P-flat ideals which are neither ϕ-flat nor P-flat. For this we will start with the
following proposition.

Proposition 2.18. Let D be a domain which is not a field and let R = D ∝ D. Set
J = (0, a)R to be the ideal generated by (0, a) with a a nonunit of D. Then J is not ϕ-flat.

Proof. Consider the exact sequence:

0 → 0 ∝ D
i→ R

f→ J → 0,
where i is the inclusion and f(x, y) = (x, y)(0, a) for every (x, y) ∈ R. Now consider a
nonnil ideal I := Da ∝ D of R. Then

0 ∝ D ∩RI = 0 ∝ D ̸= (0 ∝ D)I = 0 ∝ Da.

Thus J is not ϕ-flat by [23, Theorem 3.2]. �
Denote by U(R) the set of all units of a ring R. Now we will give an example of an

ideal which is ϕ-P-flat but which is neither ϕ-flat nor P-flat.

Example 2.19. Let D be a domain which is not a field, and set R = D ∝ D. Then the
ideal J = (0, a)R, generated by (0, a) with a ∈ D\U(D), is ϕ-P-flat which is neither ϕ-flat
nor P-flat.
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Proof. Note that Nil(R) = 0 ∝ D is a prime ideal of R, and so R is a PN-ring, and
Z(R) = Nil(R) = 0 ∝ D. Then R is a ϕ-PF-ring.

Let x, y ∈ D \ {0}. Then (0, x)(0, y) = 0 and for every (s1, s2) ∈ (0 : (0, y)), we
have s1 = 0 and (0, x) ̸= (0, s2)(0, x) = 0. Then the ideal (0, x)R is not P-flat for every
x ∈ D\{0}. In particular J is not P-flat. The ideal J = (0, a)R is not ϕ-flat by Proposition
2.18. �
Remark 2.20. Recall that each P-flat cyclic R-module is flat according to [8, Proposition
1]. However, the above example shows that a ϕ-P-flat cyclic module is not always ϕ-flat.

Now we will study the transfer of the ϕ-PF-ring in the direct product.

Theorem 2.21. Let (Ri)i∈Λ be a family of commutative rings, set R =
∏

i∈ΛRi. Then R
is a ϕ-PF -ring if and only if Ri is a PF -ring for all i ∈ Λ.

Proof. Assume that R is a ϕ-PF-ring. Let i0 ∈ Λ and let xi0 , si0 ∈ Ri0 such that
xi0si0 = 0. Set x = (xi)i∈Λ where xi = 0 if i ̸= i0 and s = (si)i∈Λ where si = 1 if i ̸= i0.
Then we have sx = 0 and s ∈ R \ Nil(R). So there is α = (αi)i∈Λ ∈ (0 : s) such that
αx = x. Therefore αi0 ∈ (0 : si0) and αi0xi0 = xi0 . So Ri0 is a PF-ring.

The converse follows from Theorem 2.14 and [7, Proposition 2.5]. �
Theorem 2.22. Let R be a ϕ-PF-ring and S be a multiplicative subset of R. Then S−1R
is a ϕ-PF-ring.

Proof. Let x
t ∈ S−1R and a

s ∈ S−1R\Nil(S−1R) such that x
t

a
s = 0. Then a ∈ R\Nil(R).

As ax
st = 0, there is s′ ∈ S such that s′xa = 0. Since R is a ϕ-PF-ring, there is α ∈ Ann(a)

such that s′xα = s′x. Therefore α
1 ∈ Ann(a

s ) and x
t

α
1 = x

t . �
Let A and B be two rings. Then it is well known that the prime ideal of A×B has the

form P ×B with P a prime ideal of A or A× P with P a prime ideal of B. Note that if
P is a prime ideal of A, then it is easy to verify that (A×B)P ×B is isomorphic to AP via
the isomorphism (a,b)

(s,t) 7−→ a
s .

Remark 2.23. The ϕ-PF-ring is not a local property.

Proof. Let R = Z/4Z × Z/2Z. Then R is not a ϕ-PF -ring since Z/4Z is not a PF -ring
by Theorem 2.21. On the other hand R has exactly two prime ideal P1 = 2Z/4Z × Z/2Z
and P2 = Z/4Z×0. Hence RP is a ϕ-PF -ring for all prime ideal P of R since RP1

∼= Z/4Z
and RP2

∼= Z/2Z are ϕ-PF -rings. �
The following theorem describes the localization of the ϕ-PF-rings.

Theorem 2.24. The following conditions are equivalent for a ring R.
(1) R is a ϕ-PF-ring.
(2) For every a ∈ R \ Nil(R) and any prime ideal p of R, a is a nonzero divisor in Rp

or a = 0 in Rp.
(3) For every a ∈ R \ Nil(R) and any maximal ideal m of R, a is a nonzero divisor in

Rm or a = 0 in Rm.

Proof. (1) ⇒ (2) Let a ∈ R \ Nil(R) and p be a prime ideal of R. Since Ra is a P-flat
ideal of R, we get aRp is a flat Rp-module, and so it is free since aRp is a finitely generated
Rp-module and Rp is a local ring. Therefore a = 0 in Rp or a is a nonzero divisor in Rp.

(2) ⇒ (3) Straightforward.
(3) ⇒ (1) Let a ∈ R \ Nil(R). We need to show that Ra is a flat R-module. Let m be a

maximal ideal of R. If a = 0 in Rm, then aRm is as an Rm-module flat since aRm = 0. If
a is a nonzero divisor in Rm, then aRm is a flat Rm-module since it is free. So aRm is an
Rm-flat module for any maximal ideal m of R. Since the flatness is a local property, aR is
a flat R-module. Thus R is a ϕ-PF-ring by Theorem 2.2. �
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Proposition 2.25. Let R be a ϕ-PF-ring. Then R/Nil(R) is a PF-ring.

Proof. Let J be a nonzero principal ideal of R/Nil(R). Then there is a principal nonnil
ideal I of R such that J = I/Nil(R). Since R is a ϕ-PF-ring, I is a flat R-module. Hence
J is a flat R/Nil(R)-module by Proposition 2.10. Thus R is a PF-ring by [7, Theorem
2.1]. �

The converse of the previous proposition is not true in general as the following example
shows.

Example 2.26. Let R = Z ∝ Z/2Z. Then R/Nil(R) ∼= Z is a PF-ring, but R is not a
ϕ-PF-ring.

We next study the transfer of the ϕ-PF-ring to homomorphic images. The following
example shows that the homomorphic image of a ϕ-PF-ring is not always a ϕ-PF-ring.

Example 2.27. Let R = Z ∝ Z and I = 0 ∝ 3Z. Then R is a ϕ-PF-ring and R/I ∼= Z ∝
Z/3Z is not a ϕ-PF-ring.

The following theorem shows that the class of ϕ-PF-rings is closed under the homomor-
phic images by pure ideals.

Theorem 2.28. Let R be a ϕ-PF-ring. Then R/I is a ϕ-PF-ring for any pure ideal I of
R.

Proof. Let a + I ∈ R/I \ Nil(R/I). Then a is non-nilpotent, and hence AnnR(a) is a
pure ideal of R. Our claim now is to show that AnnR/I(a+ I) is a pure ideal of R/I. For
this, consider x + I ∈ AnnR/I(a + I). Then xa ∈ I. Since I is a pure ideal of R, there
exists y ∈ I such that yxa = xa, and so a(yx− x) = 0. Then yx− x = z(yx− x) for some
z ∈ AnnR(a), and thus xz−x ∈ I. Therefore (z+I)(a+I) = I and (x+I)(z+I) = (x+I).
Consequently R/I is a ϕ-PF-ring. �
Proposition 2.29. (1) Let R be a ring and I be a primary ideal of R. Then R/I is

a ϕ-PF -ring.
(2) Z/nZ is a ϕ-PF -ring if and only if n = pα for some prime integer p or n =

p1 · · · pni, where p1, . . . , pni are the prime integers defined by n.

Proof. (1) As I is a primary ideal of R, then Z(R/I) = Nil(R/I). Thus, R/I is a
ϕ− PF−ring.
(2) Assume that n = pαq with α > 1 and p and q are relatively prime to each other. Then
Z/nZ ∼= Z/pαZ × Z/qZ is not a ϕ-PF -ring by Theorem 2.21 since Z/pα is not a PF-ring.
The converse is straightforward. �
Example 2.30. Z/pnZ is a ϕ-PF-ring for any prime number p and any integer n ≥ 2.

Let I be an ideal of a ring R. Recall from [7, Theorem 2.7] that I is a primary ideal of
R and R/I is a PF-ring if and only if I is a prime ideal of R.

Thus, to construct a ϕ-PF-ring which is not a PF-ring, it is sufficient to consider a
primary ideal which is not prime. Then R/I is a ϕ-PF-ring which is not a PF-ring.

Example 2.31. (1) Z/4Z is a ϕ-PF-ring which is not a PF-ring.
(2) Let D be a local domain whose maximal ideal m = xD is principal. Let M = D/m

and R = D ∝ M . Set I = (x, 1)R. Then R/I is a ϕ-PF-ring which is not a
PF-ring.

Proof. (1) It is straightforward since 4Z is a primary ideal of Z which is not prime.
(3) Note that I = (x, 1)R is not a homogeneous ideal by [18, Example 2.5] (i.e., it is

not of the form J ∝ N , with J an ideal of D and N a submodule of M). On the other
hand,

√
I =

√
xD ∝ M = m ∝ M is a maximal ideal of R by [2, Theorem 3.2]. Then I
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is a primary ideal of R (it is an example of a primary ideal which is not homogeneous in
the trivial extension ring). So it is not prime (in fact, it is not a product of prime ideals.
So we cannot apply the second result of the previous theorem). Thus R/I is a ϕ-PF-ring
which is not a PF-ring. �

Our next goal is to investigate the transfer of the ϕ-PF-ring to the amalgamation A ◃▹f

J . For this purpose, we will start with the following theorem which characterizes the case
where the amalgamation A ◃▹f J is a PN-ring. We recall from [15, Proposition 2.20] that

Nil(A ◃▹f J) = {(a, f(a) + j) | a ∈ Nil(A), j ∈ J ∩ Nil(B)}

Theorem 2.32. Let A and B be rings, J a nonzero ideal of B, and f : A → B be a ring
homomorphism.

(1) Assume that J * Nil(B). Then A ◃▹f J is a PN-ring if and only if B is a PN-ring
and a ∈ Nil(A) for every a ∈ A such that f(a) + j ∈ Nil(B) for some j ∈ J .

(2) Assume that J ⊆ Nil(B). Then A ◃▹f J is a PN-ring if and only if so is A.

Proof. (1) Assume that A ◃▹f J is a PN-ring. Since J * Nil(B), there exists j ∈ J such
that j /∈ Nil(B). Then (0, j) /∈ Nil(A ◃▹f J). So 0 × J * Nil(A ◃▹f J). Since Nil(A ◃▹f J)
is a prime ideal of A ◃▹f J ,

Nil(A ◃▹f J) = Q
f := {(a, f(a) + j) | a ∈ A, j ∈ J, f(a) + j ∈ Q}

for some Q ∈ Spec(B) \ V (J) by [12, Corollary 2.5]. Since for every (a, f(a) + j) ∈
Nil(A ◃▹f J), we have f(a) + j ∈ Nil(B). Hence Q = Nil(B). Therefore B is a PN-
ring. On the other hand, let a ∈ A such that f(a) + j ∈ Nil(B) for some j ∈ J . Then
(a, f(a) + j) ∈ Q

f = Nil(A ◃▹f J). So a ∈ Nil(A).
Conversely, assume that B is a PN-ring and a ∈ Nil(A) for every a ∈ A such that

f(a) + j ∈ Nil(B) for some j ∈ J . It is clear that Nil(A ◃▹f J) ⊆ Nil(B)f . For the
other inclusion, let (a, f(a) + j) ∈ Nil(B)f . Then f(a) + j ∈ Nil(B), and so a ∈ Nil(A).
Therefore j = (f(a) + j) − f(a) ∈ J ∩ Nil(B), whence (a, f(a) + j) ∈ Nil(A ◃▹f J). Thus
Nil(A ◃▹f J) = Nil(B)f is a prime ideal of A ◃▹f J .

(2) Assume that J ⊆ Nil(B). Then Nil(A ◃▹f J) = Nil(A) ◃▹f J is a prime ideal of
A ◃▹f J if and only if Nil(A) is a prime ideal of A. Hence A ◃▹f J is a PN-ring if and only
if so is A. �

Denote by Jac(R) the Jacobson radical of a ring R.

Theorem 2.33. Let A and B be two rings, J a nonzero ideal of B, and f : A → B be a
ring homomorphism.

(1) If A ◃▹f J is a ϕ-PF-ring, then so is A.
(2) Assume that J * Nil(B), B is a PN-ring, f−1(J) ̸= 0, and a ∈ Nil(A) for every

a ∈ A such that f(a) + j ∈ Nil(B) for some j ∈ J . Then A ◃▹f J is not a
ϕ-PF-ring.

(3) Assume that J ⊆ Nil(B) and A is a PN-ring. Then A ◃▹f J is a ϕ-PF-ring if and
only if Z(A) = Nil(A) and a ∈ Nil(A) for every a ∈ A such that j′(f(a) + j) = 0
for some j′ ∈ J \ {0} and j ∈ J .

(4) Assume that J ⊆ Jac(B), f−1(J) ̸= 0, and A is a local ring. Then A ◃▹f J is a
ϕ-PF-ring if and only if J ⊆ Nil(B), Z(A) = Nil(A), and a ∈ Nil(A) for every
a ∈ A such that j′(f(a) + j) = 0 for some j′ ∈ J \ {0} and j ∈ J .

Before proving Theorem 2.33, we establish the following lemma.

Lemma 2.34. Let R and S be rings and let φ : R → S be a ring homomorphism making
R a module retract of S. If S is a ϕ-PF-ring, then so is R.
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Proof. Let Ψ : S → R be a ring homomorphism such that ψ ◦ φ = idR. Let (x, y) ∈
R× (R \ Nil(R)) such that xy = 0. Then φ(x)φ(y) = 0 and φ(y) ∈ S \ Nil(S). Since S is
a ϕ-PF-ring, there exists an element α ∈ AnnS(φ(x)) such that φ(y) = αφ(y). So

y = ψ(φ(y)) = ψ(αφ(y)) = ψ(α)y
and ψ(α) ∈ Ann(x) since

ψ(α)x = ψ(α)ψ(φ(x)) = ψ(αφ(x)) = ψ(0) = 0.
Thus S is a ϕ-PF-ring. �
Proof of Theorem 2.33. (1) Assume that A ◃▹f J is a ϕ-PF-ring. As A is a retract of
A ◃▹f J , it follows by Lemma 2.34 that A is a ϕ-PF-ring.

(2) Assume that J * Nil(B), B is a PN-ring, and a ∈ Nil(A) for every a ∈ A such
that f(a) + j ∈ Nil(B) for some j ∈ J . Then by Theorem 2.32 A ◃▹f J is a PN-ring. Let
j ∈ J which is not in Nil(B). Choose any 0 ̸= a ∈ f−1(J). Then (a, 0)(0, j) = 0. Thus
(0, j) ∈ Z(A ◃▹f J) \ Nil(A ◃▹f J). Therefore A ◃▹f J is not a ϕ-PF-ring by Corollary 2.6.

(3) Assume that J ⊆ Nil(B) and A is a PN-ring. Then by Theorem 2.32 A ◃▹f J is
a PN-ring. Hence A ◃▹f J is a ϕ-PF-ring if and only if Z(A ◃▹f J) = Nil(A ◃▹f J) by
Corollary 2.6.

Assume that A ◃▹f J is a ϕ-PF-ring and let a ∈ Z(A). Then (a, f(a)) ∈ Z(A ◃▹f J) =
Nil(A ◃▹f J). Hence a ∈ Nil(A), and so Z(A) = Nil(A). On the other hand, let a ∈ A
such that j′(f(a) + j) = 0 for some j′ ∈ J \ {0} and j ∈ J . Since (a, f(a) + j)(0, j′) = 0,
we have (a, f(a) + j) ∈ Z(A ◃▹f J) = Nil(A ◃▹f J). Therefore a ∈ Nil(A).

Conversely, assume that Z(A) = Nil(A) and a ∈ Nil(A) for every a ∈ A such that
j′(f(a) + j) = 0 for some j′ ∈ J \ {0} and j ∈ J . Let (a, f(a) + j) ∈ Z(A ◃▹f J). Since
(0, j) ∈ Nil(A ◃▹f J), (a, f(a)) = (a, f(a) + j) − (0, j) ∈ Z(A ◃▹f J). Hence there exists
(r, f(r) + j′) ∈ A ◃▹f J \ {0} such that (a, f(a))(r, f(r) + j′) = 0, and so ar = 0 and
j′f(a) = 0. If r ̸= 0, then a ∈ Z(A) = Nil(A). If r = 0, then j′f(a) = 0, whence
a ∈ Nil(A). So in the all cases a ∈ Nil(A). Thus (a, f(a) + j) ∈ Nil(A ◃▹f J). Therefore
A ◃▹f J is a ϕ-PF-ring.

(4) Assume that J ⊆ Jac(B), f−1(J) ̸= 0, and A is a local ring. Then A ◃▹f J is a local
ring. Hence A ◃▹f J is a ϕ-PF-ring if and only if Z(A ◃▹f J) = Nil(A ◃▹f J).

Assume that A ◃▹f J is a ϕ-PF-ring. Let j ∈ J and choose 0 ̸= a ∈ f−1(J). Then
(a, 0)(0, j) = 0. So (0, j) ∈ Z(A ◃▹f J) = Nil(A ◃▹f J). Therefore J ⊆ Nil(B) and as in
(3) we can easily deduce that a ∈ Nil(A) for every a ∈ A such that j′(f(a) + j) = 0 for
some j′ ∈ J \ {0} and j ∈ J .

The converse is analogous to (3). �
Corollary 2.35. Let A be a ring and I be an ideal of A.

(1) If A ◃▹ I is a ϕ-PF-ring, then so is A.
(2) If I * Nil(A), A is a PN-ring, and a ∈ Nil(A) for every a ∈ A such that a + i ∈

Nil(A) for some i ∈ I, then A ◃▹ I is not a ϕ-PF-ring.
(3) Assume that I ⊆ Nil(A) and A is a PN-ring. Then A ◃▹ I is a ϕ-PF-ring if and

only if Z(A) = Nil(A) and a ∈ Nil(A) for every a ∈ A such that i′(a + i) = 0 for
some i′ ∈ I \ {0} and i ∈ I.

(4) Assume that (A,m) is a local ring and I ⊆ m. Then A ◃▹ I is a ϕ-PF-ring if and
only if I ⊆ Nil(A), Z(A) = Nil(A) and a ∈ Nil(A) for every a ∈ A such that
i′(a+ i) = 0 for some i′ ∈ I \ {0} and i ∈ I.

Proof. If we set f := idA, the identity map on A, then A ◃▹ I = A ◃▹f I. Thus this
follows immediately from Theorem 2.33. �
Corollary 2.36. Let A be a ring and M an A-module. Set R := A ∝ M .

(1) If R is a ϕ-PF-ring, then so is A.
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(2) Assume that A is a PN-ring. Then R is a ϕ-PF-ring if and only if A is a ϕ-PF-ring
and ZA(M) ⊆ Nil(A).

(3) Assume that A is a local ring. Then R is a ϕ-PF-ring if and only if A is a ϕ-PF-
ring and ZA(M) ⊆ Nil(A).

Proof. Consider a ring homomorphism
f : A ↪→ AnM

a 7→ f(a) = (a, 0)

and a nonzero ideal J := 0 ∝ M of A ∝ M . Then A ◃▹f J ∼= A ∝ M and J ⊆ Nil(A ∝ M)
since J2 = 0.

(1) This follows immediately by Theorem 2.33.
(2) Assume that R is a ϕ-PF-ring. Then Z(A) = Nil(A) by Theorem 2.33. On the other

hand, let a ∈ ZA(M). Then am = 0 for some m ∈ M \ {0}, and so (a, 0)(0,m) = 0. Then
a ∈ Nil(A) by Theorem 2.33. Hence Z(A) = Nil(A) and ZA(M) ⊆ Nil(A).

Conversely, assume that Z(A) = Nil(A) and ZA(M) ⊆ Nil(A). Let a ∈ A such that
j′(f(a)+j) = 0 for some j′ ∈ J\{0} and j ∈ J . Since J2 = 0, we have j′f(a) = (0, am′) = 0
with j′ = (0,m′). Hence a ∈ ZA(M) ⊆ Nil(A). Therefore R is a ϕ-PF-ring by Theorem
2.33.

(3) Assume that A is a local ring. Then R is also a local ring, and hence R is présim-
plifiable. Therefore R is a ϕ-PF-ring if and only if Z(R) = Nil(R), if and only if A is a
ϕ-PF-ring and ZA(M) ⊆ Nil(A). �

Corollary 2.37. Let D be a domain and M be a D-module. Then R = D ∝ M is a
ϕ-PF-ring if and only if M is a torsion-free D-module.

Example 2.38. (1) Z ∝ nZ is a ϕ-PF-ring for any n ∈ N.
(2) Let M :=

⊕
p∈P Z/pZ and P is the set of all prime numbers. Then Z ∝ M is not

a ϕ-PF-ring.
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